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Preface

In the early 60s, the watchmaking industry realized that the newly invented
integrated circuit technology could possibly be applied to develop electronic
wristwatches. But it was immediately obvious that the precision and stability
required for the time base could not be obtained by purely electronic means.
A mechanical resonator had to be used, combined with a transducer. The fre-
quency of the resonator had to be low enough to limit the power consumption
at the microwatt level, but its size had to be compatible with that of the watch.
After unsuccessful results with metallic resonators at sonic frequencies, ef-
forts were concentrated on reducing the size of a quartz crystal resonator.
Several solutions were developed until a standard emerged with a thin tun-
ing fork oscillating at 32kHz and fabricated by chemical etching. After first
developments in bipolar technology, CMOS was soon identified as the best
choice to limit the power consumption of the oscillator and frequency divider
chain below one microwatt. Low-power oscillator circuits were developed
and progressively optimized for best frequency stability, which is the main
requirement for timekeeping applications. More recent applications to port-
able communication devices require higher frequencies and a limited level
of phase noise. Micro-electro-mechanical (MEM) resonators have been de-
veloped recently. They use piezoelectric or electrostatic transduction and are
therefore electrically similar to a quartz resonator.

The precision and stability of a quartz is several orders of magnitude bet-
ter than that of integrated electronic components. Hence, an ideal oscillator
circuit should just compensate the losses of the resonator to maintain its os-
cillation on a desired mode at the desired level, without affecting the fre-
quency or the phase of the oscillation. Optimum designs aim at approaching
this ideal case while minimizing the power consumption.

xi



xii Preface

This book includes the experience accumulated along more than 30 years
by the author and his coworkers. The main part is dedicated to variants of
the Pierce oscillator most frequently used in timekeeping applications. Other
forms of oscillators that became important for RF applications have been
added, as well as an analysis of phase noise. The knowledge is formalized in
an analytical manner, in order to highlight the effect and the importance of
the various design parameters. Computer simulations are limited to particular
examples but have been used to crosscheck most of the analytical results.

Many collaborators of CEH (Centre Electronique Hologer, Watchmakers
Electronic Center), and later of CSEM, have contributed to the know-how
described in this book. Among them, by alphabetic order, Daniel Aebischer,
Luc Astier, Serge Bitz, Marc Degrauwe, Christian Enz, Jean Fellrath, Armin
Frei, Walter Hammer, Jean Hermann, Vincent von Kaenel, Henri Oguey, and
David Ruffieux. Special thanks go to Christian Enz for the numerous discus-
sions about oscillators and phase noise during the elaboration of this book.

Eric A. Vittoz
Cernier, Switzerland
February 2010



Symbols

Table 0.1 Symbols and their definitions.

Symbol Description Reference

a Power factor of the flicker noise current (6.71)
A Normalized transconductance in series resonance oscillator (6.108)
B Normalized bandwidth in series resonance oscillator (6.108)
Ca, Cb Functional capacitors Fig. 6.37
CD Capacitance between drains Fig. 6.1
CL Load capacitance in series resonance oscillator Fig. 6.16
Cm (Cm,i) Motional capacitance (of mode i) Fig. 2.2
CP Total parallel capacitance of the resonator (2.22)
Cs Series connection of C1 and C2 (4.9)
CS Capacitance between sources Fig. 6.1
C0 Parallel capacitance of the dipole resonator (2.1)
C1 Total gate-to-source capacitance Fig. 4.1
C2 Total drain-to-source capacitance Fig. 4.1
C3 Total capacitance across the motional impedance Fig. 2.2
Em Energy of mechanical oscillation (2.23)
f Frequency
fm Motional resonant frequency (4.140)
fs Frequency of stable oscillation (3.24)
fs(mv) Fundamental function in strong inversion (6.37)
fw(vin) Fundamental function in weak inversion (6.30)
Fa Flicker noise current constant (6.71)
Ga Reference conductance for the flicker noise current (6.71)
Gds Residual output conductance in saturation (3.57)
Gm Gate transconductance of a transistor (3.53)

continued on next page
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xiv Symbols

continued from previous page

Symbol Description Reference
Gms Source transconductance of a transistor (3.49)
Gmd Drain transconductance of a transistor (3.49)
Gmcrit Critical transconductance for oscillation Fig. 4.4
Gmcrit0 Critical transconductance for lossless circuit Fig. 4.6
Gmlim Limit transconductance in series resonance oscillator (6.109)
Gmmax Maximum possible transconductance for oscillation Fig. 4.4
Gmopt Optimum value of transconductance Fig. 4.4
Gm(1) Transconductance for the fundamental frequency (4.54)

Gvi Transconductance of the regulator (5.52)
hs(mi) Transconductance function in strong inversion (6.142)
IB0(x) Modified Bessel function of order 0 (4.59)
IB1(x) Modified Bessel function of order 1 (4.61)
Ic Circuit current Fig. 3.1
Ics Value of Ic at stable oscillation (3.6)
ID Drain current Fig. 3.10
ID0 DC component of drain current (5.1.2)
ID(1) Fundamental component of ID Fig. 4.13
IF Forward component of drain current (3.40)
Im Motional current Fig. 2.2
Ims Value of Im at stable oscillation (3.6)
IR Reverse component of drain current (3.40)
Ispec Specific current of a transistor (3.41)
I0 Bias current of the oscillator Fig. 4.13
I0start Start-up value of bias current (5.45)
I0crit Critical value of bias current I0 Fig. 4.14
I0critmin Critical current in weak inversion (4.64)
I1 Complex value of the sinusoidal drain current 6.3.2.3
IC Inversion coefficient of a transistor (3.45)
IC0 Inversion coefficient at I0 = I0crit (4.72)
kc Capacitive attenuation factor (4.69)
Kf Flicker noise voltage constant of a transistor (3.62)
Kf i Flicker noise current function (3.36)
Kf v Flicker noise voltage function (3.35)
Kg Transconductance ratio Fig. 6.37
Ki Mirror ratio in the regulator Fig. 5.9
Kiv Gain parameter of |V1|(ID0) (5.24)
Kl Level of specific current (6.92)
Km Margin factor (4.17)
Kr Ratio of transfer parameters Fig. 5.4

continued on next page
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continued from previous page

Symbol Description Reference
Ks Ratio of specific currents (6.82)
Kt Transconductance ratio (6.175)
Kw Width ratio in the regulator (5.43)
Lm (Lm,i) Motional inductance (of mode i) Fig. 2.2
mi Index of current modulation (6.133)
mv Index of voltage modulation (4.122)
mvd Index of voltage modulation for a differential pair (6.35)
M Figure of merit (2.9)
MD Figure of merit of the resonator used as a dipole (2.22)
ML Figure of merit of the resonator used as a loaded dipole (6.7)
M0 Intrinsic figure of merit of the resonator (2.10)
n Slope factor of a transistor (3.40)
p Frequency pulling (2.7)
pc Frequency pulling at critical condition for oscillation (3.10)
ppa Frequency pulling at parallel resonance (2.15)
ps Frequency pulling at stable oscillation (3.7)
pse Frequency pulling at series resonance (2.14)
Pm Power dissipated in the resonator (2.24)
Q (Qi) Quality factor (of mode i) (2.3)
Qb Quality factor of the bias circuit (5.12)
Riv Slope of the amplitude |V1|(I0) Fig. 5.3
RL Load resistance Fig. 6.16
Rm (Rm,i ) Motional resistance (of mode i) Fig. 2.2
Rn Negative resistance of the circuit (3.2)
Rn0 Value of Rn for the linear circuit (3.12)
svi Normalized slope of the regulator Fig. 5.10
siv Normalized slope of the amplitude Fig. 4.17
S

I2
n

Current noise spectrum (4.107)

S
I2
nD

Drain current channel noise spectrum (3.59)

S
I2
nL

Loop Current noise spectrum (3.27)

S
V 2

n
Voltage noise spectrum (4.107)

S
V 2

nG
Gate voltage flicker noise spectrum (3.62)

Sφ 2
n

Phase noise power spectrum (3.29)

t Time
UT Thermodynamic voltage (3.40)
V Voltage across the resonator Fig. 2.2
VB Supply voltage (battery voltage) Fig. 5.1
vc Value of |Vc| normalized to nUT (6.130)
Vc Control voltage of a transistor (6.129)
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Symbol Description Reference
VD Drain voltage Fig. 3.10
VDsat Saturation value of drain voltage (3.46)
ve Normalized effective DC gate voltage (4.57)
VG Gate voltage Fig. 3.10
VG0 DC component of gate voltage (4.52)
vin Value of |Vin| normalized to nUT (6.31)
Vin Differential input voltage Fig. 6.5
VM Channel length modulation voltage (3.57)
Vn Open-loop noise voltage of the circuit 3.7.1
VS Source voltage Fig. 3.10
VT 0 Threshold voltage of a transistor (3.40)
V(1) Complex value of fundamental component of V (3.1)

v1 value of |V1| normalized to nUT (4.57)
V1 Complex value of gate-to-source voltage Fig. 4.8
V2 Complex value of drain-to-source voltage Fig. 4.8
V3 Complex value of drain-to-gate voltage Fig. 4.8
Zc Impedance of the linear circuit (3.8)
Zc(1) Circuit impedance for fundamental frequency (3.1)
Zc0 Circuit impedance without parallel capacitance (6.3)
ZD Impedance between drains Fig. 6.3
ZL Load impedance Fig. 6.16
Zm (Zm,i) Motional impedance (of mode i) Fig. 2.2
Zp Total parallel impedance (2.12)
ZS Impedance between sources Fig. 6.3
Z1 Total gate-to-source impedance Fig. 4.3
Z2 Total drain-to-source impedance Fig. 4.3
Z3 Total drain-to-gate impedance Fig. 4.3
α Ratio of critical transconductance (4.98)
αi Noise current modulation function Fig. 3.9
αv Noise voltage modulation function Fig. 3.9
α0 Value of α for the lossless case (4.99)
β Transfer parameter of a transistor (3.44)
∆ω Noise frequency offset (3.28)
εmax Maximum relative mismatch (6.15)
ε0 Permittivity of free space (2.27)
γ Noise excess factor of the oscillator Fig. 3.7
γt Channel noise excess factor of a transistor (3.60)
Γi Effective impulse sensitivity function for noise current (3.34)
Γv Effective impulse sensitivity function for noise voltage (3.32)
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Low-Power Crystal and MEMS Oscillators xvii

continued from previous page

Symbol Description Reference
τ Time constant of oscillation growth (3.16)
τ0 Start-up value of τ (3.15)
ω Approximate angular frequency of oscillation
ωm (ωm,i) angular frequency of resonance (of mode i) (2.2)
ωn Angular frequency at which noise is considered (4.106)
ωs Angular frequency at stable oscillation (3.24)
Ωciv Cut-off angular frequency of |V1|(ID0) (5.26)
Ω0 Resonant angular frequency of bias circuit (5.10)
Ω1 Unity gain frequency of the regulation loop (5.71)



Chapter 1
Introduction

1.1 Applications of Quartz Crystal Oscillators

Relevant time durations for modern science range from the femtosecond of
very fast electronics to the age of the universe, 15 billion years. This corres-
ponds to a range of about 32 orders of magnitude. Moreover, this variable can
be controlled and measured with an accuracy better than 10−14 by modern
atomic clocks. However, the accuracy that can be obtained by purely elec-
tronic circuits, such as integrated circuits, is only of the order of 10−3. This
is because there is no combination of available electronic components (like
a RC time constant for example) that is more precise and constant with time
and temperature. Now, 10−3 corresponds to an error of about 1.5 minute per
day, which is totally unacceptable for timekeeping applications. The same
is true for applications to modern telecommunications, which exploits the
frequency spectrum up to 300Ghz.

Quartz crystal oscillators offer the range of accuracy required by these
applications by combining the electronic circuit with a simple electromech-
anical resonator that essentially controls the frequency.

Timekeeping devices like wristwatches need a long-term precision better
than 10−5, possibly 10−6 that corresponds to 30s/year. Additional require-
ments for watches include a very low power consumption, of the order of 0.1
µW in the range of indoor and outdoor temperatures. The frequency should
be as low as possible, to minimize the additional power consumed by the
frequency divider (period counter).

1
Integrated Circuits and Systems, DOI 10.1007/978-90-481-9395-0_1, 
E. Vittoz, Low-Power Crystal and MEMS Oscillators: The Experience of Watch Developments,

© Springer Science+Business Media B.V. 2010 



2 1 Introduction

The same level of long-term precision is needed for telecommunications,
with less demanding requirements on power consumption. However, higher
or much higher frequencies are needed, and there is an additional important
requirement on phase noise (or short-time stability).

Crystal oscillators are also often used for generating the clock of digital
systems or analog circuits. The precision needed is then of the order of 10−4,
which makes the quartz oscillator very uncritical, but problems may arise if
is is not properly designed, the worst one being oscillation on an parasitic
resonance of the resonator.

1.2 Historical Notes

The first quartz crystal oscillator was invented by Walter Guyton Cady in
1921 [1], as a way to produce an electrical signal of very constant frequency.
Soon after, George Washington Pierce developed a very elegant oscillator
circuit using a single vacuum tube [2, 3], that has been easily adapted to
integrated circuits, some 40 years later. Quartz oscillators have since been
used extensively to produce the accurate and stable frequency needed for the
carrier of telecommunication circuits.

Artificial quartz, first produced in 1958, progressively replaced natural
quartz crystal. Quartz production was boosted in the seventies by a surge of
demand for the 40-channel of citizen band transceivers. It was alleviated by
the introduction of frequency synthesizers made possible by the evolution of
VLSI circuits.

The application of quartz oscillators to timekeeping devices started in
1927 with the first quartz clock developed by Marrison and Horton [4]. Port-
able clocks became possible with the invention of the transistor, but integ-
rated circuits were needed to develop the first quartz wristwatch presented in
1967 [5].

1.3 The Book Structure

After this short introductory chapter, Chapter 2 is essentially dedicated to the
quartz crystal resonator and to its electrical equivalent circuit. By exploit-
ing the very large value of quality factor Q, the electrical impedance of the
resonator is described by a bilinear function of the relative amount p of fre-
quency difference with the mechanical resonant frequency, called frequency
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pulling. After a brief description of the various types of quartz resonators,
a last section shows how the equivalent circuit of a MEM resonator using
an electrostatic transducer can be reduced qualitatively to that of the quartz
resonator.

Chapter 3 describes a general theory that applies to all oscillators based on
a high-Q series resonant circuit (or parallel resonant circuit by swapping cur-
rents for voltages). By adequately splitting conceptually the oscillator into
a frequency-independent nonlinear part and a frequency-dependent linear
series resonator, this approach allows to predict the amplitude and the pre-
cise value of frequency pulling by including nonlinear effects. This chapter
also introduces some basic considerations on phase noise. An analysis of the
effect of cyclostationary noise sources is proposed, based on the effective
impulse sensitivity function (ISF) [6], with the approximation of sinusoidal
waveforms made possible by the high value of Q. The chapter ends with a
short introduction to the EKV analytical model of the MOS transistor that is
used in all subsequent circuit analyses.

Chapter 4 concentrates on the theory of the Pierce oscillator [3], which is
the only possible architecture with a single active transistor. The linear ana-
lysis (valid at the critical condition for oscillation or for sufficiently small
amplitudes) capitalizes on the circular locus resulting from the bilinear de-
pendency of the circuit impedance on the transconductance of the transistor.
The amplitude of oscillation is obtained analytically from the DC transfer
function of the transistor, using the fact that the gate voltage remains almost
sinusoidal. The important problem of frequency stability and that of avoiding
oscillation on a parasitic resonant mode of the resonator are also discussed.
Phase noise is then approached analytically, using the concept of effective
impulse sensitivity function (ISF) to treat the effect of the cyclostationary
white and flicker noise produced by the active transistor. A design process is
presented and illustrated by two numerical examples.

Chapter 5 deals with the practical realization of the Pierce oscillator. The
dynamic behavior of the grounded source implementation with respect to
variations of its bias current is analyzed. The oscillator is then embedded
in an amplitude regulating loop based on a particular amplitude regulator
scheme. The results are then applied to the two numerical examples presen-
ted in Chapter 4. The Pierce oscillator is frequently realized by means of
a simple CMOS inverter. A qualitative analysis supported by circuit simu-
lations demonstrates the many drawbacks of this solution. A better way to
reduce the power consumption by means of complementary transistors is
presented. The chapter ends with the grounded-drain implementation, which
has the advantage of requiring only one pin to connect the external reson-
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ator. Its performance is shown to be lower than that of the grounded-source
solution, especially if the active transistor is not put in a separate well.

Many architectures become possible when two or more active transistors
are considered. Chapter 6 describes and analyzes three of them. The first one
is a symmetrical circuit that exploits the parallel resonance of the resonator,
and delivers symmetrical output voltages [25]. The power consumption of
this circuit can be made very low, at the cost of an increased sensitivity of
the frequency to electrical parameters. The second circuit is also symmetrical
and based on two active transistors. It produces a current stable DC negative
resistance compatible with a series resonator. Compared to other solutions,
the power consumption of this circuit is lower for low-Q resonators and/or
for very low values of frequency pulling. In the third architecture [27], one
side of the resonator is grounded (one-pin oscillator). This more complex
circuit uses a full operational transconductance amplifier (OTA) combined
with two grounded capacitors. The chapter ends with a comparison of the
four types of oscillators analyzed in the book.

An analytical approach is favored all along the chapters, with a list of all
the variables at the beginning of the book. Results are simple equations illus-
trated by normalized graphs. The advantage is to explicit clearly the effect
of each design parameter on the circuit performance. The drawback is that
some approximations are sometimes necessary, leading to approximative res-
ults. Computer simulations can then be used to obtain more precision. Most
of the analytical results have been cross-checked by circuit simulations, with
the notable exception of phase noise. Theses simulations have been carried
out with the LTspice circuit simulator of Linear Technology and the EKV
model of the MOS transistor.

1.4 Basics on Oscillators

As depicted in Fig. 1.1, the most general way of describing an oscillator is by
a frequency-dependent nonlinear circuit block connected in closed loop. The
transfer function of the block is G(ω ,A), where ω is the angular frequency
and A is the input amplitude.

If the circuit is strongly nonlinear with a large bandwidth, it results in a
relaxation oscillator, the waveform of which is far from being sinusoidal.

On the contrary, if the circuit has a narrow bandwidth, the system becomes
a harmonic oscillator and the oscillatory signal is approximately sinusoidal.
Stable oscillation may take place at frequency ωs with an amplitude As for
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Figure 1.1 General representation of an oscillator.

G(ωs,As) = 1. (1.1)

However, this is only possible if two fundamental conditions are fulfilled.
The first condition is that for phase stability [7]

d(arg G)
dω

|ωs,As
< 0. (1.2)

No periodic solution can be maintained if this condition is not fulfilled. The
second condition is that of amplitude stability

d|G|
dA

|ωs,As
< 0. (1.3)

This condition requires that the circuit block contains some nonlinearity to
fix the amplitude of oscillation.

Although this approach of a closed loop is applicable to all kinds of os-
cillators, we will show in Chapter 3 that, for the case of oscillators including
a resonator with very high quality factor, more insight can be obtained by
separating this resonator from the rest of the circuit.



Chapter 2
Quartz and MEM Resonators

2.1 The Quartz Resonator

As illustrated by Fig. 2.1(a), a quartz resonator is essentially a capacitor,
the dielectric of which is silicon dioxide (SiO2), the same chemical com-
pound as used in integrated circuits. However, instead of being a glass, it is a
monocrystal, a quartz crystal, which exhibits piezoelectric properties. There-
fore, a part of the electrical energy stored in the capacitor is converted into
mechanical energy.
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Figure 2.1 Quartz crystal resonator: (a) Schematic structure; (b) symbol.

Whatever the shape of the piece of quartz, it has some mass and some
elasticity; it can therefore oscillate mechanically. Unlike simple LC electrical
resonators, mechanical resonators always possess several resonance frequen-
cies, corresponding to different possible modes of oscillation (eigenmodes).

E. Vittoz, Low-Power Crystal and MEMS Oscillators: The Experience of Watch Developments,
Integrated Circuits and Systems, DOI 10.1007/978-90-481-9395-0_2, 
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Now, if an AC voltage is applied to the capacitor at a frequency close to
that of a possible mode, it can possibly excite this mode and drive the quartz
resonator into mechanical oscillation.

In addition to its piezoelectric properties, quartz has the advantage of be-
ing an excellent mechanical material, with very small internal friction. It has
therefore a very high intrinsic quality factor, of the order of 106.

The resonant frequency depends essentially on the shape and the dimen-
sions of the piece of quartz. Possible frequencies range from 1 kHz for large
cantilever resonators to hundreds of MHz for very thin thickness-mode res-
onators.

The exact frequency and its variation with temperature depend on the ori-
entation with respect to the 3 crystal axes. By choosing the optimum mode
with an optimum orientation, the linear and quadratic components of the
variation of the frequency with temperature can be cancelled, leaving at best
a residual dependency of about 10−6 from -20 to +80◦C.

2.2 Equivalent Circuit

The equivalent circuit of a quartz resonator is shown in Fig. 2.2(a). Although
the intrinsic device is a dipole, it is very important in some circuits to model
it as a 3-point component, in order to separate the electrical capacitor C12
from the parasitic capacitances to the packaging case C10 and C20.

If the device is only considered as a dipole, with node 0 floating, then the
lumped electrical capacitance is

C0 � C12 +
C10C20

C10 +C20
. (2.1)

Each possible mode of oscillation i of the resonator corresponds to a mo-
tional impedance Zm,i formed by the series resonant circuit Rm,iLm,iCm,i. The
motional inductance Lm is proportional to the mass of the mechanical reson-
ator. The motional capacitance Cm is proportional to the inverse of its stiff-
ness. The motional resistance Rm represents the mechanical losses.

The resonant angular frequency of mode i is given by

ωm,i = 1/
√

Lm,iCm,i, (2.2)

and its quality factor by

Qi =
1

ωm,iRm,iCm,i
=

ωm,iLm,i

Rm,i
=

1
Rm,i

√
Lm,i

Cm,i
. (2.3)
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Figure 2.2 Equivalent circuit: (a) of the resonator alone with all possible modes;
(b) of a single mode with C12 increased to C3 by external capacitors.

This factor is very large, typically ranging from 104 to 106. Whenever
needed, this relation between Q, ωm, Rm and Cm will be used implicitly
throughout this book.

The motional current Im,i flowing through the motional impedance Zm,i
is proportional to the velocity of mode i. Thus its peak value |Im,i| is pro-
portional to the peak velocity and |Im,i|/ωi to the amplitude of oscillation of
mode i.

The voltage V across the motional impedances is proportional to the force
produced by the piezoelectric effect.

The ratio Cm,i/C12 � 1 represents the electromechanical coupling to the
mode i. It is always much lower than unity, since it never exceeds the in-
trinsic coupling coefficient of quartz, which is about 1%. If a mode i is not
coupled at all, then Cm,i = 0 and the corresponding branch disappears from
the equivalent circuit.

At this point, two very important remarks must be introduced, since they
will greatly simplify the nonlinear analysis of quartz oscillators:

1. Since Qi � 1, the bandwidth of Zm is very narrow. Hence, for frequen-
cies close to the resonance of mode i, the harmonic content of the motional
current Im,i is always negligible. Thus, this current can be considered per-
fectly sinusoidal, even if the voltage V is strongly distorted:

Im,i(t) = |Im,i|sin (ωt) (2.4)
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or, expressed as a complex value

Im,i = |Im,i|exp ( jωt). (2.5)

2. Among the various possible modes of oscillation, we may have the
“overtones”, the frequencies of which are close to multiples of that of the
fundamental mode. However, because of end effects, these frequencies are
not exact multiples of the fundamental. Hence, once a mode is excited, the
harmonics that can be produced by the distortion of V cannot excite these
overtones. Once oscillation has taken place at one mode, the other modes
(and thus the other branches in the equivalent circuit) can be ignored.

From now on, let us consider only this particular “wanted” mode, and drop
the index i in the notations. The equivalent circuit is then reduced to that of
Fig. 2.2(b), where C3 now includes external capacitances possibly added to
C12 of the resonator itself.

The complex motional impedance is given by

Zm = Rm + jωLm +
1

jωCm
= Rm +

j
ωCm

· ω + ωm

ωm
· ω −ωm

ωm
, (2.6)

where the last term has be obtained by introducing (2.2).
Now, because of the very large value of Q, the frequency of oscillation

will always be very close to ωm. It is thus very useful to replace ω by the
relative amount of frequency pulling (by the circuit)

p � ω −ωm

ωm
with |p| � 1, (2.7)

which, introduced in (2.6), gives almost exactly

Zm = Rm + j
2p

ωCm
, (2.8)

where ω can be considered constant with respect to its effect on Zm. Hence,
Zm is a linear impedance that is strongly dependent on p. Indeed, its real part
is constant (as long as the quality factor remains constant) but its imaginary
part is proportional to p.

2.3 Figure of Merit

An important parameter of quartz resonators (and of all electrostatically
driven resonators) is its figure of merit
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M � 1
ωC3Rm

=
QCm

C3
, (2.9)

which has a maximum intrinsic value when C3 is reduced to its minimum
value C12, defined as

M0 � 1
ωC12Rm

=
QCm

C12
. (2.10)

Indeed, M is the maximum possible ratio of currents through Zm and C3. By
introducing this definition in (2.8), we can express Zm normalized to 1/ωC3
as

ωC3Zm =
1
M

(1+ 2Qp j). (2.11)

We can now calculate Zp, the impedance of the parallel connection of Zm and
C3. Assuming ω constant (since p � 1), it gives, in normalized form:

ωC3Zp =
1+ 2Qp j

(M−2Qp)+ j
=

M−
[
4(Qp)2 −2MQp+ 1

]
j

(M−2Qp)2 + 1
. (2.12)

This impedance becomes real for

Qp =
M±

√
M2 −4
4

. (2.13)

The negative sign correspond to the series resonance frequency, at a value
of pulling

pse =
Cm

4C3

[
1−

√
1−4/M2

]
, (2.14)

whereas the positive sign corresponds to the parallel resonance frequency,
at a value of pulling

ppa =
Cm

4C3

[
1+

√
1−4/M2

]
, (2.15)

For M � 1, pse = 0; the series resonance frequency is the mechanical fre-
quency of the resonator. But ppa =Cm/2C3; the parallel resonance frequency
depends on the electrical capacitance C3.

Notice that for M < 2, (2.13) has no real solution. The impedance Zp itself
is never real but remains capacitive for all frequencies.

As shown by (2.12), Zp is a bilinear function of Qp. Now, a property of
bilinear functions is to transform circles into circles in the complex plane [8].
Therefore, the locus of Zp(Qp) for p changing from −∞ to +∞ (circle of
infinite radius) is a circle, as illustrated by Fig. 2.3 for the particular case
M = 3.
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Figure 2.3 Complex plane of ωC3Zp(Qp). Notice that this representation is no
longer valid for Qp →±∞, since it assumes that |p| � 1.

This circle of radius M/2 is centered at (M/2;− j). Since M > 2 in this
example, the circle crosses the real axis at points S and P corresponding to
the series and parallel resonance frequencies given by (2.13). The maximum
inductive (normalized) impedance (positive imaginary value) is M/2−1 and
occurs at Qp = (M − 1)/2. The maximum resistive component of the (nor-
malized) impedance is M and occurs at Qp = M/2. Notice that the circular
locus is no longer valid for p →±∞, since ω is no longer constant. The min-
imum module of the impedance (min) occurs for a slightly negative value of
Qp. The maximum module (max) is larger by M (diameter of the circle).

A small value of M was chosen in Fig. 2.3 in order to make the various
points on the circle visible. For larger (and more realistic) values of M, this
circle becomes much larger and almost centered on the real axis. The evolu-
tion of the module and phase of Zp(p) for increasing values of M is shown
in Fig. 2.4.

As can be seen, for M � 2 the values of p at series and parallel resonance
tend to 0, respectively M/2Q = Cm/2C3, in accordance with (2.13). The cor-
responding values of Zp tend to

Zp =
1

ωC3M
= Rm at series resonance (2.16)

Zp =
M

ωC3
= M2Rm at parallel resonance. (2.17)



Low-Power Crystal and MEMS Oscillators 13

Figure 2.4 Module and phase of Zp vs. normalized frequency pulling pC3/Cm.

According to (2.14), (2.15) and (2.9), the exact series and parallel reson-
ance frequencies depend on the electrical capacitance C3 and the quality
factor Q. The calculation of these sensitivities yields:

dpse

dC3/C3
=

Cm

4C3

[
M√

M2 −4
−1

]
→ Cm

2M2C3
for M � 1, (2.18)

dppa

dC3/C3
= − Cm

4C3

[
M√

M2 −4
+ 1

]
→− Cm

2C3
for M � 1, (2.19)

dppa

dQ/Q
= − dpse

dQ/Q
=

Cm

C3

1

M
√

M2 −4
→ Cm

M2C3
for M � 1. (2.20)

These sensitivities are plotted in Fig. 2.5 as functions of the figure of merit
M. As can be seen, they become rapidly negligible for M � 1, except that of
ppa which tend to Cm/2C3. Indeed, the parallel resonance frequency depends
on the series connection of Cm and C3.

If M is sufficiently larger than 2, the series resonance frequency becomes
independent of the electrical capacitance and of the factor of quality Q. The
latter point is important, since some quartz resonators may have a mechanical
frequency ωm very constant with temperature variations, but large variations
of their quality factor.

π

π

ω
ω
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Figure 2.5 Sensitivities of pse and ppa to C3 and Q.

In order to have a high value of M, the coupling factor Cm/C3 of the reson-
ator should be sufficiently large according to (2.9). Hence, its intrinsic value
itself Cm/C12 should already be sufficiently large, since C3 > C12 due to ad-
ditional parasitic capacitances in the circuit. The figure of merit is further
degraded if one of the two “hot” terminals of the resonator is grounded, as
in “1-pin” oscillators: indeed, either C10 or C20 is then connected in parallel
with C3.

As will be explained later in Chapter 4, the minimization of C3 is also
useful to prevent harmonic currents to flow between nodes 1 and 2, in order
to minimize the effect of nonlinearities on the frequency of oscillation.

If the resonator is used as just a dipole, then capacitors C10, C20 and C12
of Fig. 2.2(a) merge into the single parallel capacitance C0 defined by (2.1).
The corresponding figure of merit is then

MD0 =
1

ωC0Rm
=

QCm

C0
. (2.21)

In practice, some additional parasitic capacitors will be added to the intrinsic
capacitors of the resonators, and the total parallel capacitance CP is some-
what larger than C0, resulting in a figure of merit

MD � 1
ωCPRm

=
QCm

CP
. (2.22)
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2.4 Mechanical Energy and Power Dissipation

Since the quality factor is very large, the energy Em of mechanic oscillation
is almost constant along each period. It is simply exchanged from kinetic
energy to potential energy. It is all kinetic energy at the peaks of velocity,
and all potential energy at the peaks of amplitude.

Since the motional current Im represents the mechanical velocity and Lm

represent the equivalent mass moving at this velocity, Em is equal to the peak
value of the kinetic energy

Em =
Lm|Im|2

2
=

|Im|2
2ω2Cm

=
QRm|Im|2

2ω
, (2.23)

where the second form is obtained by introducing (2.2) and the third form by
means of (2.3).

Since this energy is proportional to the square of the amplitude, it should
be limited to avoid destruction and limit nonlinear effects and aging. But it
should be much larger than the noise energy, in order to limit the phase noise,
as will be discussed in Section 3.7.

The motional current is sinusoidal, with an RMS value |Im|/
√

2. The
power dissipated in the resonator is thus given by

Pm =
Rm|Im|2

2
=

|Im|2
2ωQCm

. (2.24)

This power must be provided by the sustaining circuit in order to maintain
the amplitude of oscillation. Otherwise, at each period of oscillation 2π/ω ,
the energy would be reduced by

∆Em =
2πPm

ω
=

|Im|2
2ω2Cm

· 2π
Q

=
2π
Q

Em. (2.25)

According to (2.23) and (2.24), Em and Pm can be calculated as soon as |Im|
is known.

2.5 Various Types of Quartz Resonators

Quartz is monocrystal of SiO2 that has an hexagonal structure with 3 main
axes, as illustrated in Fig. 2.6 [9]. The optical axis Z passes through the apex
of the crystal. The electrical axis X is a set of three axes perpendicular to Z
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that pass through the corners of the crystal. The mechanical axis Y is a set
of three axes that are perpendicular to Z and to the faces of the crystal. The
electromechanical transducing property comes from the fact that an electrical
field applied along one of the X axes produces a mechanical stress in the
direction of the perpendicular Y axis.
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Figure 2.6 Schematic view of a quartz crystal.

Many types of quartz resonators have been developed along the years.
They are essentially differentiated by their mode of oscillation, and by the
orientation of their cut with respect to the axes. A precise choice of orient-
ation for a given mode is essential to control the variation of the resonant
frequency ωm with that of the temperature.

The variety of possible modes of oscillation is depicted in Fig. 2.7. Each
of them corresponds to a practical range of frequency.
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Figure 2.7 Possible modes of oscillation of a quartz resonator.

The flexural mode of Fig. 2.7(a) provides the lowest possible frequencies
(down to a few kHz). To minimize losses, it is suspended at its two nodes of
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oscillation. The electric field is applied by deposited metallic electrodes. The
pattern of these electrodes is optimized to maximize the coupling Cm/C12 for
the expected fundamental mode. The temperature dependency is a square law
of about -35.10−9/◦C2 that can be centered at the middle of the temperature
range. A vacuum package is needed to obtain a large value of quality factor.
This is the type of quartz used for the very first quartz wristwatch in the 60’s,
with a frequency of 8 kHz [5]. To further reduce its size, the flexural mode
resonator can be split into two parallel bars supported by a foot. It becomes
a tuning fork resonator [10]. Modern tuning fork resonators are fabricated
in a batch process by using the patterning and etching techniques developed
for integrated circuits. Their tiny 32 kHz version has become a standard for
most electronic watches.

For the same dimensions, the torsional mode depicted in Fig. 2.7(b) res-
onates at a higher frequency. It can be applied to a tuning fork as well.

Contour modes are obtained by a plate that oscillates within its own plane,
as shown by Fig. 2.7(c) (generically, they include the length-mode oscillation
of a bar). Resonant frequencies are higher than for the flexural and torsional
modes. Best among a large variety of known cuts, the GT-cut [11] eliminates
the first, second and third order terms in the variation of ωm with temperature.
The residual variation is of the order of 2 ppm in a 100 ◦C range. But this cut
requires a very precise control of the dimensions of the plate, and is therefore
very expensive. A less critical solution called the ZT-cut that can be produced
in batch was developed more recently [12]. It cancels the first and second
order terms, leaving a third order term of only 55.10−12/◦C3.

High frequencies are obtained by plates resonating in thickness modes as
illustrated in Fig. 2.7(d). The most frequent is the AT-cut, that resonates in
the thickness shear mode, with a frequency variation of 20 to 100 ppm in a
100◦C temperature range. Since the frequency is inversely proportional to
the thickness of the plate, very high frequencies are obtained by thinning
the vibrating center area of the plate in an “inverted mesa” structure. Fun-
damental frequencies as high as 250 MHz can then be reached. Harmonic
frequencies (overtones) may be used, but their coupling Cm/C12 is always
smaller than that for the fundamental.
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2.6 MEM Resonators

2.6.1 Basic Generic Structure

Very small resonators can be fabricated by be using the modern etching tech-
niques that have been developed by the microelectronics industry. For com-
patibility with integrated circuits, these micro-electro-mechanical (MEM)
resonators can be made of polysilicon glass, of aluminum or of silicon it-
self. The latter exhibits excellent mechanical characteristics, in particular a
very high intrinsic quality factor.

However, these material are not piezoelectric, hence the resonator must be
combined with an electromechanical transducer.

The transducer may be a layer of piezoelectric material deposited on the
resonator, together with electrodes. The equivalent circuit is then qualitat-
ively the same as that of the quartz resonator illustrated in Fig. 2.2. The
coupling factor Cm/C12 is reduced by the fact that the transducer only rep-
resents a small volume of the resonator, but this may be compensated by
using a piezoelectric material with a higher coupling coefficient than that
of the quartz. It is thus possible to obtain a sufficiently high value of the
intrinsic figure of merit defined by (2.10). The capacitance C12 of the trans-
ducer should be large enough to limit the reduction of the figure of merit M
defined by (2.9) by parasitic capacitors.

Another interesting solution that avoids the need for piezoelectric mater-
ial is to use an electrostatic transducer. Consider the lumped spring-mass
equivalent of such a MEM resonator shown in Fig. 2.8 with its capacitive
transducer.
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Figure 2.8 Spring-mass equivalent of a MEM resonator with electrostatic transduc-
tion.

The equivalent mass of the resonator is m and k is the stiffness of the
spring. The angular frequency of mechanical resonance is then given by
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ωm =
√

k/m, (2.26)

whereas the electrical capacitance of the transducer is

C12 = Aε0/g, (2.27)

where A is the area, g is the gap and ε0 the permittivity of free space.
Statically, the force F due to the electrical field should compensate the

force kx of the spring for any value of x, hence:

F = QE = C12V 2/g = Aε0V
2/g2, (2.28)

For a small variation δV of the voltage V around its DC value V0, the vari-
ation of the force is

δF = 2Aε0V0δV/g2, (2.29)

which moves the mass by
δx = ηdδF/k, (2.30)

where ηd ≤ 1 is a measure of the efficiency of the force to displace the mass,
that depends on the mode of oscillation considered (ηd = 1 in the schem-
atic case of Fig. 2.8). The corresponding variation of the stored mechanical
energy Em is then

δEm =
1
2

δF ·δx =
ηdδF2

2k
=

2ηdA2ε2
0V 2

0

kg4︸ ︷︷ ︸
Cm/2

δV 2. (2.31)

The value of the motional capacitor is then given by

Cm =
4ηdA2ε2

0V 2
0

kg4 . (2.32)

The intrinsic figure of merit of the resonator is then obtained by combining
(2.32) and (2.27):

M0 =
QCm

C12
=

4ηdQAε0V
2

0

kg3 , (2.33)

or, by replacing the elastic constant by the mass according to (2.26)

M0 =
4ηdQAε0V

2
0

mω2
mg3 . (2.34)

It can be increased by decreasing the gap or by increasing the bias voltage
V0. However, the latter is limited by the effect of electrostatic pulling. Indeed,
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since V creates a force F that moves the mass by a distance x, the gap g is
reduced with respect to its unbiased value g0 and (2.28) can be rewritten as

F =
Aε0V

2

(g0 − x)2 = kx/ηs, (2.35)

where ηs is a measure the efficiency of the force to statically displace the
mass (ηs = 1 in the schematic case of Fig. 2.8). By introducing the normal-
ized position ξ = x/g0, this equation becomes

ξ (1−ξ )2 =
ηsAε0

kg3
0

V 2 or V =

√
kg3

0

ηsAε0
(1−ξ )

√
ξ . (2.36)

The system becomes unstable when ξ reaches the limit value ξl for which
dV /dξ = 0; indeed, for ξ > ξl , the electrostatic force increases faster than
the force of the spring and the mass moves to x = g0. This critical value is
reached for

dV
dξ

|ξ=ξl
= 0 giving ξl = 1/3. (2.37)

Introducing this value in (2.36) gives the limit value Vl of V

Vl =

√
4kg3

0

27ηsAε0
, (2.38)

or, by replacing k by m according to (2.26)

Vl = ωm

√
4mg3

0

27ηsAε0
. (2.39)

The bias voltage V0 can only be some fraction of this limit voltage:

V0 = αVl with α < 1. (2.40)

By introducing (2.40) and (2.38) in (2.33), we obtain an interesting expres-
sion for the all-important figure of merit:

M0 =
QCm

C12
=

16
27

· ηd

ηs
α2Q

g3
0

g3
∼=

16
27

· ηd

ηs
α2Q (2.41)

where the second expression is a good approximation if α � 1. Thus, for
a given ratio ηd/ηs (which depends on the structure of the resonator), the
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intrinsic figure of merit only depends on the quality factor and on the frac-
tion α of the limit voltage at which the device is biased. The square of this
fraction is the equivalent of the coupling factor of piezoelectric resonators.

According to (2.39), the limit voltage is proportional to the frequency and
increases with g3/2

0
and m1/2. It can be decreased by increasing the area A of

the transducer.
For a given frequency, the impedance level (and the value of motional

resistor Rm for a given value of Q) is inversely proportional to C12 given
by (2.27). Hence, it decreases as g/A. Because of the small value of area A
possible with a thin resonator and of the difficulty to reduce the gap g much
below 1 µm, the value of C12 is expected to be at least one order of magnitude
smaller than for quartz resonators.

2.6.2 Symmetrical Transducers

In many practical cases, the metallic MEM resonator is grounded and is
driven by two electrostatic transducers operating in opposite phase according
to the spring-mass equivalent depicted in Fig. 2.9. The spring of stiffness k
is here represented by a massless flexible blade.
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Figure 2.9 Spring-mass equivalent with symmetrical electrostatic transduction.

Using (2.28), the forces produced the two transducers are given by

F1 = A1ε0V
2

1 /g2
1 and F2 = A2ε0V

2
2 /g2

2. (2.42)

The variation of net force F1 −F2 produced by small variations of V1 and V2
around their bias values V10 and V20 is thus



22 2 Quartz and MEM Resonators

δF = δF1 −δF2 = 2ε0

(
A1V01

g2
1

δV1 −
A2V02

g2
2

δV2

)
. (2.43)

Let us assume that the bias situation is adjusted for no net force by impos-
ing

A1V01

g2
1

=
A2V02

g2
2

=
AV0

g2 . (2.44)

Then
δF = 2Aε0V0(δV1 −δV2)/g2, (2.45)

This result is identical to (2.29), since δV1 − δV2 = δV . Therefore, (2.31)
also applies to this symmetrical transducer, for which the motional capacitor
is also given by (2.32).

However, there is a major important difference with respect to the non
symmetrical case. Indeed, since the body of the resonator is grounded, no ca-
pacitive coupling exists between nodes 1 and 2 in Fig. 2.2(a), hence C12 = 0.
The intrinsic figure of merit M0 is therefore infinite and the overall figure of
merit M defined by (2.9) is only limited by all parasitic capacitors contribut-
ing to C3.



Chapter 3
General Theory of High-Q Oscillators

3.1 General Form of the Oscillator

In order to sustain the oscillation of the resonator, it must be combined with
a circuit to form a full oscillator, as illustrated in Fig. 3.1(a).
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Figure 3.1 General form of an oscillator: (a) combination of the resonator with a
nonlinear circuit ; (b) splitting into motional impedance Zm and circuit impedance
Zc(1).

It is important to point-out that the circuit must be nonlinear, in order to
impose the level of oscillation. Indeed, a linear circuit would be independ-
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ent of the amplitude and would therefore not be capable of controlling this
amplitude.

Now, as discussed in Chapter 2, the current Im flowing through the mo-
tional impedance Zm is always sinusoidal, thanks to the high value of quality
factor Q. Therefore the best way to analyze the behavior of the oscillator,
while including the necessary nonlinearity of the circuit, is to split it concep-
tually into the motional impedance Zm and a circuit impedance containing
all electronic components, including capacitors C12, C10 and C20 of the res-
onator, as depicted in Fig. 3.1(b) [13, 14]. The current flowing through the
electronic part Ic = −Im is then also sinusoidal.

Since Ic is sinusoidal, no energy can be exchanged with the circuit at mul-
tiples of the oscillating frequency (harmonics). The nonlinear circuit can
therefore be characterized by its impedance Zc(1) for the fundamental fre-
quency defined by

Zc(1) =
V(1)

Ic
, (3.1)

where Ic is the complex value of the sinusoidal current, and V(1) the corres-
ponding complex value of the fundamental component of voltage V . Since
the circuit is nonlinear Zc(1) = Zc(1)(|Ic|): it is a function of the amplitude
oscillation |Ic|. But it is practically independent of p � 1. It should be men-
tioned that this approach is a particular case of the general approach of os-
cillators proposed by H.J. Reich (see Section 75 of [15]).

In general, the locus of Zc(1)(|Ic|) cannot be calculated analytically. But it
can be obtained by means of a circuit simulator according to the following
procedure:

(a) The circuit is first fully described including its bias.
(b) A source of sinusoidal current of amplitude |Ic1| is connected across

terminals 1 and 2.
(c) The resulting stationary voltage V (t) is calculated by the simulator.
(d) The fundamental component V(1) of V (t) is calculated by Fourier ana-

lysis and Zc(1)(|Ic1|) is calculated according to (3.1).
(e) A new value |Ic2| of the current source is selected and the process is

iterated from step (c).
The result is the locus of Zc(1)(|Ic|) in the complex plane as illustrated by

the qualitative example of Fig. 3.2. In this putative example, Zc(1) has been
calculated (according to the above procedure) for 6 increasing values of |Ic|
corresponding to points 0 to 5.

As long as the sinusoidal current is small enough, the circuit remains lin-
ear and the voltage V (t) remains sinusoidal with a complex value V(1) = V .
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Figure 3.2 Qualitative example of the locus of Zc(1)(|Ic|).

This corresponds to point 0, where Zc(1) is identical to the small-signal im-
pedance Zc of the circuit. The real part of Zc should be negative (as is the
case in this example) to be able to compensate the losses of the resonator.

When the current is large enough to produce harmonic components of
V (t), the amplitude |V(1)| of its fundamental component is normally pro-
gressively reduced, thereby reducing the negative real part of Zc(1), as is the
case for points 1 to 4.

Too much current may produce so much nonlinearities that the real part
of Zc(1) becomes positive, as shown by point 5.

In this example, the imaginary part of Zc(1) is negative, and corresponds to
a circuit that contains only capacitors (functional or parasitic). Notice that,
as shown in this example, this imaginary value is usually also affected by
nonlinear effects.

3.2 Stable Oscillation

With the definition of Zc(1) introduced in the previous section, the equivalent
circuit of the full oscillator can be represented by the resonant circuit shown
in Fig. 3.3(a).

Let us define the negative resistance provided by the circuit

Rn � Re(Zc(1)). (3.2)

The total resistance is thus Rm + Rn. It can easily be shown that any existing
oscillation with therefore decay exponentially with a time constant

τ � −2Lm

Rm + Rn
. (3.3)

But if this this net resistance is negative, the value of τ is positive and the
amplitude grows exponentially. Thus, stable oscillation is obtained for
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Figure 3.3 Oscillation: (a) equivalent circuit ; (b) intersection of the locus of
Zc(1)(|Ic|) with that of −Zm(p).

Rn = Re(Zc(1)) = −Rm corresponding to τ = ∞. (3.4)

At that point, the imaginary parts must also balance each other, thus the
general condition for stable oscillation is simply given by

Zc(1)(|Ic|) = −Zm(p), (3.5)

that is at the intersection point S of the locus of Zc(1)(|Ic|) with that of
−Zm(p), as illustrated in Fig. 3.3(b). According to (2.8), the locus of −Zm(p)
is a vertical line at the distance −Rm from the imaginary axis.

At point S, the stable amplitude of motional current has the value

|Ims| = |Ics| = |Ic|S (3.6)

Equating the imaginary part of Zc(1) at point S with that of −Zm expressed
by (2.8) gives the amount of frequency pulling at stable oscillation

ps = −ωCm

2
Im(Zc(1)|S). (3.7)

This relation provides the exact relative difference between the frequency
of oscillation and the mechanical resonant frequency of the resonator. The
effect of nonlinearities on the amount of frequency pulling is shown in
Fig. 3.3(b) as the difference between the imaginary parts of Zc(1) at point
S and at point 0 (linear case). It would be zero if the locus of Zc(1)(|Ic|)
would be an horizontal line.
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3.3 Critical Condition for Oscillation and Linear Approximation

The critical condition for oscillation occurs when points S and 0 coincide in
Fig. 3.3(b), corresponding to Zc(1) ≡ Zc. It is thus simply expressed as

Zc = −Zm(p), (3.8)

or, by separating the real and imaginary parts and according to (2.8)

Re(Zc) = −Re(Zm) = −Rm, (3.9)

and

Im(Zc) = −Im(Zm) = − 2pc

ωCm
, (3.10)

where pc is the amount of frequency pulling at the critical condition for os-
cillation.

Although these equations are only strictly valid at the verge of oscillation,
when the amplitude is so small that the circuit remains linear, equations (3.8)
to (3.10) can be used for a linear approximation of the real nonlinear case.
In particular, equation 3.10 can be used to obtain an approximative value of
frequency pulling ps for larger amplitudes. This approximation gives a neg-
ligible error if the circuit is designed to eliminate the effect of nonlinearities
on the frequency pulling p (see Fig. 3.3(b)).

3.4 Amplitude Limitation

As already pointed out, any oscillator must be nonlinear, in order to define
the amplitude of oscillation. The resonator itself should be kept in its linear
range of operation, in order to avoid aging or even destruction. Hence, the
nonlinearity must be provided by the circuit. This nonlinearity must cause a
progressive reduction of the negative resistance with the increase of oscilla-
tion current, which can be expressed as

Rn = Rn0F(|Ic|) (3.11)

where F(|Ic|) is a monotonously decreasing function with F(0) = 1, and

Rn0 = Re(Zc) (3.12)

is the real part of the impedance of the linear circuit.
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If the circuit is designed with a fixed amount of bias current, the amplitude
limitation will be caused by instantaneous nonlinearities. These nonlinearit-
ies will reduce the amount of negative resistance by increasing the losses,
while creating harmonic components of voltages. Intermodulation of these
components will eventually create a new fundamental component of Ic with
a different phase, which will affect the imaginary part of Zc(1) and therefore
ps.

This problem can be solved by using a bias regulator as illustrated by
Fig. 3.4. Instead of maintaining a fixed value of bias current I0, the bias
regulator reduces this current as the amplitude increases, as shown by the
curve I0(|Ic|) in Fig. 3.4(a).
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Figure 3.4 Amplitude limitation by bias regulator; (a) qualitative transfer function;
(b) closed loop system.

For the oscillator itself, the critical condition is reached for a value I0crit of
I0. For any slight increase of I0 above this value the oscillation grows, until
it is limited by nonlinear effects. A further growth of the oscillation requires
more bias current, as illustrated by the curve |Ic|(I0).

When the two blocks are connected in a closed loop as shown by Fig. 3.4(b),
stable oscillation is given by the intersection point P of the two transfer func-
tions. The amplitude |Ics| can be controlled to impose I0 just above I0crit ,
thereby producing a negligible amount of voltage distortion across the res-
onator.

Without regulator, and with the same start-up bias current, the amplitude
would be stabilized at point P’ by instantaneous nonlinearities (voltage dis-
tortion).



Low-Power Crystal and MEMS Oscillators 29

3.5 Start-up of Oscillation

As already established from Fig. 3.3(a), any existing motional current of
amplitude |Ica| will grow exponentially according to

|Ic| = |Ica|exp
t
τ

(3.13)

where τ is the time constant given by (3.3). By differentiation

dt =
τ(|Ic|)
|Ic|

d|Ic| (3.14)

The value of 2Lm/τ can be obtained graphically as illustrated in Fig. 3.5(a).
As long as the current is small enough, the circuit remains linear with an
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Figure 3.5 Start-up of oscillation: (a) variation of time constant τ ; (b) evaluation
of the start-up time.

impedance Zc (point 0) and this value is maximum, corresponding to a min-
imum value τ0 of the time constant given by

τ0 =
−2Lm

Rm + Rn0
=

2
ω2Cm

· 1
−Rn0 −Rm

. (3.15)

When nonlinearities start to appear, the margin of negative resistance de-
creases, thereby increasing the time constant as shown in Fig. 3.5(b). This
time constant become infinite at stable oscillation.

By introducing the expression (3.11) of Rn(|Ic|) in (3.3), we obtain

τ =
−2Lm

Rm + Rn0F(|Ic|)]
, (3.16)
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which should be infinite for |Ic| = |Ics| (stable oscillation). Hence, by using
(3.15)

τ = τ0
1−F(|Ics|)

F(|Ic|)−F(|Ics|)
. (3.17)

Introducing this result in (3.14) and integrating gives the time Tab needed for
the oscillation to grow from |Ica| to |Icb|:

Tab = τ0

∫ |Icb|

|Ica|

1
|Ic|

1−F(|Ics|)
F(|Ic|)−F(|Ics|)

d|Ic|, (3.18)

represented by the hatched area in Fig. 3.5(b). This time tends to infinity for
|Icb| = |Ics| (fully stable oscillation).

In absence of oscillation, some energy is provided by the thermal energy
kT , corresponding to a total noise current of variance kT/Lm; therefore the
lower limit of |Ica| is

|Ica| >
√

kT/Lm = ω
√

kTCm. (3.19)

In practice, for quartz resonators, the start-up time to reach 90% of the
stable amplitude ranges from 7 to 15 τ0.

3.6 Duality

The general analysis developed in the previous sections can be applied to
all oscillators based on a series resonant circuit. It is applicable to high-Q
parallel resonant circuits as well, by using the duality principle, as shown by
Fig. 3.6.
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Figure 3.6 Oscillator using a high-Q parallel resonant circuit.

The motional impedance Zm becomes a parallel admittance

Yp = Gp + j
2p

ωLp
= Gp + 2 jpωCp (3.20)
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The circuit impedance for the fundamental frequency Zc(1) becomes a cir-
cuit admittance for the fundamental frequency

Yc(1) =
I(1)

Vc
, (3.21)

where Vc is the complex value of the sinusoidal voltage across the parallel
resonant circuit and I(1) is the corresponding complex value of the funda-
mental component of the distorted circuit current I. The condition for stable
oscillation (3.5) becomes

Yc(1)(|Vc|) = −Yp(p), (3.22)

provided the amplitude and phase stability conditions (1.2) and (1.3) are ful-
filled.

High-Q parallel resonant circuits are difficult to obtain by electrical com-
ponents only, especially with small physical dimensions. But they can be part
of the equivalent circuit of high-Q mechanical resonators associated with an
electromagnetic transducer. The other parts of this equivalent circuit are then
embedded in the circuit admittance Yc(1).

3.7 Basic Considerations on Phase Noise

3.7.1 Linear Circuit

For a linear circuit with time invariant noise sources, the phase noise of
the oscillator may be analyzed by using the classical approach proposed by
Leeson [16]. The equivalent circuit of the oscillator at stable oscillation is
shown in Fig. 3.7.

A noise voltage of spectral density 4kT Rm is associated with the motional
resistance Rm of the resonator. At stable oscillation, the real part of the circuit
impedance is equal to −Rm and can therefore be associated with an open-
loop noise voltage Vn of spectral density SV 2

n
that can be expressed as

SV 2
n

= 4kT γRm, (3.23)

where γ is the noise excess factor that depends on the detailed noise contri-
butions of the circuit.

At stable oscillation, the impedance ZL that loads the total noise voltage
source of spectral density 4kT Rm(1+γ) is that of the lossless series resonator
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Figure 3.7 Equivalent circuit at stable oscillation for noise calculation. ZL is the
impedance loading the total noise voltage source of spectral density 4kT Rm(1 + γ).

formed by the motional components Lm and Cm of the resonator and by the
capacitance Cc of the circuit.

The frequency of stable oscillation is given by

ωs = 2π fs =
1√

LmCt
, (3.24)

where Ct is the series connection of Cm and Cc.
The loading impedance for noise sources may then be expressed as

ZL = jωnLm +
1

jωnCt
= jωnLm

(ωn + ωs)(ωn −ωs)
ω2

n
, (3.25)

where ωn is the frequency at which noise is considered.
For (ωn −ωs)/ωs � 1, this impedance is almost exactly given by

ZL = 2 jωLm
ωn −ωs

ω
= 2 jQRm

ωn −ωs

ω
, (3.26)

where the second form is obtained by applying (2.3).
The power spectral density of the noise current InL circulating in the loop

is then

SI2
nL

=
4kT (1+ γ)Rm

|ZL|2
=

(1+ γ)kT
Q2Rm

( ω
∆ω

)2
, (3.27)

where ∆ω is the offset of the noise frequency ωn with respect to the stable
frequency of oscillation ωs:

∆ω = |ωn −ωs|. (3.28)

This noise current is added to the oscillation (motional) current Im. For an
elementary bandwidth d f at angular frequency ω , the corresponding com-
plex phasors are illustrated in Fig. 3.8 at a given instant. Notice that the
length of the noise phasor dIn is a random value of variance SI2

nL
d f .
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Figure 3.8 Complex phasors of oscillation current Im and elementary noise currents
dInL at a given instant.

Now, since the noise current is small compared to the oscillation current,
the power spectrum of the phase noise φn can be expressed as

Sφ 2
n

=
1
2

SI2
nL

(|Im|/
√

2)2
=

(1+ γ)kT ω2

Q2Rm|Im|2∆ω2 , (3.29)

where |Im|/
√

2 is the RMS value of the oscillation current. The factor 1/2 in-
troduced in the first form is due to the fact that only half of the noise power is
translated into phase noise, whereas the other half becomes amplitude noise.

Using expressions (2.24) and (2.23) of the power Pm dissipated in the
resonator and of the energy Em of oscillation, (3.29) becomes

Sφ 2
n

=
(1+ γ)kT ω2

2Q2Pm∆ω2 =
(1+ γ)kT ω
2QEm∆ω2 . (3.30)

The power spectrum of phase noise is thus proportional to 1/∆ω2. How-
ever, this law is no longer valid when ∆ω tends to zero, because of the un-
avoidable mechanism of amplitude limitation.

For a given oscillation frequency ω , Sφ 2
n

is inversely proportional to the
energy of oscillation Em and to the quality factor Q.

3.7.2 Nonlinear Time Variant Circuit

The results derived in the previous section are only valid if the amplitude of
oscillation is so small that the circuit remains linear and the noise sources
are time invariant. But to reduce the phase noise, the amplitude must be
increased to increase the motional current Im and the energy of oscillation
Em. As a result, the circuit becomes nonlinear and the noise produced by the
active devices becomes cyclostationary (even when it remains white). Phase
noise can then be analyzed by using the impulse sensitivity function (ISF)
introduced by Hadjimiri and Lee [6].
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Consider the equivalent circuit of a quartz oscillator at stable oscillation
illustrated in Fig. 3.9 It is a second order system with two state variables.
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Figure 3.9 Equivalent circuit of the oscillator for nonlinear analysis of phase noise.

One is the current flowing through the single inductance Lm. The second is
the total voltage across the capacitances that exchange their energy with the
inductance at every cycle of oscillation. The loss resistance Rm and the active
device that compensates for it are ignored in a first approximation. Indeed,
the energy dissipation in Rm during each cycle is 2π/Q the total energy of
oscillation, thus a very small percentage for large values of the quality factor
Q. Therefore, we will simplify the analysis by assuming that the voltage
across all the capacitors of the loop is perfectly sinusoidal.

Two separate noise sources are shown, both of them possibly cyclostation-
ary. A voltage noise source in series with the inductance and composed of a
stationary noise Vn(t) multiplied by a modulation function αv synchronous
with the current. A current noise source in parallel with a capacitor Ci �Cm

and composed of a stationary noise In(t) multiplied by a modulation function
αi synchronous with the voltage.

According to [6], the phase noise spectrum density resulting from the
white noise voltage Vn(t) of spectral density SV 2

n
can be expressed as

Sφ 2
n

=
Γ 2

v ·SV 2
n

2(Lm|Im|)2∆ω2 , (3.31)

where Γv is the effective impulse sensitivity function (ISF) given, for the si-
nusoidal current |Im|cos φ , by

Γv = −sinφ ·αv(φ). (3.32)

The product Lm|Im| is the maximum magnetic flux in the inductor and ∆ω is
given by (3.28).
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With a white noise current In(t) source of spectral density SI2
n
, the phase

noise spectrum is

Sφ 2
n

=
Γ 2

i ·SI2
n

2(Ci|Vi|)2∆ω2 ·
(

Cm

Ci

)2

, (3.33)

where Γi is the effective impulse sensitivity function given, for the sinusoidal
voltage |Vi|sinφ , by

Γi = cosφ ·αi(φ). (3.34)

The product Ci|Vi| is the maximum charge in capacitors Ci and Cm. The factor
(Cm/Ci) corresponds to the fraction of the total voltage (state variable) that
appears across Ci �Cm.

According to [6], the phase noise spectrum density due to a 1/ f flicker
noise voltage source of spectral density Kf v/ωn is

Sφ 2
n

=
Γv

2 ·Kf v

(Lm|Im|)2∆ω3 . (3.35)

The effective ISF Γv is still defined by (3.32), but may be different from that
for white noise.

With a flicker noise current source of spectral density Kf i/ωn, the phase
noise spectral density is

Sφ 2
n

=
Γi

2 ·Kf i

(Ci|Vi|)2∆ω3 ·
(

Cm

Ci

)2

. (3.36)

The effective ISF Γi is still defined by (3.34), but may be different from that
for white noise.

The phase noise spectrum density due to white noise sources is propor-
tional to 1/∆ω2 and to the mean square value of the corresponding ISF.
For 1/ f flicker noise sources, this density is proportional 1/∆ω3 and to the
square of the mean value of the effective ISF.

The phase noise due to the motional resistance Rm alone can be obtained
by introducing the corresponding thermal noise density SV 2

n
= 4kT Rm in

(3.31), with αv = 1 in the expression (3.32) of the effective ISF. Replacing
Lm by QRm/ω gives

Sφ 2
n

=
kT ω2

Q2Rm|Im|2∆ω2 , (3.37)

which is identical to (3.29) for γ = 0 (no contribution of the circuit).
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If the noise current across capacitor Ci comes from the active device that
compensates for losses, the current delivered by this active device produces
a change in voltage Vi. During each period of oscillation, the relative change
of energy in Ci to compensate the loss in Rm must be

∆Ec

Ec
=

2πCi

QCm
, (3.38)

which is Ci/Cm larger than the relative loss in the resonator itself. Thus, even
with a large value of Q, the assumption of a sinusoidal voltage Vi across
C1 becomes a crude approximation when the current is strongly distorted.
Without this approximation, the ISF is much more complicated and a precise
calculation of the phase noise can only be obtained by numerical computa-
tion.

3.8 Model of the MOS Transistor

The most important nonlinear devices in the circuit are the transistors. Hence
their proper modelling is essential for nonlinear analyses. Fig. 3.10 shows the
symbols used for N-channel and P-channel MOS transistors. Unlike bipolar
transistors, MOS transistors are 4-terminal devices. They have an intrinsic
symmetry that can be preserved in the model by using the local substrate B
as the reference for voltages. This local substrate is normally common to all
transistors of the same type, and is connected to one rail of the power supply
(negative rail for the N-channel p-substrate, positive rail for the P-channel
n-substate). Hence, the corresponding electrode is usually not represented in
schematics, except when it is connected differently.

The static drain current ID of a MOS transistor depends on the values
of the gate voltage VG, the source voltage VS and the drain voltage VD, all of
them being defined with respect to the substrate B of the transistor, as defined
in Fig. 3.10. According to the EKV model [17,18], it can be expressed as the
difference of two values of a function I(V,VG), for V = VS and V = VD:

ID = I(VS,VG)− I(VD,VG) = IF − IR, (3.39)

where the first term is called the forward (component of) current IF and the
second the reverse (component of) current IR. A simple but sufficiently accur-
ate expression of these symmetrical currents valid in a wide range of current
is [19]
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Figure 3.10 Definitions of currents and voltages; (a) for a N-channel transistor; (b)
for a P-channel transistor.

IF(R) = Ispec

[
ln

(
1+ exp

VG −VT0 −nVS(D)

2nUT

)]2

, (3.40)

where VT 0 is the threshold voltage (its value for VS = 0), n the slope factor
(value ranging from 1.1 to 1.6) and UT = kT/q the thermodynamic voltage
(26mV at 27◦C). Ispec is the specific current of the transistor given by

Ispec � 2nµCox
W
L

U2
T , (3.41)

which depends on the mobility µ of carriers in the channel, on the gate oxide
capacitance per unit area Cox, and on the width-to-length ratio of the channel
W/L.

In normal situations (VD > VS for a N-channel transistor), the forward cur-
rent IF = I(VS,VG) is larger than the reverse current IR = I(VD,VG).

If IR � IF the transistor is in saturation. The drain current becomes inde-
pendent on the drain voltage since IF only depends on VG and VS.

If IF(R) � Ispec, this component is in weak inversion and can be simplified
to

IF(R) = Ispec exp
VG −VT0 −nVS(D)

nUT
(3.42)

If IF(R) � Ispec, it is in strong inversion and can be simplified to

IF(R) = Ispec

(
VG −VT0 −nVS(D)

2nUT

)2

=
β
2n

(VG −VT0 −nVS(D))
2, (3.43)

where
β � µCoxW/L (3.44)

is the transfer parameter that can be used instead of Ispec.
The amount of inversion in the transistor can be characterized by the in-

version coefficient IC defined as
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IC � max

(
IF

Ispec
,

IR

Ispec

)
. (3.45)

If IF and IR are both in weak inversion, the transistor itself operates in
weak inversion. Saturation (IR � IF ) is then obtained for

VD > VDsat = VS + 4UT to 6UT (saturation in weak inversion). (3.46)

The transistor operates in strong inversion as soon of one of components
is in strong inversion. Saturation (IR � IF ) is then approximately obtained
for

VD > VDsat =
VG −VT0

n
= VS +2UT

√
IC (satur. in strong inversion). (3.47)

For small variations of the control voltages around a bias point, the device
remains linear and the variation of drain current can be expressed as

δ ID = −GmsδVS + GmdδVD + GmδVG, (3.48)

where Gm is the usual small-signal gate transconductance, and Gms(d) is the
small-signal source (drain) transconductance given by

Gms(d) � −
dIF(R)

dVS(D)
. (3.49)

It can be obtained by differentiation of (3.40):

Gms(d) =

√
IF(R)Ispec

UT

(
1− e

−
√

IF(R)/Ispec

)
. (3.50)

For strong inversion, it can be expressed as a function of the voltages
by differentiation of (3.43), or as a function of currents from (3.50) with
IF(R) � 1:

Gms(d) = β (VG −VT0 −nVS(D)) =

√
IF(R)Ispec

UT
. (3.51)

In weak inversion, (3.50) becomes simply

Gms(d) = IF(R)/UT (3.52)

It can easily be shown that the more usual gate transconductance is related
to Gms and Gmd by
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Gm � dID

dVG
=

Gms −Gmd

n
. (3.53)

Hence in weak inversion:

Gm =
1
n

[
IF

UT
− IR

UT

]
=

ID

nUT
(weak inversion). (3.54)

In forward saturation, IR � IF and Gmd � Gms. The general expression
of the gate transconductance is then:

Gm =
Gms

n
=

√
IDIspec

nUT

(
1− e−

√
ID/Ispec

)
=

ID

nUT
· 1− e−

√
IC

√
IC

, (3.55)

In strong inversion, it is reduced to

Gm =
Gms

n
=

√
IDIspec

nUT
=

ID

nUT

√
IC

=

√
2β ID

n
=

β
n

(VG −VT0 −nVS).

(3.56)
It should be mentioned that even in saturation (i.e. for ID = IF ), the drain

current ID remains slightly dependent on the drain voltage, due to the phe-
nomenon of channel length modulation. This effect can be modelled by a
source-to-drain conductance Gds that can be approximated by

Gds = ID/VM , (3.57)

where VM is the channel length modulation voltage, proportional to the length
L of the channel. If the channel is not too short (sufficiently longer than the
minimum length allowed by the process), the intrinsic voltage gain of the
transistor in saturation

AV0 � Gm/Gds =
VM

nUT
· 1− e−

√
IC

√
IC

(3.58)

is much larger than unity but is reduced for large values of IC.
The most fundamental source of noise of the transistor is its channel noise.

It can be modelled by a noise current of spectral density SI2
nD

independent of

the frequency, which is added to the drain current. For VD = VS (thus for
ID = IF − IR = 0), this noise is the thermal noise of the channel conductance
equal to Gms and Gmd :

SI2
nD

= 4kT Gms for VD = VS (3.59)
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As shown by Fig. 3.11, when the transistor is saturated this spectral density
is reduced to

SI2
nD

= 4kT γtGms = 4kT γtnGm in saturation, (3.60)

where γt is the channel noise excess factor of the transistor, of value 1/2 in
weak inversion and 2/3 in strong inversion. These values can be higher in
short-channel devices. Notice that in saturation, the noise of the transistor

�;$%�;$�	�

�

�%�

� �

, >�

��;$�	��
#�!�;�;

�!
�

��
��*�����
����

&

�!�

��������

�;
�

�

�%�

�;$% >� � � �

�������

#�!�;�;��
�!

?�	3�����
����

�!�

��������

�;
�

Figure 3.11 Variation of the channel noise spectral density with increasing VDS =
VD −VS.

in weak inversion is the shot noise associated with the forward current IF =
ID � IR:

SI2
nD

= 2qID (saturated weak inversion). (3.61)

In strong inversion, the noise for a given value of drain current is reduced,
since Gms/ID is reduced.

Flicker noise due to carrier trapping and mobility fluctuations is also im-
portant in MOS transistors. Since its spectral density is inversely propor-
tional to the frequency, it dominates at low frequencies. It can be approxim-
ated by a noise voltage VnG added to the gate voltage, with a spectral density
SV 2

nG
given by

SV 2
nG

=
Kf

ωn
where Kf ∝

1
W L

. (3.62)

This noise voltage is minimum in moderate inversion and increases only
slowly in weak and in strong inversion. Hence, in a first approximation, Kf
can be considered constant. In a given process, it can be reduced by increas-
ing the gate area WL.



Chapter 4
Theory of the Pierce Oscillator

4.1 Basic Circuit

The simplest possible oscillator uses a single active device to generate the re-
quired negative resistance. If no inductance is available, the only possibility
is the 3-point oscillator developed in 1923 by G. W. Pierce [2, 3]. The prin-
ciple of this oscillator is depicted in Fig. 4.1. The active device is assumed to
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Figure 4.1 Basic 3-point Pierce oscillator (biasing omitted).

be a MOS transistor, but it could be a bipolar transistor as well. The source
of the MOS transistor is connected to its substrate, to make it a 3-terminal
device. The bias circuitry needed to activate the transistor is omitted here.
Capacitors C1 and C2 connected between gate and source, respectively drain
and source, are functional: they must have finite values in order to obtain a
negative resistance across the motional impedance of the resonator.

This oscillator is very similar to the Clapp circuit [20], except for the
presence of the unavoidable capacitance in parallel with the series motional

E. Vittoz, Low-Power Crystal and MEMS Oscillators: The Experience of Watch Developments, 41
Integrated Circuits and Systems, DOI 10.1007/978-90-481-9395-0_4, 
© Springer Science+Business Media B.V. 2010 
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resonator. The presence of this capacitance has important implications on the
behavior of the circuit.

Assuming that the transistor is saturated, the equivalent circuit of this
structure is that of Fig. 4.2.
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Figure 4.2 General equivalent circuit of the Pierce oscillator.

The active part of the saturated transistor is represented by the voltage-
controlled current source ID(VG). The three passive dipoles D1, D2 and D3
include all remaining parts of the equivalent circuit of the transistor itself,
as well as the functional and parasitic components of the biasing circuitry.
Moreover, in accordance with Fig. 3.1(a), D3 includes the capacitance C12
of the quartz resonator, whereas C10 and C20 are included in D1 and D2 re-
spectively. Notice that each of these three dipole may be nonlinear, as for
example D1 if the active device is a bipolar transistor. The rest of the circuit
is the motional impedance Zm of the resonator.

4.2 Linear Analysis

4.2.1 Linearized Circuit

Linearizing the general equivalent circuit of Fig. 4.2 around a biasing point
of the active device results in the equivalent circuit of impedance Zc depicted
in Fig. 4.3(a). Assuming no inductance dominates, the three passive dipoles
Di becomes linear complex impedance given by

Zi =
1

Gi + jωCi
, (4.1)
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Figure 4.3 Linearized equivalent circuit of the oscillator.

that are practically independent of slight amount of frequency pulling p� 1.
The voltage-controlled current source becomes GmV1, where Gm is the gate
transconductance of the transistor and V1 the complex voltage across Z1.

The linear circuit impedance Zc can easily be expressed as

Zc =
Z1Z3 + Z2Z3 + GmZ1Z2Z3

Z1 + Z2 + Z3 + GmZ1Z2
, (4.2)

which corresponds to the compact small-signal model of Fig. 4.3(b). The
circuit impedance Zc is thus a bilinear function of Gm. Bilinear functions
transform circles into circles in the complex plane [8], therefore the locus
of Zc(Gm) for Gm changing from −∞ to +∞ (circle of infinite radius) is a
circle, as illustrated in Fig. 4.4. It should not be confused with the locus of
Zc(1)(|Ic|) represented in Fig. 3.3.

Since the reactive components of Zi are all capacitive, this circle is located
in the lower half of the complex plane (negative imaginary part). The real
part of Zc can only be negative (providing a negative resistance) when the
circuit is made active by a positive value of Gm. However, the circuit remains
passive if Gm is too small to compensate the losses due to the reals part of Zi.
Moreover, as can be seen in the figure, is also remains passive if Gm is too
large.

The real value of Zc is minimum for a particular value Gmopt of transcon-
ductance. It is the maximum absolute value of negative resistance |Rn0|max

that can be obtained.
The locus of −Zm(p) given by (2.8) is plotted in dotted line in the same

figure. It is a vertical strait line at distance −Rm of the imaginary axis.
According to (3.8), the critical condition for oscillation is reached at the

intersection of the two loci. For the particular case depicted in Fig. 4.4, there
are two solutions labelled A and B. We will show later that solution B is
unstable, because it does not fulfill the condition (1.2) for phase stability.
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Figure 4.4 Loci of Zc(Gm) and −Zm(p) in the complex plane.

The only stable solution is at intersection A, for the particular value Gmcrit of
Gm called critical transconductance for oscillation.

If Gm is increased beyond Gmcrit , the oscillation will start up and grow
exponentially with time constant τ0 given by (3.15) (as long as the circuit
remains linear). A maximum amount of net negative resistance Rn0 + Rm is
obtained for Gm = Gmopt , corresponding to a minimum value of time con-
stant τ0. If Gm is increased beyond Gmcrit , τ0 starts increasing again, until it
becomes infinite at point B, for Gm = Gmmax.

If the quality factor Q given by (2.3) decreases, then Rm increases and the
intersection points A and B move to the left. They approach each other, until
they merge into a single point, when −Zm(p) becomes tangent to Zc(Gm). No
solution exists for Rm > |Rn0|max; no oscillation is then possible, whatever the
value of transconductance Gm.

For the critical condition, the frequency pulling p takes the value pc ob-
tained by equating the imaginary part of Zc at point A with that of −Zm given
by (2.8). This yields

pc = −ωCm

2
Im(Zc|A). (4.3)

Now, it is important to notice that the variation of Rm due to a variation of
quality factor Q moves the point A not only horizontally, but also vertically,
proportionally to the slope dIm(Zc)/dRe(Zc) at point A. Hence, according
to (4.3):
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dpc

dQ/Q
= − dpc

dRm/Rm
= −ωCmRm

2
dIm(Zc)
dRe(Zc)

|A = − 1
2Q

dIm(Zc)
dRe(Zc)

|A. (4.4)

Since, even in good resonators, the quality factor can change by a large
amount with temperature variations, this sensitivity to the quality factor
should be minimized to avoid a degradation of the frequency stability. This
can be obtained by pushing the point A as close as possible to the top of
the circle, where the sensitivity is zero (horizontal tangent). Notice that this
sensitivity tends to infinity when Rm approaches |Rn0|max.

The radius of the circle increases with the value of Z3. If Z3 is infinite,
then

Zc = Z1 + Z2 + GmZ1Z2 for Z3 = ∞ (4.5)

becomes a linear function of Gm. As illustrated in Fig. 4.5, this corresponds
to a circle of infinite radius. The maximum value of |Rn0| is no longer limited,
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Figure 4.5 Locus of Zc(Gm) for infinite Z3.

and the slope of this strait-line locus would be zero if Z1 and Z2 would be
purely capacitive. However, if the capacitors have losses represented by their
loss angles δ1 and δ2 as shown in the figure, the locus of Zc(Gm) has a slope
characterized by an angle δ1 + δ2, and some sensitivity of pc to Q remains.

Notice that an infinite value of Z3 cannot be obtained with an electromech-
anical resonator. Indeed, since the figure of merit M0 defined by (2.10) is
never infinite, the electrical capacitance C12 always remains as a component
of Z3. The situation of Fig. 4.5 can be approached by using large values of
C1 and C2, in order to obtain Z1 + Z2 � Z3 for Gm � Gmopt .
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4.2.2 Lossless Circuit

To obtain a maximum activity and a minimum sensitivity of the frequency to
the quality factor, the circuit should be made of lossless capacitors, thus

Zi =
1

jωCi
(4.6)

The expression (4.2) of the circuit impedance then becomes

Zc =
−GmC1C2 − j[ω(C1 +C2)(C1C2 +C2C3 +C3C1)+ G2

mC3/ω ]
ω2(C1C2 +C2C3 +C3C1)2 +(GmC3)2 . (4.7)

The locus Zc(Gm) of Fig. 4.4 is now centered on the imaginary axis, as shown
in Fig. 4.6. The right half of the circle corresponding to negative values of
transconductance is of no practical interest. For Gm = 0 the circuit impedance
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Figure 4.6 Loci of Zc(Gm) and −Zm(p) in the complex plane for a lossless circuit.

is imaginary and has the value

Zc =
− j

ω(C3 +Cs)
for Gm = 0, (4.8)

where Cs is the series combination of C1 and C2:

Cs =
C1C2

C1 +C2
(4.9)
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It is also imaginary for Gm = ∞ where it has the value

Zc =
− j

ωC3
for Gm = ∞. (4.10)

Some negative resistance is produced for 0 < Gm < ∞, with a maximum
given by the radius of the circle. Hence, from (4.8) and (4.10):

|Rn0|max =
1

2ωC3(1+C3/Cs)
. (4.11)

The minimum possible value of the start-up time constant τ0 can be ob-
tained by introducing this expression in (3.15):

1
τ0min

= ω
(

Cm

4C3(1+C3/Cs)
− 1

2Q

)
=

ω
2Q

(
M

2(1+C3/Cs)
−1

)
, (4.12)

where the figure of merit M is defined by (2.9).
The value of transconductance producing this maximum can be obtained

by equating to zero the first derivative of the real part of Zc in (4.7). This
gives

Gmopt = ω
(

C1 +C2 +
C1C2

C3

)
. (4.13)

By using the fact that the locus of Zc(Gm) is a centered circle of radius
|Rn0|max, and remembering that Re(Zc) = Rn0, the imaginary part of the cir-
cuit impedance can be expressed as

Im(Zc) = − 1
ω(Cs +C3)

−|Rn0|max

⎡
⎣1±

√
1−

( |Rn0|
|Rn0|max

)2
⎤
⎦ , (4.14)

whereas the slope of the locus is given by

dIm(Zc)
dRe(Zc)

=
±1√(

|Rn0|max

|Rn0|

)2
−1

. (4.15)

It is zero on the imaginary axis (|Rn0| = 0) and infinite for |Rn0| = |Rn0|max.
The locus of −Zm(p) is also reported in Fig. 4.6, for a particular value of

motional resistance Rm. A necessary condition for oscillation is that Rm =
|Rn0|< |Rn0|max. By introducing (4.11), (2.3) and (2.9), this condition can be
expressed as

M =
QCm

C3
> 2(1+C3/Cs) > 2. (4.16)
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Hence no oscillation is possible with the Pierce oscillator if the factor of
merit M of the resonator (and a fortiori its intrinsic value M0) is smaller than
two. This is because the lumped impedance between the drain and the gate
in Fig. 4.1 must become inductive.

Moreover, the condition (4.16) must be fulfilled with a large margin, in
order to limit the sensitivity the oscillator frequency to variations of Q. Thus
we shall impose a margin factor

Km � |Rn0|max

Rm
=

M
2(1+C3/Cs)

� 1. (4.17)

Then, according to (4.4) and (4.15) the sensitivity at of the frequency at the
stable solution A is given

dpc

dQ/Q
=

−1

2Q
√

K2
m −1

. (4.18)

It is drastically degraded when Km approaches 1.
The exact amount of frequency pulling at the stable point A is obtained

by introducing (4.14) (with the minus sign in the parenthesis) and (4.17) into
(4.3), giving

pc =
Cm

2(Cs +C3)
+

Cm

4C3(1+C3/Cs)

(
1−

√
1− 1

K2
m

)
. (4.19)

If K2
m � 1, this expression can be approximated by

pc
∼=

Cm

2(Cs +C3)
+

1
2QM

(
1+

C3

Cs

)
. (4.20)

Now, since usually QM � (Cs +C3)/Cm, this result can be further simpli-
fied by neglecting the second term:

pc
∼= Cm

2(Cs +C3)
. (4.21)

The amount of frequency pulling is then independent of the quality factor.
The capacitance that is responsible for the frequency pulling, in this case
Cs +C3, is usually called (in quartz data sheets) the load capacitance of the
resonator.

The value of transconductance at solutions A and B in Fig. 4.6 is obtained
by equating the real part of Zc in (4.7) with −Rm and solving for Gm. This
yields
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Gm =
C1C2

2RmC2
3

⎡
⎣1±

√
1−

[
2
M

(
1+

C3

Cs

)]2
⎤
⎦ , (4.22)

where the positive sign gives the maximum value (at point B) and the negat-
ive sign gives the critical value. According to (4.17) the squared term in the
square root is 1/K2

m. If K2
m � 1, this result can be approximated to give the

maximum transconductance

Gmmax
∼=

C1C2

RmC2
3

=
ωCmC1C2Q

C2
3

= M
ωC1C2

C3
, (4.23)

and the critical transconductance (for the lossless circuit)

Gmcrit0
∼= ω2RmC1C2(1+C3/Cs)2 =

ω
QCm

C1C2(1+C3/Cs)2. (4.24)

It is worth noticing that the ratio

Gmmax

Gmcrit0

∼=
M2

(1+C3/Cs)2
∼=︸︷︷︸

for C3�Cs

M2 (4.25)

is essentially dependent on the figure of merit M.
It is interesting to replace the squared parenthesis in (4.24) by its value

obtained from (4.21). The critical transconductance can then be expressed as

Gmcrit0
∼=

ωCm

Qp2
c

(C1 +C2)
2

4C1C2
=︸︷︷︸

for C2=C1

ωCm

Qp2
c
. (4.26)

For a given quartz resonator, the critical transconductance is thus inversely
proportional to the square of the frequency pulling pc and is minimum for
C1 = C2. Hence, decreasing the sensitivity of the frequency of oscillation to
circuit parameters by decreasing pc requires a large increase of bias current.
This is especially true if the device is a MOS transistor operated in strong in-
version: indeed, the transconductance is then only proportional to the square
root of the bias current; decreasing pc by a factor 10 would then require
10’000 more current!

For C1 = C2 (4.24) becomes

Gmcrit0
∼= ω2Rm(C1 + 2C3)

2 =
ω

QCm
(C1 + 2C3)

2. (4.27)
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4.2.3 Phase Stability

In order to verify the phase stability condition (1.2), the overall oscillator can
be opened at the gate of the transistor, as illustrated in Fig. 4.7.
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Figure 4.7 Open-loop oscillator for calculation of gain G.

The open-loop gain G is then easily calculated to be

G =
V

′
1

V1
=

−GmZ1Z2

Z1 + Z2 + Z3Zm

Z3+Zm

, (4.28)

where Zm is given by (2.8) and Z1 to Z3 by (4.6) for a lossless oscillator. To
simplify the analysis, let us assume that |Z1 + Z2| � |Z3Zm(Z3 + Zm)| (very
large values of C1 and C2), which should have no effect on the phase stability.
The tangent of the argument of G is then obtained as

tan (argG) =
4C3

ωC2
mRm

p2 − 2p
ωCmRm

+ ωC3Rm, (4.29)

the derivative of which is

d(tan (arg G))
dp

=
2

ωC3Rm

(
4pC3

Cm
−1

)
. (4.30)

Now, since the sign of d(arg G)/dω is the same as that of d(tan (arg G))/dp,
condition (1.2) becomes

stable phase for p <
Cm

4C3
(point A) (4.31)

unstable phase for p >
Cm

4C3
(point B). (4.32)

Thus, point A of figures 4.4 and 4.6 is indeed stable, whereas point B in
unstable.
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4.2.4 Relative Oscillator Voltages

By lumping the parallel impedances Zm and Z3 in to a single impedance Zx,
the overall oscillator at small signals can be redrawn as shown in Fig. 4.8.
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Figure 4.8 Calculation of voltage ratios.

Now, since Z3 is already included in Zx, at the critical condition (3.8) for
oscillation, according to (4.5)

Zx = −Zc|Z3=∞ = −(Z1 + Z2 + GmcritZ1Z2). (4.33)

Voltage ratios can then easily be calculated by means of Fig. 4.8:

V2

V1
= 1+

Zx

Z1
= −Z2

(
1
Z1

+ Gmcrit

)
, (4.34)

with a modulus

|V2|
|V1|

=

√
(G1 + Gmcrit)2 +(ωC1)2

G2
2 +(ωC2)2 , (4.35)

and
V3

V1
=

Zx

Z1
=

V2

V1
−1. (4.36)

with a modulus

|V3|
|V1|

=

√
(G1 + G2 + Gmcrit)2 + ω2(C1 +C2)2

G2
2 +(ωC2)2 . (4.37)

For a lossless circuit with a large margin factor Km, the critical transcon-
ductance is given by (4.24), and the voltage ratio becomes

V2

V1
= −C1

C2
+ j

C1

QCm

(
1+

C3

C1
+

C3

C2

)2

. (4.38)

If C2 is not too large, the imaginary part of this expression is usually smaller
or much smaller than C1/C2. Then, for C1 = C2, V2

∼= −V1 and V3
∼= −2V1.



52 4 Theory of the Pierce Oscillator

4.2.5 Effect of Losses

4.2.5.1 Numerical Example

The effect of losses on the locus of Zc(Gm) is obtained by introducing the full
expression of Z1, Z2 and Z3 given by (4.1) in the equation (4.2) of Zc, which
gives a very complicated analytical result. A numerical example is shown in
Fig. 4.9 with particular values corresponding to a realistic case of a 32 kHz
oscillator with large losses.

Figure 4.9 Example of the effect of loss conductance G1, G2 and G3 on the locus
of Zc(Gm).

As can be seen, the circle is moved to the right of the complex plane,
thereby reducing the amount of negative resistance. The corresponding ef-
fects on the critical transconductance can be obtained by equating the real
part of −Zc(Gm) to the motional resistance Rm = 1/(ωCmQ), thereby provid-
ing Q(Gm). The result obtained with the same numerical values is shown in
Fig. 4.10(a).

Losses result in an increase of the critical transconductance

Gmcrit = Gmcrit0 + ∆Gmcrit (4.39)

Ω

Ω

μ
μ
μ
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Figure 4.10 Example of the effect of loss conductance G1, G2 and G3; (a) on the
critical transconductance; (b) on the amount of frequency pulling.

where ∆Gmcrit is approximately independent of the quality factor. In this
example, Gmcrit is increased by a factor 6 for Q = 105.

The effect of losses on the frequency pulling pc calculated by (4.3) is
shown in Fig. 4.10(b) for the same numerical values. It is smaller than 10−5

for Q = 105. This figure also shows the dependency of pc on Q that was
discussed in Section 4.2.1.

4.2.5.2 Approximative Expression for the Increase of Gm

An inspection of Fig. 4.9 shows that if the shift of the circle is small with
respect to its radius, then the effect of losses is approximately equivalent to
an increase ∆Rm of the motional resistance given by

∆Rm = Re(Zc)|Gm=0. (4.40)

Then, according to (4.24)

∆Gmcrit
∼= ω2C1C2(1+C3/Cs)2∆Rm. (4.41)

For Gm = 0, the expression (4.2) of Zc is reduced to

|Zc|Gm=0 =
1

1/(Z1 + Z2)+ 1/Z3
. (4.42)

µ
µ
µ
µ
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If the losses are small with

G2
i � (ωCi)

2, (4.43)

then

Re(Zc)|Gm=0 =
G1C

2
2 + G2C

2
1 + G3(C1 +C2)

2

ω2(C1C2 +C2C3 +C3C1)2 (4.44)

By introducing (4.40) and (4.44) in (4.41), the increase of critical transcon-
ductance due to losses can be approximated by

∆Gmcrit
∼=

G1C
2
2 + G2C

2
1 + G3(C1 +C2)

2

C1C2
. (4.45)

Notice that this approximation is independent of C3. For C1 = C2, it becomes

∆Gmcrit
∼= G1 + G2 + 4G3, (4.46)

showing the larger effect of the drain-gate conductance G3.

4.2.6 Frequency Adjustment

The mechanical resonant frequency ωm of the resonator cannot be adjusted
with a precision better than about 10 ppm. It is therefore usually necessary
to fine tune the frequency of oscillation by electrically adjusting the amount
of frequency pulling p, given in a good approximation by (4.21).

One possibility would be to adjust capacitor C3. However, this is not a
good solution, since C3 should remain as small as possible to maximize the
radius of the circular locus of Zc(Gm).

Best would be to adjust C1 and C2 while maintaining C1 = C2, since it
ensures a minimum of critical transconductance for a given amount of fre-
quency pulling, as expressed by (4.26). It is usually more convenient to adjust
only one capacitor.

Now the relative range of frequency adjustement can be expressed as

ωmax −ωmin

ω
= pmax − pmin. (4.47)

To increase pmax, C1 and/or C2 must be reduced. This increases the relative
importance of parasitic capacitors (usually voltage-dependent) and reduces
the radius of the circular locus of Zc(Gm). The frequency stability is therefore
degraded. The absolute maximum of p for stable oscillation is reached at the
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point corresponding to Gmopt in Fig. 4.4. Calculation for a lossless circuit
(Fig. 4.6) yields

pmaxmax =
Cm

2C3

(
1− 1

M

)
, (4.48)

which is lower than the pulling ppa at parallel resonance given by (2.15).
According to (4.26), a reduction of pmin increases the critical transcon-

ductance and therefore the power consumption of the oscillator. The abso-
lute minimum of p would be reached for infinite values of C1 and C2 (hence
infinite critical transconductance) and is equal to its value at series resonance
given by (2.14).

The maximum possible range of frequency adjustment is thus limited by
considerations on frequency stability and power consumption. In practice, it
is never more than a small fraction of Cm/(2C3).

In some applications like time-keeping, the precise adjustment of the os-
cillator can be replaced by adjusting the ratio of the following frequency
division chain. The amount of pulling can then be kept at an optimal value
with respect to power consumption and frequency stability.

4.3 Nonlinear Analysis

4.3.1 Numerical Example

As soon as the critical transconductance is exceeded, the amplitude of os-
cillation increases until it is limited by nonlinear effects. As explained in
Section 3.1, these nonlinear effects can be analyzed by computing the circuit
impedance for the fundamental frequency Zc(1) defined by (3.1).

As an example, consider the simple Pierce oscillator circuit shown in
Fig. 4.11(a). The active N-channel transistor is biased by means of the cur-
rent I0 (mirrored by the P-channel transistors) and the resistor R connected
between drain and gate. The locus of Zc(1)(Ic) has been calculated according
to the procedure introduced in Section 3.1, by using the EKV model [18] of
MOS transistors for a standard a 0.18 µm process. The extraction of the fun-
damental component V(1) of the voltage resulting from the sinusoidal current
Ic forced into the circuit was obtained by simulating an LC filter tuned at
exactly the same frequency.

The results at a frequency of 32kHz are depicted in Fig. 4.11(b) for several
values of bias current I0.
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Figure 4.11 Example of nonlinear effects in a Pierce oscillator: (a) Circuit schem-
atic with numerical values; (b) Loci of Zc(1)(Ic) for several values of bias I0 at
32kHz.

The circle in dotted line is the theoretical locus of Zc(Gm) for the linear
circuit. It includes the losses due to bias resistor R, but not those due to the
output conductance of the transistors.

For a bias current I0 = 0.6 µA, these additional losses are negligible and
the locus of Zc(1)(Ic) starts on the circle. It remains on the circle (Zc(1) =
Zc) as long as the amplitude |Ic| ≤ 10nA. Indeed, assuming that all the AC
current flows through C1, 10nA flowing in 20pF produce a voltage of about
5mV, for which the circuit remains linear. For |Ic| = 100nA, the circuit is
already nonlinear: the locus leaves the circle and the negative resistance is
reduced. It is further reduced when the amplitude increases. For 10µA and
above, the losses are so high that the real part of Zc(1)) becomes positive (no
negative resistance produced by the circuit).

For a bias current I0 = 1 µA, more negative resistance is produced (close
to the maximum possible), but the losses due to the output conductance of
the active transistor are no longer negligible: the locus of Zc(1)(Ic) does not
start exactly on the circle.
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For I0 = 3 µA, the linear solution is unstable as established in Section
4.2.3. As a consequence, the slope of the locus starts by being negative be-
fore becoming positive but very large. The imaginary part of Zc(1), which is
proportional to the amount of frequency pulling according to (3.7), becomes
very sensitive to the amplitude.

For the extreme case with I0 = 10 µA, almost no negative resistance is
produced and the slope of the locus is almost infinite. The very large losses
at low amplitude are due to a lack of saturation of the mirror output (these
losses are reduced if the supply voltage is increased).

Now, let us assume that the motional resistance of the resonator Rm =
200kΩ . According to Fig. 3.3(b), the locus of Zm(p) is then the vertical line
at Re(Zc(1)) = −2 · 105 V/A also shown in Fig. 4.11(b). Stable oscillation is
obtained at the intersection of this locus with that of Zc(1)(Ic) (large black
dots). As can be seen in the figure, the imaginary part of Zc(1) at this inter-
section, and thus the amount of frequency pulling ps at stable oscillation,
is very dependent on the bias current I0. Furthermore, for large values of I0
(1 µA and 3 µA), it is also very sensitive to the value of motional resistance
Rm and therefore to the quality factor Q of the resonator.

This example illustrates the importance of avoiding excessive values of
bias current.

4.3.2 Distortion of the Gate Voltage

Consider the lossless oscillator circuits for AC components of Fig. 4.12. As
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Figure 4.12 Equivalent circuit of the lossless oscillator for AC components.

derived in Section 4.2.4, the ratio of gate to drain voltages for components at
the oscillation frequency is approximately given by

V1/V2|F ∼= −C2/C1. (4.49)
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But for harmonic components of the drain voltage, the motional impedance
Zm is almost infinite, therefore the drain to gate voltage ratio is simply given
by the capacitive divider C1 −C3:

V1/V2|H =
C3

C1 +C3
. (4.50)

The relative attenuation of harmonics is thus

V1/V2|H
V1/V2|F

∼=
C3C1

(C1 +C3)C2
. (4.51)

Therefore, even if the drain voltage is strongly distorted, the gate voltage
can remain sinusoidal if C3 = 0 (or more generally if Z3 = ∞). Practically, it
remains almost sinusoidal if C3 �C2.

It must be pointed-out that it is very important to limit the amount of dis-
tortion of the gate voltage. Indeed, harmonic components can be intermod-
ulated by the nonlinear transfer function of the transistor, thereby producing
an additional fundamental component of drain current. Since the phase of
this additional component will be different from that of the main compon-
ent, the frequency of oscillation will be shifted by nonlinear effects.

For Z3 = ∞, the gate signal would remain perfectly sinusoidal, hence the
nonlinear transfer function would have no effect on the frequency. Referring
to Fig. 3.3(b), this means that the locus of Zc(1)(|Ic|) would be an horizontal
straight line.

4.3.3 Amplitude Limitation by the Transistor Transfer Function

4.3.3.1 Introduction

When the oscillation grows up, it is usually first limited by the nonlinear
transfer function of the active device, as illustrated in Fig. 4.13. Part (a) of
the figure shows the oscillator circuit with its bias current I0. A resistive
path Rb is provided between drain and gate so that, at equilibrium, the DC
component of the drain current ID can reach the imposed value I0. The supply
voltage VB must be large enough in order to maintain I0 constant even during
the positive peaks of drain voltage.

As was discussed in Section 4.3.2, the gate voltage of amplitude |V1| re-
mains approximately sinusoidal, with

VG(t) = VG0 + |V1|sin ωt, (4.52)
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Figure 4.13 Amplitude limitation by the nonlinear transfer function of a transistor;
(a) basic circuit; (b) mechanism of limitation.

But when its amplitude grows, the drain current ID is distorted by the non-
linearity of ID(VG), as shown in part (b) of the figure, and

ID(t) = I0 + |ID(1)|sinωt + harmonic components. (4.53)

The harmonic components cannot flow through the motional impedance,
and therefore flow mainly through capacitor C2. The only useful component
of ID is the fundamental component of amplitude |ID(1)|. Hence the relevant
transconductance is that for the fundamental frequency, defined by

Gm(1) �
|ID(1)|
|V1|

=
ID(1)

V1
. (4.54)

It is a real value as long as no phase shift exists in the transistor itself.
Now, because of the creation of harmonics, |ID(1)| grows less than linearly

with |V1| and therefore Gm(1) decreases when |V1| increases. The latter stops
increasing when the condition for stable oscillation is reached for

Gm(1) = Gmcrit , (4.55)

where Gmcrit is given by (4.39), (4.24) and (4.45). The amplitude obtained for
a given current depends on the critical transconductance and on the width-to-
length ratio of the transistor, which affects the specific current Ispec defined
by (3.41).
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4.3.3.2 Transistor in Weak Inversion

Let us assume that the transistor remains in weak inversion even for the peak
value of drain current. In order to avoid losses, it should also remain saturated
(fulfilling condition (3.46)), even for the minimum value of drain voltage.
Thus ID = IF and weak inversion is ensured if Ispec � IDmax. Since the source
voltage VS = 0, the drain current given by the model described in Section 3.8
is

ID

Ispec
= exp

VG −VT0

nUT
= exp

VG0 −VT0 + |V1|sin φ
nUT

= eve+v1 sinφ , (4.56)

where φ = ωt and

ve =
VG0 −VT0

nUT
and v1 =

|V1|
nUT

(4.57)

are normalized variables.
Notice that saturation may be difficult to ensure with a large drain voltage

amplitude if VT0 is too small. This problem will be discussed in Section 5.1.6.
The DC component of drain current is obtained by averaging (4.56) over

one period:

I0

Ispec
= eve · 1

2π

∫ 2π

0
ev1 sinφ dφ = eve · IB0(v1), (4.58)

where

IB0(v1) = 1+
v2

1

22 +
v4

1

22 ·42 +
v6

1

22 ·42 ·62 + · · · (4.59)

is the modified Bessel function of order 0.
The fundamental component of drain current is given by

|ID(1)|
Ispec

= eve · 1
π

∫ 2π

0
ev1 sinφ sinφ dφ = eve ·2IB1(v1), (4.60)

where

IB1(v1) =
v1

2
+

v3
1

22 ·4 +
v5

1

22 ·42 ·6 +
v7

1

22 ·42 ·62 ·8 + · · · (4.61)

is the modified Bessel function of order 1.
The transconductance for the fundamental frequency can then be ex-

pressed as a function of the bias current I0 and of the normalized gate voltage
amplitude v1 by introducing (4.57), (4.58) and (4.60) into (4.54), which gives
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Gm(1) =
I0

nUT
· 2IB1(v1)

v1IB0(v1)
= Gm

2IB1(v1)
v1IB0(v1)

, (4.62)

where, according to (3.54)

Gm =
I0

nUT
(4.63)

is the small-signal transconductance (in weak inversion) at bias current ID =
I0. Therefore, at the critical condition for oscillation (where v1 = 0)

Gm = Gmcrit =
I0critmin

nUT
, (4.64)

where I0critmin is the critical current for oscillation in weak inversion. It is the
minimum possible value of I0crit since weak inversion provides the maximum
possible transconductance for a given bias current I0.

Introducing (4.62) and (4.64) into (4.55) gives

I0

I0critmin
=

IB0(v1)
2IB1(v1)

v1. (4.65)

This relation between the bias current and the amplitude is plotted in Fig. 4.14.
As soon as the critical current is reached, the amplitude grows abruptly until

Figure 4.14 Normalized gate voltage amplitude as a function of bias current for a
transistor operated in weak inversion.

it is limited by the nonlinearity at some fraction of nUT . More current is then
needed to increase the amplitude.

Δ
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As the amplitude increases, the duration of the peaks of drain current is
progressively reduced. If these peaks of current would be Dirac functions
(zero duration and infinite amplitude), then |ID(1)|/I0 = 2. Introducing (4.62)
and (4.64) into (4.55) would then give

v1 =
|V1|
nUT

= 2
I0

I0critmin
. (4.66)

This asymptotic linear behavior is also represented in Fig. 4.14. It is a reas-
onable approximation of weak inversion for |V1| � nUT .

What is the variation of ve (and thus of the DC gate voltage VG0) when the
amplitude increases? For stable oscillation, (4.55) and (4.60) give

Gmcrit = Gm(1) =
|ID(1)|
|V1|

=
|ID(1)|
v1nUT

=
Ispec

nUT
· eve ·2IB1(v1)

v1
. (4.67)

Solving for ve results in

ve =
VG0 −VT 0

nUT
= ln

I0critmin

Ispec
− ln

2IB1(v1)
v1︸ ︷︷ ︸

∆VG0/(nUT )

. (4.68)

The normalized value of DC gate voltage variation ∆VG0 is also represented
(in dotted line) in Fig. 4.14.

4.3.3.3 Larger Amplitude by Capacitive Attenuator

As shown by Fig. 4.14, to obtain a gate voltage amplitude larger than a few
nUT in weak inversion, a bias current I0 much larger than its critical value is
needed. As a consequence, the drain current will be strongly distorted. One
possibility to alleviate this problem is to introduce a capacitive attenuator at
the gate, as depicted by Fig. 4.15. The AC component of gate voltage is then
attenuated by a factor

kc = (Ca +Cb)/Ca, (4.69)

where Cb includes the gate capacitance of the transistor. For the AC compon-
ent, this is equivalent to a transistor in weak inversion with UT replaced by
kcUT , thereby producing an equivalent transconductance I0/(kcnUT ). Hence,
the current axis and the voltage axis of Fig. 4.14 are both expanded by factor
kc. The result is shown in Fig. 4.16 for several values of attenuation kc.
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Figure 4.15 Capacitive attenuator of the AC component of gate voltage (biasing
not shown).

Figure 4.16 Normalized gate voltage amplitude for a transistor operated in weak
inversion with a capacitive attenuator.

4.3.3.4 Transistor in Moderate or Strong Inversion

Another way to increase the amplitude while maintaining an acceptable
amount of distortion is to operate the transistor in strong inversion.

Using the full model (3.40) of the transistor in saturation (ID = IF =
I(VS,VG)) and the normalized voltages ve and v1 defined by (4.57), the DC
and fundamental components of drain current can be expressed as

I0

Ispec
=

1
2π

∫ 2π

0

[
ln

(
1+ e(ve+v1 sinφ)/2

)]2
dφ , (4.70)

|ID(1)|
Ispec

=
1
π

∫ 2π

0

[
ln

(
1+ e(ve+v1 sinφ)/2

)]2
sinφdφ . (4.71)

Compared to weak inversion (equations (4.58) and (4.60)), the calculation
is more complicated since the normalized DC gate voltage ve remains inside
the integral.

Let us define the inversion coefficient at the critical current for oscillation
(hence for |V1| = 0) as
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IC0 � I0crit/Ispec. (4.72)

The critical transconductance can then be calculated by applying (3.55)
with ID = I0crit :

Gmcrit =
I0crit

nUT
· 1− e−

√
IC0√

IC0

. (4.73)

According to (4.54) and (4.55), the condition for stable oscillation can be
expressed as

|ID(1)|
|V1|

=
|ID(1)|
v1nUT

= Gmcrit . (4.74)

Using (4.64), (4.73) and (4.72), we obtain the ratio

I0critmin

Ispec
=

nUT Gmcrit

Ispec
=

I0crit

Ispec
· 1− e−

√
IC0√

IC0

=
√

IC0(1− e−
√

IC0), (4.75)

which only depends on IC0. The same ratio can be obtained from (4.74):

I0critmin

Ispec
=

nUT Gmcrit

Ispec
=

|ID(1)|
v1Ispec

. (4.76)

The required current I0 can then be related to the critical current in weak
inversion I0critmin (minimum critical current) by

I0

I0critmin
=

I0

Ispec
· Ispec

I0critmin
. (4.77)

The calculation of the current required for a given amplitude can thus be
carried out in the following manner:

1. Select a value of IC0.
2. Calculate the corresponding value of I0critmin/Ispec by (4.75)
3. Select a value of normalized DC gate voltage ve.
4. Compute |ID(1)|(v1)/Ispec for the selected value of ve, using (4.71).
5. Choose the value of v1 giving the required value of I0critmin/Ispec, using

(4.76).
6. Compute the value of I0/Ispec(ve,v1) by (4.70)
7. Apply (4.77) to obtain I0/I0critmin(v1) ; this gives one point of the curve.
8. Go back to step 3 to calculate a new point.
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Figure 4.17 Normalized gate voltage amplitude as a function of bias current for
several values of IC0, the inversion coefficient at the critical condition for oscillation.
It is assumed that the transistor remains saturated all along the oscillation cycle. The
limit of validity of the strong inversion model (4.86) is indicated by the thin dotted
line.

The result of this procedure applied for several values of IC0 is presen-
ted in Fig. 4.17. It must be remembered that this result is only valid if the
active transistor and the transistor providing the bias current I0 remain satur-
ated during the whole cycle of oscillation. If one of these transistors leaves
saturation, the resulting increase of losses will reduce the amplitude.

A comparison with Fig. 4.16 shows that these results are comparable to
those obtained with a capacitive attenuator (compare for example kc = 8 in
Fig. 4.16 with IC0 = 64 in Fig. 4.17). In both cases, a large amplitude can
be obtained with a bias current not much higher that its critical value (for
example, with IC0 = 64, |V1| = 11nUT for I0/I0crit = 1.25).

However, this increase of linearity is obtained at the price of a larger cur-
rent for a given amplitude (all the curves are at the right side of that for weak
inversion).

The variation of the normalized DC gate voltage ve with the normalized
amplitude v1 obtained with the above calculations is shown in Fig. 4.18. The
shift of DC gate voltage in weak inversion given by (4.68) is also reported on
this figure. It will be needed later for properly designing the bias circuitry.

The nonlinear effects due to the transfer function are essentially equivalent
to a reduction of the small-signal transconductance Gm (this is exactly true
if Z3 is very large, so that V1 remains perfectly sinusoidal). Thus the locus of
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Figure 4.18 Variation of the DC component VG0 of gate voltage with the gate
voltage amplitude |V1| at stable oscillation. The shift ∆VG0 in weak inversion is
shown in dotted line.

Zc(1)(Ic) follows the circular locus of Zc(Gm). For a given value of Rm, the
value of pc is therefore independent of the amplitude.

As illustrated in the example of Fig. 4.11, this is not the case for stronger
nonlinear effects such as those due to the desaturation of the active transistor,
or of the transistor delivering the bias current. In order to avoid those effects,
the amplitude should be limited. This is best obtained by using an amplitude
control loop as will be described in Section 5.2.

4.3.3.5 Transistor Strictly in Strong Inversion

If the transistor is in strong inversion at the critical current for oscillation
(Ispec � I0crit ) then from (3.56):

I0crit = nUT

√
IC0Gmcrit =

√
IC0I0critmin. (4.78)

If the transistor remains strictly in strong inversion as the oscillation grows
up, its drain current in saturation ID = IF can be expressed from (3.43) by

ID =
Ispec

4
(ve + v1 sinφ)2, (4.79)

Δ
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where ve and v1 are the normalized voltages defined by (4.57). The funda-
mental component of ID is then given by

|ID(1)|
Ispec

=
1

4π

∫ 2π

0
(ve + v1 sinφ)2 sinφdφ =

vev1

2
. (4.80)

The transconductance for the fundamental frequency, equal to the critical
transconductance at stable oscillation according to (4.55), becomes

Gm(1) =
|ID(1)|
|V1|

=
veIspec

2nUT
= Gmcrit . (4.81)

Solving for ve gives

ve =
2nUT Gmcrit

Ispec
=

2I0critmin

Ispec
= 2

√
IC0 (4.82)

where the last expression comes from the fact that, using (4.78):

I0critmin

Ispec
=

I0crit

Ispec
· I0critmin

I0crit
=

IC0√
IC0

=
√

IC0. (4.83)

The normalized effective DC gate voltage ve is thus constant. But this is true
only for

v1 < ve = 2
√

IC0 (4.84)

otherwise the transistor enters weak inversion in the negative half periods of
gate voltage and (4.79) is no longer valid. This limit is shown by the dotted
strait line in Fig. 4.18. Notice that ve is already slightly descending below
this limit, since the full model used for the calculation includes moderate
inversion.

Returning to strict strong inversion, the DC component of drain current,
that is the bias current I0 is given by

I0

Ispec
=

1
8π

∫ 2π

0
(ve + v1 sinφ)2dφ =

1
4

(
v2

e +
v2

1

2

)
= IC0 +

v2
1

8
. (4.85)

Hence
I0

Icritmin
=

I0

Ispec
· Ispec

Icritmin
=

√
IC0 +

v2
1

8
√

IC0

. (4.86)

By introducing the condition (4.84), the limit of validity becomes

v1 <
3
4

I0

I0critmin
. (4.87)

It is reported as a thin dotted line in Fig. 4.17.
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4.3.4 Energy and Power of Mechanical Oscillation

As explained in Section 2.4, the energy of mechanical oscillation is directly
related to the amplitude of motional current Im flowing in the motional im-
pedance Zm. Considering the lossless case of Fig. 4.12, this current is related
to the current I1 flowing through capacitor C1 by

I1 = (1+ jωC3Zm)Im. (4.88)

The real part of Zm is Rm, whereas at stable oscillation its imaginary part
compensates that of the circuit:

Im(Zm) = −Im(Zc(1)). (4.89)

If the circuit is not strongly nonlinear, Zc(1) may be replaced by Zc, the circu-
lar locus of which is represented in Fig. 4.6. Now if Rm �|Rn0|max (Km � 1),
this figure shows that Im(Zc) = 1/ jω(C3 +Cs). Thus, at stable oscillation:

Zm = Rm − 1
jω(C3 +Cs)

, (4.90)

which, introduced in (4.88) yields

I1

Im
=

(
1− C3

Cs +C3
+ jωC3Rm

)
=

(
Cs

Cs +C3
+

j
M

)
, (4.91)

or, for the amplitudes:

|I1|
|Im|

=

√(
Cs

Cs +C3

)2

+
1

M2 . (4.92)

Now the second term may usually be neglected since M � 2, hence

|Im| ∼=
(

1+
C3

Cs

)
|I1| =

(
1+

C3

Cs

)
ωC1|V1|. (4.93)

The amplitude of motional current depends on the gate voltage amplitude
|V1| calculated in Section 4.3.3. The energy of mechanical oscillation is then
obtained by introducing this result in (2.23):

Em
∼=

(
1+

C3

Cs

)2 C2
1

2Cm
|V1|2. (4.94)

It is proportional to the maximum energy stored in capacitor C1 and to the ra-
tio C1/Cm. The power dissipated in the resonator can be obtained by applying
(2.24), which gives

Pm =
ω
Q

Em
∼=

(
1+

C3

Cs

)2 ωC2
1

2QCm
|V1|2 =

(
1+

C3

Cs

)2 ω2C2
1Rm

2
|V1|2. (4.95)
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4.3.5 Frequency Stability

4.3.5.1 Introduction

The main feature to be optimized in a crystal oscillator, especially for time-
keeping applications, is its frequency stability. Separated in three groups,
the causes of degradation of this stability will be discussed in what follows,
together with possible cures.

4.3.5.2 Resonator

The resonant frequency ωm of the resonator itself is not perfectly constant:
a. Some variation with temperature is always present. As discussed in

Section 2.5, this variation depends on the type of resonator, which must be
selected in accordance with the specifications of the oscillator.

b. There is no way to avoid some aging of the resonator after fabrication.
Since the rate of aging usually decreases with time, it is possible to carry out
some pre-aging on the resonator before using it.

4.3.5.3 Nonlinear Effects in the Circuit

The amount of frequency pulling ps at stable oscillation was discussed in
Section 3.2. As explained by Fig. 3.3, it is proportional to the imaginary part
of Zc(1) (the circuit impedance for the fundamental frequency) at the stable
point S.

Now, as illustrated by the example of Fig. 4.11(b), this imaginary part may
be strongly dependent on nonlinear effects. The nonlinear effects are them-
selves dependent on various variables, including the supply voltage of the
circuits, the threshold voltage of the transistor and the ambient temperature.
They must therefore be minimized to improve the frequency stability.

a. The nonlinear transfer function ID(VG) of the active transistor are the
first to intervene when the amplitude increases. They limit the amplitude |V1|
at the gate as illustrated in Fig. 4.17. To limit the resulting nonlinear effects,
the bias current should not be much higher than its critical value, typically no
more than 10 or 20% above. The inversion coefficient IC0 of the transistor
should be selected in order to obtain the desired amplitude. Now, precise
values of currents are hard to obtain in integrated circuits, and the critical
current itself depends on many possibly variable parameters. Thus, the only
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possibility to control the amount of overdrive is to implement some kind of
voltage amplitude regulation, as will be discussed in Section 5.2.

As was already explained in Section 4.3.2, the change of frequency due
to the nonlinear ID(VG) function is caused by intermodulation between har-
monic components of the gate voltage. These are produced by harmonic
components of current flowing through the drain-to-gate impedance Z3,
which can be reduced by increasing |Z3| (in particular by decreasing C3).

b. Nonlinearities in Z1 are due to the nonlinear dependency of the gate
capacitance on the gate voltage. Their effect can be reduced by implementing
a sufficiently large value of C1 by means of a linear capacitor.

c. An important nonlinearity in Z2 occurs when the amplitude is so large
that the active transistor and/or the transistor delivering the bias current I0
leave saturation in the peaks of drain voltage. Both transistors should be kept
saturated all along the oscillation cycle.

d. If |Z3| is large, as it should be, its possible nonlinearity should have
negligible effect on the frequency.

4.3.5.4 Variation of Linear Effects

If nonlinear effect on the frequency are made negligible, the amount of fre-
quency pulling is equal to its value pc at the critical condition for oscillation.
As illustrated by Fig. 4.4, pc is proportional to the imaginary part of the
circuit impedance Zc at the solution point A, where the real part of Zc com-
pensates the motional resistance of the resonator (Re(Zc) = −Rm). Hence,
any vertical displacement of A results in a variation of pc. Such a displace-
ment may be due to several causes:

a. Even if the resonator has a very constant motional frequency, its quality
factor may change, resulting in a change of motional resistance Rm. The
effect of a variation of Rm is proportional to the slope of Zc at point A. This
slope can be minimized by

- reducing C3 to increase the radius of the circle,
- reducing the losses, in order to have the circular locus better centered on

the imaginary axis, and/or
- reducing Rm (increasing Q).

b. Variation of the losses, that should therefore be
- as small as possible
- as constant as possible.
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c. Variations of C1, C2 and/or C3, with an effect on pc given by (4.21).
These 3 capacitors should therefore be kept as constant as possible. The
voltage dependency of C1 due to the voltage dependent gate capacitance of
the transistor can be minimized by implementing a sufficiently large value
of C1 by means of a linear capacitor. The same can be done to reduce the
voltage dependency of C2 due to the voltage dependent junction capacitance
at the drain node of the circuit.

Some capacitance variation may be due to mechanically unstable connec-
tions between the circuit and the resonator.

The sensitivity of pc to capacitance variations can be obtained by differ-
entiating (4.21). For Cs (series connection of C1 and C2) much larger than C3,
this gives

dpc = −pc

(
C2

C1(C1 +C2)
dC1 +

C1

C2(C1 +C2)
dC2 +

1
Cs

dC3

)
. (4.96)

Thus, the effect of capacitance variations on the frequency of oscillation can
be reduced by reducing pc. But, as already explained in Section 4.2.2, this
may require a large increase of bias current, according to (4.26).

4.3.6 Elimination of Unwanted Modes

4.3.6.1 Introduction

As was explained in Section 2.2, all electromechanical resonators, in partic-
ular the quartz resonator, have several possible modes of oscillation. Each
of them corresponds to a series resonant circuit in the complete equivalent
circuit of Fig. 2.2(a). We have explained in the same section that, once oscil-
lation was obtained on one of these modes, no coupling could be produced
by the circuit to the other modes.

Now, in all previous analyses, we have assumed that oscillation was ob-
tained at the “wanted” mode and not at any other “unwanted” mode. Let us
now examine how this can be ensured.

Assuming that the circuit is designed to provide, for the desired mode, a
large margin factor Km (defined by (4.17)) and that losses are negligible, the
critical transconductance is given by (4.24) repeated here for convenience:

Gmcrit0
∼= ω2Rm ·C1C2(1+C3/Cs)2. (4.97)

Now, the part after the dot is given by the circuit, and is at least the same for
all the other modes (it could be larger for some modes if the corresponding
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value of Km would not be large, and (4.22) would have to be used instead of
(4.24)).

On the contrary, the term ω2Rm (=ω/(QCm)) is specific to each mode.
Hence (ω2Rm)w can be used to distinguish the wanted mode from all
other unwanted modes, each of them being characterized by their value of
(ω2Rm)u. Let us define

α � (Gmcrit)u

(Gmcrit)w
. (4.98)

For the lossless case, according to (4.97):

α = α0 � (Gmcrit0)u

(Gmcrit0)w
=

(ω2Rm)u

(ω2Rm)w
. (4.99)

The wanted mode will be said to be more active than the unwanted mode if
α > 1 and less active if α < 1.

According to (3.55), the transconductance is proportional to the current if
the transistor is in weak inversion (IC0 � 1), but only to the square root of
the current if the transistor is in strong inversion (IC0 � 1). Hence:

(I0crit)u = α(I0crit)w in weak inversion (4.100)

(I0crit)u = α2(I0crit)w in strong inversion. (4.101)

4.3.6.2 Wanted Mode More Active Than Unwanted Modes (α > 1)

The wanted mode of oscillation is frequently the most active one. A safe
procedure is then to impose a fixed bias current I0 in the range

(I0crit)w < I0 < (I0crit)u. (4.102)

In practice however, this is only possible if α � 1. Indeed, a small range of
possible current would require a precise value of current that is not available
in an integrated circuit environment. Even if such a precise current would
be possible, its value would depend on Gmcrit and therefore on the value of
quality factor Q and on that of the various capacitors. Moreover, a small ratio
I0/I0crit would provide only a small excess of negative resistance, resulting
in a large start-up time constant τ0 given by (3.15), and thus in a very long
start-up time.

If the range of possible current is limited (α not much larger than 1),
the best solution is to generate the bias current by means of an amplitude
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regulator, as was explained in Section 3.4. Such a regulator provides a large
initial bias current, which ensures a short start-up time. This bias current
decreases when the amplitude increases, until equilibrium is reached.

Instead of regulating the current |Ics| = |Im| in the motional branch as in
Fig. 3.4, it is preferable to limit the voltage |V1| at the gate, which is related
to |Im| by (4.93). This type of regulation is illustrated by Fig. 4.19 and will
be detailed in Section 5.2.
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Figure 4.19 Regulation of the gate voltage amplitude.

In this example, Curve a represents the amplitude of oscillation |V1| at
the gate as a function of the bias current I0 for the wanted mode, as given by
Fig. 4.16 or 4.17. Curve b represents the bias current I0(|V1|) delivered by the
amplitude detector. When the loop is closed, the system is expected to reach
the stable point Sw, with a bias current only slightly larger than its critical
value (I0crit)w. For the unwanted mode, the |V1|(I0) relationship is given by
Curve c.

Let us assume that the start-up time constant of the unwanted mode is
shorter than that for the wanted mode. Oscillation will start at this unwanted
mode, and possibly reach the corresponding equilibrium point Su, with a
value of bias current just slightly larger than (I0crit)u. The transconductance
of the transistor is thus practically not affected by this oscillation, and re-
mains larger than its critical value for the wanted mode. The amplitude of
the wanted mode can therefore still grow up, thereby reducing I0 until the
stable point Sw is reached. The bias current is then below its critical value
for the unwanted mode, that can no longer be sustained. Oscillation at the
wanted mode only is thus ensured.
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It is important to point out such a behavior is not ensured if I0 at point
Su is much larger than (I0crit)u, resulting in a strongly nonlinear behavior of
the transistor. As a consequence, the remaining transconductance may not be
sufficient for starting up oscillation at the wanted mode. This is illustrated by
the results of simulations depicted in Fig. 4.20.
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Figure 4.20 Possible dominance of the less active of two possible modes; in these
simulation of start-up in a 0.18 µm process, the channel width is W = 50 µm
whereas the channel length L is changed from 2 to 4 µm. Notice that low values
of quality factors (Qu < Qw = 1000) are used to facilitate the simulation.

In this example, the resonator has two possible modes (two series branches
in parallel). The wanted mode w has a resonant angular frequency ωw =
2 · 105 s−1 with a motional inductance Lmw=250H, whereas Lmu=100H for
the unwanted mode u, giving ωu = 3.16 · 105 s−1. It is therefore less active
than mode w, in a ratio α = 2.5. The upper part of the figure shows that, for
a channel length L = 2 µm of the active transistor, the motional current |Imw|
of mode w remains zero (no oscillation at the wanted mode) whereas |Imu|
stabilizes at about 2 µA. If L is increased to 4µm, the circuit become slightly
less nonlinear because the inversion coefficient in the peaks of drain current
is increased (from 0.26 to 0.49). As a result, oscillation at mode u does not
prevent mode w to grow and to finally stay alone.
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4.3.6.3 Effect of Losses

As discussed in Section 4.2.5, the main effect of losses is to increase the crit-
ical transconductance Gmcrit . At a given frequency, these losses may always
be represented by an additional component of conductance G1, G2 and/or G3
in parallel with the capacitors. As long as they are not too large, the resulting
increase of Gmcrit is given by (4.45).

If the Gi remain independent of the frequency (as is the case if they are due
to real conductances in parallel), the critical transconductance is increased by
the same amount for all possible modes of oscillation. The relative difference
of critical transconductances is reduced and, according to (4.98), the value
of α becomes closer to unity. The potential problem illustrated by Fig. 4.20
is worsened, and this kind of losses cannot help separating the wanted mode
from the unwanted one.

But each of the Gi can possibly be frequency dependent. The most simple
case is a resistance Ri in series with capacitance Ci. If (ωCiRi)

2 � 1, then

Gi
∼= ω2C2

i Ri. (4.103)

The loss conductance is then increasing with the frequency, which may help
eliminating an unwanted mode, as discussed below.

4.3.6.4 Wanted Mode Less Active Than Unwanted Modes (α < 1)

This is a difficult situation. If the unwanted mode has a higher frequency
than the wanted mode, its overall activity may be reduced by introducing a
resistance in series with C1 and/or C2. As given by (4.103), this will produce
an additional component of G1 and/or G2 that is proportional to ω2. This
component is therefore larger for the unwanted mode, which may push the
value of α above unity.

An other way to analyze this solution is to consider the path of the mo-
tional current for each mode as illustrated in Fig. 4.21. If C3 is sufficiently
small to be negligible, most of the motional current of each resonator branch
flows in the loop closed by capacitors C1 and C2. Hence, a resistor Rs inserted
in this loop is approximately added to the motional resistors Rmw and Rmu.
The effective activity ratio can therefore be approximated by

α ∼= ω2
u (Rmu + Rs)

ω2
w(Rmw + Rs)

, (4.104)

which is assumed to be smaller than unity for Rs = 0 (more active unwanted
mode at higher frequency). This ratio will become larger than unity for
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Figure 4.21 Loss resistor Rs is the main loop of oscillation current.

Rs >
ω2

wRmw −ω2
u Rmu

ω2
u −ω2

w
=

1−α0

(ωu/ωw)2 −1
Rmw. (4.105)

If α0 is close to unity or if the frequency ratio is large, then Rs � Rmw and
the unwanted mode can be eliminated without too much effect on the wanted
mode.

The situation is even more difficult if the unwanted mode is more active
and has a lower frequency than the wanted mode. This is the case if the
wanted mode is an overtone.

One possible solution would be to exploit the nonlinear effects illustrated
by Fig. 4.20. Indeed, in the upper part of the figure, the less active higher fre-
quency mode dominates because it has a shorter start-up time constant. How-
ever, this solution is not recommended because two possible stable modes
of oscillation exist, and which one dominates depends on the initial condi-
tions. For example, simulations show that, in the example of the figure with
L = 2 µm, the more active low-frequency mode still dominates if the sup-
ply voltage of the circuit is raised very slowly instead of being switched on
abruptly.

There is no simple way to produce losses that increase when the frequency
decreases, but the unwanted mode can be avoided by inserting a parallel res-
onant circuit tuned to its frequency in series with the source of the transistor.
The unwanted mode will then be prevented if the (real) impedance at the res-
onance is larger than 1/Gmcritu (where Gmcritu is the critical transconductance
for the unwanted mode). Furthermore, the capacitance of the resonant circuit
should be large enough to prevent source degeneration for the wanted mode.
For the example of Fig. 4.20, this solution would require a capacitance of
1nF, an inductance of 25mH and parallel resistance of 1MΩ, corresponding
to a quality factor of 200, which is not realistic. In an integrated circuit en-
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vironment, this solution is thus only applicable at high frequencies, and for
a large ratio ωw/ωu.

4.4 Phase Noise

4.4.1 Linear Effects on Phase Noise

4.4.1.1 General Case

According to (3.30), the phase noise of the oscillator depends on the energy
of oscillation Em, the quality factor Q of the resonator, and the frequency of
oscillation ω . It also depends on the noise excess factor γ of the circuit.

As defined by (3.23), this noise excess factor is the ratio between the spec-
trum SV 2

n
of the noise voltage Vn produced by the circuit to that of the thermal

noise of the motional resistance 4kT Rm. If Gi � ωCi, losses can be neg-
lected and this noise voltage can be calculated from the equivalent circuit of
Fig. 4.22. The source of noise In is the channel noise of the transistor plus
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Figure 4.22 Equivalent circuit of the Pierce oscillator for the calculation of the
noise voltage Vn.

additional noise delivered by the biasing current source. Assuming C3 �C1
and C2, the noise voltage can be expressed as

Vn =
In

jωnC2 + GmC3/C1
, (4.106)

where ωn is the frequency at which noise is considered.
At frequencies close to the oscillation frequency ω , the spectral densities

are thus related by
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SV 2
n

=
SI2

n

(ωC2)2 +(GmC3/C1)2 =
SI2

n

(ωC2)2

[
1+

(
Gm

MGmcrit0

)2
] ∼=

SI2
n

(ωC2)2 ,

(4.107)
where the second expression has been obtained by introducing the factor of
merit M defined by (2.9) through the relationship (4.24) between Rm and
Gmcrit0. Since M � 1, the term between brackets is usually close to unity,
thus the noise excess factor for very small amplitudes is

γ0 �
SV 2

n

4kT Rm

∼=
SI2

n

4kT Rm(ωC2)2 (4.108)

4.4.1.2 Channel Noise of the Active Transistor

If the bias current were free of noise, the only source of In would be the
channel noise of the active transistor. Its spectral density given by (3.60) can
be introduced into (4.108). The noise excess factor is then given by

γ0
∼=

γtnGmcrit

(ωC2)2Rm
. (4.109)

Using again (4.24) to replace Rm by Gmcrit0, it becomes

γ0
∼= γtn ·

C1

C2
· Gmcrit

Gmcrit0
. (4.110)

4.4.2 Phase Noise in the Nonlinear Time Variant Circuit

4.4.2.1 Introduction

As discussed in Section 3.7.2, the results obtained in the previous section
are no longer valid when the amplitude increases, since the circuit becomes
nonlinear and the noise becomes cyclostationary.

Neglecting the parallel capacitor C3, the phase noise can be analyzed by
means of the equivalent circuit of Fig. 3.9 with Ci = C2. The cyclostationary
noise sources are functions of sin(φ + ∆φ ), where φ = ωt and ∆φ is the
phase shift between the sinusoidal voltages V2 and V1.
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An approximation of this phase shift can be calculated at the critical con-
dition for oscillation from (4.34) and (4.45). As long as the condition (4.43)
if fulfilled (small losses):

tan ∆φ ∼=
1

ωC1

[
Gmcrit0 + G1

(
1+

C2

C1

)
+ G3

C1 +C2

Cs

]
. (4.111)

It is independent of a possible loss conductance G2.
Now, because of the presence of C3 (or more generally Z3 between drain

and gate, some noise fed back through the transistor is added to the noise
current In of Fig. 4.22. This effect will be neglected, as was done in the
linear analysis.

4.4.2.2 Effect of the White Channel Noise in Weak Inversion

In weak inversion, the variation of drain current during each cycle of stable
oscillation can be expressed by introducing (4.58) and (4.65) in (4.56). With
the phase shift ∆φ , this yields

ID = I0critmin
v1

2IB1(v1)
ev1 sin(φ+∆ φ). (4.112)

Thus, from (3.61) and (3.54), the cyclostationary drain noise current spec-
trum is

α2
i SI2

n
= 2nkT Gmcrit

v1

2IB1(v1)︸ ︷︷ ︸
S

I2
n

ev1 sin(φ+∆ φ)︸ ︷︷ ︸
α2

i

, (4.113)

where the first part is the spectrum SI2
n

of a fictitious white noise current
modulated by αi. According to (3.34), the squared RMS value of the effective
impulse sensitivity function (ISF) is then

Γ 2
i (v1) = cos2 φα2

i =
1

2π

∫ 2π

0
cos2 φ · ev1 sin(φ+∆ φ)dφ (weak inversion).

(4.114)
The phase noise spectrum is then obtained by introducing the above values
of SI2

n
and Γ 2

i in (3.33), which results in

Sφ 2
n

= Sφ 2
n 0

v1

IB1(v1)
Γ 2

i (v1), (4.115)

where



80 4 Theory of the Pierce Oscillator

Sφ 2
n 0 =

nkT Gmcrit

2(C2|V2|∆ω)2 ·C2
m

C2
2

. (4.116)

is the phase noise spectrum for very small amplitudes. Referring to Fig. 3.9,
C2|V2| may be replaced by |Im|/ω (even with a small phase shift, the amp-
litude of the current is only very slightly affected). Thus, by introducing the
expression (4.24) of the lossless critical transconductance Gmcrit0 (with C3
neglected):

Sφ 2
n 0 =

nC1

2C2
· Gmcrit

Gmcrit0
· kT

Q2|Im|2Rm
· ω2

∆ω2 . (4.117)

According to (3.29), this corresponds to an noise excess factor

γ0 =
nC1

2C2
· Gmcrit

Gmcrit0
, (4.118)

which is identical to the value given by (4.110) and obtained by the linear
analysis, since γt = 1/2 in weak inversion. For larger amplitudes, γ grows
proportionally to the noise spectrum contribution:

γ = γ0
v1

IB1(v1)
Γ 2

i (v1). (4.119)

This variation is plotted in Fig. 4.23 for several values of phase shift ∆φ .
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Figure 4.23 Phase noise excess factor in weak inversion.

The increase of γ with the amplitude depends on the phase shift ∆φ . There
would be no increase with ∆φ = 0.

4.4.2.3 Effect of the White Channel Noise in Strong Inversion

The variation of the transconductance in strong inversion can be expressed
by introducing in (3.56) the normalized variables ve and v1 defined by (4.57):
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Gm = βUT (ve + v1 sin (φ + ∆φ)). (4.120)

In stable oscillation, the value of ve is independent of the amplitude, as in-
dicated by (4.82). Hence βUT ve = Gmcrit , giving

Gm = Gmcrit(1+ mv sin (φ + ∆φ)), (4.121)

where

mv =
v1

ve
=

|V1|
2nUT

√
IC0

≤ 1 (4.122)

is the gate voltage modulation index. Thus, from (3.60), the spectrum of the
cyclostationary drain current noise is

α2
i SI2

n
= 4γt kT nGmcrit︸ ︷︷ ︸

S
I2
n

(1+ mv sin(φ + ∆φ)︸ ︷︷ ︸
α2

i

. (4.123)

The squared RMS value of the effective ISF is thus

Γ 2
i (v1) =

1
2π

∫ 2π

0
cos2 φ · (1+ mv sin(φ + ∆φ))dφ =

1
2
. (4.124)

It is constant, hence the phase noise spectrum is independent of the phase
shift ∆φ and of the amplitude of oscillation. This is true as long as the tran-
sistor remains strictly in strong inversion (i.e with mv ≤ 1). It can easily be
shown that the corresponding noise excess factor is γ = γ0 given by (4.110).

4.4.2.4 Effect of the Flicker Noise in Weak Inversion

Using the approximation (3.62) of a noise voltage at the gate independent of
the current, the resulting drain current noise spectrum is

α2
i SI2

n
=

Kf G
2
m

ωn
=

Kf G
2
mcrit

ωn

(
v1

2IB1(v1)

)2

︸ ︷︷ ︸
Kfi/ωn

(
ev1 sin (φ+∆ φ)

)2

︸ ︷︷ ︸
α2

i

, (4.125)

since the transconductance is proportional to the drain current given by
(4.112). The first part is the spectrum density Kf i/ωn of a fictitious stationary
flicker current noise source modulated by αi.

According to (3.34), the average value of the effective ISF is then

Γi = cosφ ·αi =
1

2π

∫ 2π

0
cosφ · ev1 sin (φ+∆ φ)dφ . (4.126)
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Now
∫ 2π

0
cos φ · ev1 sin (φ+∆ φ)dφ = sin (∆φ)

∫ 2π

0
sinφ · ev1 sinφ dφ . (4.127)

Thus:
Γi = sin(∆φ) · IB1(v1). (4.128)

The phase noise spectrum is obtained by introducing the above values of
Kf i and Γi in (3.36), which yields

Sφ 2
n

=
(

GmcritCmv1

2C2
2 |V2|

)2

·
Kf

∆ω3 · sin2 (∆φ). (4.129)

By introducing again the expression (4.24) of the lossless transconduct-
ance Gmcrit0 (C3 neglected) and using the good approximation C2|V2| =
C1|V1|, this results becomes

Sφ 2
n

=
(

Gmcrit

Gmcrit0

)2 (
ω

2QnUT

)2

·
Kf

∆ω3 · sin2 (∆φ), (4.130)

which is independent of the amplitude. Thus the flicker noise contribution to
the phase noise is independent of the amplitude, but depends on the phase
shift ∆φ . Remember that this results is obtained with the hypotheses of a
sinusoidal drain voltage and the noise model (3.62).

4.4.2.5 Effect of the Flicker Noise in Strong Inversion

Using the expression (4.121) of the transconductance, the noise current drain
spectrum is

α2
i SI2

n
=

Kf G
2
m

ωn
=

Kf G
2
mcrit

ωn︸ ︷︷ ︸
Kfi/ωn

(1+ mv sin (φ + ∆φ))2

︸ ︷︷ ︸
α2

i

. (4.131)

The average value of the effective ISF is thus

Γi = cosφ ·αi =
1

2π

∫ 2π

0
cosφ · (1+ mv sin(φ + ∆φ))dφ =

mv

2
sin (∆φ).

(4.132)
The phase noise spectrum is obtained by introducing the above values of Kf i

and Γi in (3.36):
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Sφ 2
n

=
(

mvGmcritCm

2C2
2 |V2|

)2

·
Kf

∆ω3 · sin2 (∆φ). (4.133)

This result is identical to (4.129), except that the normalized voltage v1 is
replaced by the modulation index mv = v1/(2

√
IC0) (as defined by (4.122)).

For strong inversion, the result (4.130) is thus changed to

Sφ 2
n

=
(

Gmcrit

Gmcrit0

)2 (
ω

4QnUT

)2

· 1
IC0

·
Kf

∆ω3 · sin2 (∆φ). (4.134)

For the same value of phase shift ∆φ , the noise spectrum is reduced by a
factor 4IC0 compared to weak inversion.

4.4.2.6 Effect of the Noise in the Bias Current

The noise density associated with the bias current I0 is constant along the os-
cillation cycle, thus αi = 1. As long as the hypothesis of a sinusoidal voltage
V2 is valid, the effective ISF Γi is given by (3.34).

Hence, the average value of the effective ISF is zero and no flicker noise
(or other low frequency noise) is transposed around the oscillation frequency.

Still according to (3.34), Γ 2
i = 1/2. The phase noise produced by the white

noise content of the bias current of density SI2
nb

is thus, from (3.33)

Sφ 2
n

=
SI2

nb

4(C2|V2|)2∆ω2 ·
C2

m

C2
2

. (4.135)

Or, after replacing again C2|V2| by |Im|/ω and using (2.3) to replace Cm:

Sφ 2
n

=
SI2

nb

(2|Im|C2QRm∆ω)2 . (4.136)

According to (3.29), the phase noise excess factor due to bias noise is thus

γb =
SI2

nb

4kT Rm(ωC2)2 . (4.137)

The comparison with (4.108) shows that, with the hypothesis of a sinusoidal
drain voltage V2, the circuits behaves linearly with repect to the noise of the
bias current I0 (as could be expected).

Now if the saturated transistor delivering the bias current is controlled
by a gate voltage that is free of noise at frequencies around the oscillation
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frequency, then SI2
nb

is given by (3.60). Using the expression of the critical

transconductance Gmcrit0 of the lossless circuit and neglecting C3, (4.137)
becomes

γb = γtn
C1

C2
· Gmb

Gmcrit0
, (4.138)

where Gmb is the transconductance of the biasing transistor.
This contribution to phase noise can thus be made negligible by having

this transconductance much lower than Gmcrit , by operating the biasing tran-
sistor in strong inversion at an inversion coefficient much larger than IC0,
and by filtering out the noise at its gate for frequencies around the oscillation
frequency.

4.5 Design Process

4.5.1 Design Steps

On the basis of what has been explained so far, the design of the core of a
Pierce oscillator should be done according to the following steps.

4.5.1.1 Selection of a Quartz Crystal or MEM Resonator

Several criteria should be considered, most of them imposed by the system.
Most important are the desired frequency of oscillation and its acceptable
dependency on temperature. Both have an impact on the type of resonator.
For example, very low frequency is only possible with resonators oscillating
in flexural mode (possibly in the form of a tuning fork), but their temperature
dependency is quadratic, with a coefficient of about −4 ·10−8/◦C2. For very
high frequencies, a thickness mode is necessary, either shearing or expan-
sion. Other criteria are cost, size, and aging properties. The quality factor Q
should be as high as possible, especially to ensure a low phase noise. A good
circuit design can always take advantage of its high value.

Technical data published by commercial quartz crystal vendors always
include the frequency of oscillation ω and the motional resistor Rm (or at
least its maximum value). They do not always publish the third parameter
needed to characterize the series resonant circuit of Fig. 2.2, namely Q or
Cm. But they usually give the value of the “static capacitor” C0 across the
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resonator measured as a dipole, defined by (2.1). The value of C12 can thus be
obtained since the values of C10 and C20 are known, measurable or negligible.

Knowing C12, the value of Cm is always smaller than C12/100 (because of
the limited piezoelectric coupling coefficient of quartz). It is usually ranging
between 0.1 and 0.25 this limit. Practical numerical values range from 0.5 to
5fF for quartz resonators.

The value of Cm might be smaller for MEM resonators, due to the small
value of the electrical capacitance given by (2.27). The motional resistance
Rm would then be higher and the parallel capacitance C3 would be dominated
by parasitic capacitances, there by reducing the margin factor Km defined
by (4.17). In the extreme case, oscillation might not be possible with the
Pierce oscillator, and alternative architectures like those discussed in Chapter
6 might be needed.

4.5.1.2 Choice of Circuit Capacitances C1 and C2 and Estimation of C3

As given by (4.21), the values of C1 and C2 essentially control the amount
of frequency pulling pc by the circuit. If pc is increased, the frequency of
oscillation moves away from the intrinsic mechanical resonant frequency of
the resonator and becomes more dependent on the sustaining circuit. Fre-
quency stability is then degraded. If pc is reduced, (4.26) shows that the crit-
ical transconductance Gmcrit is increased, resulting in an increase of power
consumption. The same formula shows that for a given amount of pulling,
Gmcrit is minimum for C1 = C2.

As explained in Section 4.2.2, C1 and C2 must be large enough with re-
spect to C3 to ensure a maximum value of negative resistance much larger
than the motional resistance Rm (Km � 1). This is to minimize the effect of
variations of Rm on the frequency of oscillation.

If the source of the transistor is grounded, C3 is usually dominated by the
intrinsic parallel capacitance C12 of the resonator plus the drain-to-source ca-
pacitance of the transistor (that must be pre-estimated). If the drain is groun-
ded, C10 (or C20) is added (see Fig. 2.2) and C3 may become much larger.

It should be pointed out that many crystal vendors do not provide the value
of motional capacitor Cm, but specify instead the value of load capacitance
for the specified frequency of oscillation (thereby imposing the value of pc).
This load capacitance is the total equivalent capacitance connected in parallel
with the physical resonator. Thus, for the Pierce oscillator:

CLoad � C3 +Cs −C0, (4.139)
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If frequency adjustment is obtained by adjusting the value of Cs, best
would be to maintain C1 = C2. In practice, only C1 or C2 is adjusted, de-
pending on which of the 3 nodes in grounded in the final implementation.

4.5.1.3 Calculation of Pulling and Series Resonant Frequency

Knowing Cm, C1, C2 and C3, the frequency pulling pc at the critical condition
for oscillation can be calculated by (4.21), assuming a negligible effect of
losses. In a good design, this effect as well as that of nonlinearities should be
kept negligible. Hence the pulling ps at stable oscillation will be very close
to this value. Knowing the specified frequency of stable oscillation fs, the
exact (series) resonant frequency fm to be specified for the resonator is given
by

fm � ωm

2π
= fs(1− pc). (4.140)

4.5.1.4 Calculation of the Minimum Start-up Time Constant and of the
Corresponding Transconductance

The maximum possible negative resistance |Rn0|max is given by (4.11). The
minimum start-up time constant is then calculated by (3.15), and (4.13) gives
the value Gmopt of the transconductance for which it is obtained.

4.5.1.5 Calculation of the Critical Transconductance and Minimum
Critical Bias Current

Assuming that K2
m is duly much larger than unity, the lossless critical transcon-

ductance Gmcrit0 is given by (4.24) (since the values of ω and Rm are always
available from the resonator data sheet).

After verification of the condition (4.43) with the expected values of loss
conductances, the increase of critical transconductance ∆Gmcrit due to theses
losses can be calculated by (4.45) and added to its lossless value Gmcrit0.

The minimum value of critical current Icritmin, which would be obtained
with the transistor operated in weak inversion, can be calculated by (4.64).
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4.5.1.6 Choice of the Amplitude of Oscillation |V1| at the Gate

If the amplitude of oscillation is too small, the output signal has to be amp-
lified to be used in the system. As will be shown later, the input admittance
of the amplifier may have a real part proportional to its voltage gain, which
adds losses in the oscillator. Moreover, the input referred noise of the ampli-
fier is transformed into a component of phase noise. Furthermore, according
to (4.94), the energy of oscillation is proportional to |V 2

1 |. Thus, according to
(3.30), a too small value of |V1| may result in an unacceptable level of phase
noise around the frequency of oscillation.

If the amplitude of oscillation is too large, the power dissipated in the
resonator ( given by (4.95)) can exceed the acceptable limit, resulting in ex-
cessive aging or even breaking of the resonator. Moreover, a large amplitude
of oscillation requires a large value of supply voltage to maintain the active
transistor in saturation, in order to avoid additional losses and a degradation
of frequency stability.

4.5.1.7 Calculation of Power

The power dissipated in the resonator is obtained by (4.95). This is always
possible since ω and Rm are always known. The result must then be com-
pared with the maximum acceptable value, as given by the vendor.

4.5.1.8 Choice of the Amount of Overdrive

As illustrated by Fig. 4.17 (or by Fig. 4.16), the overdrive current ratio
I0/I0crit necessary to obtain a given amplitude can be controlled by IC0, the
inversion coefficient of the transistor at I0crit (or by kc, the attenuation of the
capacitive divider of Fig. 4.16).

A small amount of overdrive should be chosen to minimize the nonlinear
effects. This is needed to reduce the risk of oscillation on an unwanted mode,
as discussed in Section 4.3.6. It is also needed for a good frequency stability,
as explained in Section 4.3.5.3a.

But Fig. 4.17 also shows that the larger the overdrive, the smaller the bias
current necessary to obtain a given amplitude. Indeed, the absolute minimum
is obtained when the transistor is weak inversion.
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4.5.1.9 Calculation of Critical Current, Bias Current and Specific
Current of the Transistor

Once the choice of IC0 has been made, the critical current of oscillation (bias
current for zero amplitude) is obtained from (4.73) and (4.64):

I0crit = I0critmin

√
IC0

1− e−
√

IC0

. (4.141)

It is simply kc · I0critmin in weak inversion with a capacitive attenuator as in
Fig. 4.15.

The bias current needed to obtain the expected amplitude is then be ob-
tained by inspecting Fig. 4.17 (or Fig. 4.16).

Knowing I0crit and IC0, the specific current of the transistor is obtained
from the definition (4.72) of IC0:

Ispec = I0crit/IC0. (4.142)

4.5.1.10 Calculation of the Active Transistor

The width-to-length ratio of the active transistor W/L is obtained from the
definition (3.41) of Ispec.

To avoid additional losses due to the output conductance Gds, the intrinsic
voltage gain of the transistor given by (3.58) should be much larger than
unity. Thus, the channel length L should be more than the minimum possible,
to ensure an acceptable value of VM .

Knowing the values of L and W , the gate capacitance can be can be cal-
culated to verify that it is only a small fraction of C1, since it is voltage
dependent.

The voltage-dependent drain capacitance is proportional to W , and should
only be a small fraction of C2.

The drain to gate capacitance is also proportional to W . It must be included
in the value of C3.

4.5.1.11 Calculation of Energy and Phase Noise

The energy of oscillation in the resonator is given by 4.94. Its calculation
requires the value of Cm or an approximation of it.

The phase shift ∆φ is obtained from the approximation (4.111).
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In strict strong inversion, the noise excess factor due to the active transistor
alone is just the small amplitude value given by (4.110). In weak inversion, it
increase with the amplitude as expressed by (4.119). It should be augmented
to include the noise component of the bias current as discussed in Section
(4.4.2.6). The phase noise spectrum due white noise sources can then be
calculated by (3.30).

The component of phase noise due to the flicker noise of the active tran-
sistor is calculated by (4.130) in weak inversion, and by (4.134) in strong
inversion.

Overall, and due to the very large values of quality factor Q, the phase
noise of the quartz oscillator itself is negligible in many applications.

4.5.1.12 Final Complete Design

The next design steps will be to select which of the three points of the basic
circuit is grounded, to define a bias scheme (including the very important
amplitude limitation) and to design the output circuitry that is usually an
amplifying stage. These steps will be discussed in Chapter 5.

4.5.2 Design Examples

The design process summarized in the previous section will now be illus-
trated by two examples with two different quartz resonators. Their charac-
teristics are given in Table 4.1.

The quartz of Example 1 is a typical miniaturized wristwatch tuning fork.
Its flexural mode in X+5 cut gives a quadratic temperature behavior (3.5 ·
10−8/◦C2, with a maximum around 25◦C). The quartz of Example 2 is a
high frequency AT cut inverted mesa, with a cubical temperature behavior. It
has a lower minimum value of quality factor Q and oscillates in fundamental
mode.

Table 4.2 gives the main data of the process to be used in these examples.
It is a typical 0.18 µm process. Note that, except for the threshold VT0, only
the nominal values are given; the final design should be checked for the worst
case by computer simulation.

The successive design steps of Section 4.5.1 are presented in Table 4.3.
The quartz data do not provide the value of C12 defined in Fig. 2.2(a).

Instead, they only give the lumped parallel capacitance C0 defined by (2.1)
(quartz considered as a dipole). To consider the worst case in Step 2, we
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Param. Example 1 Example 2 Unit
exact osc.frequency fs 32768.00 50.00000 ·106 Hz
approximation ω 2.06 ·105 3.14 ·108 1/s
max. resistance Rm 42 ·103 100 Ω
motional capacitance Cm 2.1 ·10−15 2.7 ·10−15 F
min. quality factor Q 55100 11800
parallel capacitance C0 0.9 ·10−12 2.4 ·10−12 F
max. power Pmax 10−6 10−4 W

Table 4.1 Quartz crystal data.

parameter N-channel P-channel unit
kT 4.16 ·10−21 4.16 ·10−21 J
UT 26 ·10−3 26 ·10−3 V
n 1.30 1.35
Ispec (for L = W ) 0.50 ·10−6 0.20 ·10−6 A
VT0 0.45±0.1 0.45±0.1 V
Cox 8.50 ·10−3 8.50 ·10−3 F/m2

Cd/W 0.90 ·10−9 1.05 ·10−9 F/m
Cgd/W 0.36 ·10−9 0.33 ·10−9 F/m
VM/L 30 ·106 40 ·106 V/m
WLKf 2 ·10−22 m2V2

Table 4.2 Process data.

assume that C12 =C0 to evaluate the value of C3. Only a very small additional
capacitor due to interconnects is assumed for the more critical high frequency
quartz.

Step 3 assumes that the amount of pulling ps in stable oscillation is not
modified by losses or by nonlinear effects, hence ps = pc. It provides the
exact value of the resonant frequency fm.

The maximum negative resistance obtained in Step 4 is much larger than
Rm for Example 1. It is sufficiently larger (K2

m = 20.7 � 1) for Example 2 to
validate the approximations of pc by (4.21) and of Gmcrit0 by (4.24). From
the values obtained for τ0min, the minimum start-up times (ranging between
7τ0min and 15τ0min) are 0.16 to 0.35 s and 0.15 to 0.32 ms. These values will
be larger if the transconductance at start-up is smaller (or larger) than the
calculated value of Gmopt .

In Step 5, estimated values of loss conductances are introduced. G1 ac-
counts for the load by the output amplifier. G2 is essentially the output con-
ductance of the saturated transistor and that of the driving current source. G3
will be mainly due to the device biasing the gate. All these value will have
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to be verified during the final design stage, and corrected if necessary. The
increase of critical transconductance ∆Gmcrit is calculated by the approxim-
ation (4.45) after verification of the condition (4.43).

In Step 6, the amplitude of oscillation is chosen sufficiently low to be com-
patible with a supply voltage below 1.5V. For Example 2, it is also limited
to maintain the power Pm dissipated in the resonator (Step 7) below its max-
imum acceptable value Pmax. The drain voltage amplitude |V2| is obtained by
(4.35).

The choice of the inversion coefficient IC0 is made in Step 8. In Example
1, the noise is not critical and the risk of exciting unwanted overtones is
small. Hence, a reasonably large overdrive is acceptable, and IC0 = 1 is
chosen to achieve the minimum possible bias current. The transistor is thus
approximately in weak inversion.

Nonlinear effects must be limited in Example 2, essentially to minim-
ize the phase noise. The choice is then IC0 = 64, resulting in an overdrive
I0/I0crit = 1.078, as calculated in Step 9.

In Step 9, the critical current I0crit is calculated by (4.141) and the bias
current I0 is obtained from Fig. 4.17 (or calculated by (4.86) for Example 2).

In Step 10, a long channel length L is chosen for Example 1, to render the
output conductance Gds totally negligible. The length is reduced in Example
2 to avoid a too large width W . As a consequence, the value of Gds is the
main part of G2. Calculation of the various (voltage-dependent) capacitors
of the transistor show that they are all negligible with respect to C1, C2 and
C3.

In Step 11, the noise excess factor γ is equal to its small amplitude value
γ0 in strong inversion (Example 2). It does not include the noise contribution
of the current source I0. But even if γ is increased by a factor 10, thereby
increasing the noise by about 10dB, the phase noise remains very low.

The noise included in I0 is not modulated by the active transistor. Hence
its low-frequency noise content is not shifted around fs.

Notice that the resulting phase noise is expressed in dBc/Hz (decibel rel-
ative to the carrier) for ∆ f = 1kHz. With negligible amplitude noise, this is
about equivalent to radian2/Hz.
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step variable Example 1 Example 2 unit ref.
2 C1 20 ·10−12 15 ·10−12 F

C2 20 ·10−12 15 ·10−12 F
C3 2.0 ·10−12 2.6 ·10−12 F
Cs 10 ·10−12 7.5 ·10−12 F (4.9)

3 pc 87.5 ·10−6 134 ·10−6 (4.21)
fm 32765.13 49.99332 ·106 Hz (4.140)

4 |Rn0|max 1.01 ·106 455 Ω (4.11)
Km 24.1 4.55 (4.17)
τ0min 23.2 ·10−3 21.2 ·10−6 s (3.15)
Gmopt 49.4 ·10−6 36.6 ·10−3 A/V (4.13)

5 Gmcrit0 1.03 ·10−6 4.03 ·10−3 A/V (4.24)
G1 0.10 ·10−6 0.20 ·10−3 A/V
G2 0.01 ·10−6 0.20 ·10−3 A/V
G3 0.10 ·10−6 0.20 ·10−3 A/V
∆Gmcrit 0.51 ·10−6 1.20 ·10−3 A/V (4.45)
Gmcrit 1.54 ·10−6 5.23 ·10−3 A/V (4.39)
I0critmin 51.9 ·10−9 0.177 ·10−3 A (4.64)

6 |V1|/nUT 4.00 6.00
|V1| 135 ·10−3 203 ·10−3 V
|V2| 145 ·10−3 309 ·10−3 V (4.35)
|V3| 276 ·10−3 472 ·10−3 V (4.37)

7 Em 2.51 ·10−9 3.11 ·10−9 J (4.94)
Pm 9.37 ·10−9 82.8 ·10−6 W (4.95)

8 IC0 1 64
I0/I0critmin 2.70 8.6 Fig. 4.17

9 I0crit 82.1 ·10−9 1.41 ·10−3 A (4.141)
I0 140 ·10−9 1.52 ·10−3 A
Ispec 82.1 ·10−9 22.1 ·10−6 A (4.142)

10 W/L 0.164 44.2 (3.41)
L 6.00 ·10−6 1.00 ·10−6 m
W 0.985 ·10−6 44.2 ·10−6 m
VM 180 30 V
Gds 0.78 ·10−9 50.6 ·10−6 A/V (3.57)
Cg 50 ·10−15 376 ·10−15 F
Cd 0.88 ·10−15 39.8 ·10−15 F
Cgd 0.36 ·10−15 15.9 ·10−15 F

11 ∆φ 0.376 0.837 rad (4.111)
γ0 0.973 1.12 (4.110)
γ 1.31 Fig.4.23
SΦ2

n 1/ f 2 at 1k -187 -150 dBc/Hz (3.30)

SΦ2
n 1/ f 3 at 1k -189 dBc/Hz (4.130)

SΦ2
n 1/ f 3 at 1k -140 dBc/Hz (4.134)

Table 4.3 Design calculations.



Chapter 5
Implementations of the Pierce
Oscillator

5.1 Grounded-Source Oscillator

5.1.1 Basic Circuit

Grounding the source of the active transistor results in the basic oscillator
circuit depicted in Fig. 5.1. Transistor T2 is part of a current mirror that
delivers the bias current I0 to the active transistor T1. The latter is maintained
in active mode by a resistor R3 that forces the DC component VD0 of the drain
voltage VD to be equal to the DC component VG0 of the gate voltage VG (since
no current is flowing through R3).
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Figure 5.1 Basic grounded source oscillator.
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To avoid unnecessary losses, both transistor must remain saturated all
along the oscillation cycle.

If T1 is in weak inversion, it remains saturated as long as VD > 5UT , ac-
cording to (3.46). Since VDmin = VD0 − |V2|, the minimum acceptable value
of threshold voltage can be expressed as

VT0 > 5UT + |V2|− (VD0 −VT0), (5.1)

where (VD0 −VT 0) is given by (4.68) for VD0 = VG0. The drain amplitude
|V2| is related to the gate amplitude |V1| by (4.35). Some additional margin
should be provided to account for nonlinear effects that result in slightly
larger negative half periods of drain voltage.

For T1 is in strong inversion, the minimum value of drain voltage ensuring
saturation is given by (3.47). By introducing the DC components VG0 and VD0
and the complex voltages V1 and V2 at the gate and at the drain, this condition
becomes

VT 0 > |V1 −nV2|+VG0 −nVD0. (5.2)

For VD0 = VG0, it may be rewritten to express the minimum acceptable
threshold voltage:

VT 0 >
1
n
[|V1 −nV2|− (n−1)(VG0 −VT0)]. (5.3)

The first term in the square parenthesis can be related to |V1| by using (4.35):

|V1 −nV2| = |V1|
√

(nG1 + G2 + nGmcrit)2 + ω2(nC1 +C2)2

G2
2 +(ωC2)2 . (5.4)

The value VG0 −VT 0 for a given value of AC amplitude |V1| can be obtained
from Fig. 4.18 or from (4.82) for strict strong inversion. To ensure that the
active transistor remains saturated along the whole oscillation cycle, the min-
imum threshold guaranteed for the process should fulfill condition (5.3). If
this condition is not fulfilled, the circuit should be modified to obtain a DC
component of drain voltage larger than VG0, as will be discussed in Section
5.1.6.

For a given amplitude of oscillation |V2|, the minimum value of supply
voltage VB is limited by the need to maintain the P-channel biasing transistor
T2 in saturation:

VB > VD0 + |V2|+VD2sat , (5.5)

where VD2sat is the saturation drain voltage of T2 given by (3.47) (with
VS = 0) if it is in strong inversion. It has a minimum value given by (3.46)
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obtained in weak inversion. Hence, if its width does not become too large,
this transistor should have a specific current larger than the bias current I0 to
reduce the minimum value of VB. But, according to (4.138), the noise con-
tribution of T2 is then no longer negligible. The drain amplitude |V2| is re-
lated to the gate amplitude by (4.35) and the DC component of drain voltage
VD0 = VG0 can be found in Fig. 4.18, using the maximum value of VT 0 for
the process considered.

5.1.2 Dynamic Behavior of Bias

If the bias current I0 is constant, then the DC component of drain current ID0
has the same value. But if there are variations of I0, they are not followed im-
mediately by ID0. Let us consider the equivalent circuit the oscillator driven
by small variations of the bias current, as shown in Fig. 5.2. δ I0 and δ ID0

��

��

��

��
��

δ���

δ��

Figure 5.2 Calculation of the bias transfer function.

are now complex variables representing small variations of I0 and ID0. The
(angular) frequency Ω of these variations is supposed to be much smaller
than ωm, hence the motional impedance can be neglected (since Cm � C1).
It can easily be shown that

δ ID0

δ I0
=

GmZ1Z2

Z1 + Z2 + Z3 + GmZ1Z2

, (5.6)

where Gm is the average value of transconductance along each oscillatory
cycle. It has the value

Gm =
I0

nUT
(in weak inv.) and Gm = Gmcrit (in strict strong inv.), (5.7)

since it is proportional to the drain current in weak inversion and varies lin-
early with the gate voltage in strong inversion.
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Calculating (5.6) for the general case with real and imaginary parts of
the impedances would result in a complicated expression, so it should be
computed numerically. But let us consider lossless capacitive impedances
Z1,Z2 (as in the example of Fig. 5.1), and neglect C3, thus Z3 = R3. This
expression becomes, in the s-domain

δ ID0

δ I0
=

Gm

s2C1C2R + s(C1 +C2)+ Gm
. (5.8)

For GmR3 � (C1 +C2)
2/(C1C2), the roots of the denominator are conjugate

complex, thus this expression can be rewritten as

δ ID0

δ I0
=

Ω 2
0

s2 + sΩ0/Qb + Ω 2
0

. (5.9)

This transfer function has a resonant peak at frequency

Ω0 =

√
Gm

R3C1C2
(5.10)

In stable oscillation, Gm ≥ Gmcrit0, hence by introducing the expression
(4.24) of Gmcrit0 (and neglecting C3), (5.10) becomes

Ω0 ≥ ωm

√
Rm

R3
, (5.11)

showing that the bias resistance R3 must be much larger than the motional
resistance Rm to obtain a resonant frequency of the bias circuit much lower
than the frequency of oscillation.

The quality factor of this resonant circuit is

Qb =

√
GmR3C1C2

(C1 +C2)2 =
√

GmR3/4
︸ ︷︷ ︸

for C1=C2

. (5.12)

So, without C3 the resonant peak could be very large, since R3 � 1/Gm to
limit the loss conductance G3. However, C3 strongly attenuates this peak as
soon as its impedance at Ω0 is comparable to R3, which occurs if

C3
∼=

√
C1C2

GmR3

=
Cs

Qb
. (5.13)
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so the higher the peak without C3, the more it is attenuated by C3. For ex-
ample, with C1 =C2 and C3 =C1/10, the maximum peak is only 1.43 and oc-
curs for GmR3

∼= 30 (where it would be 2.74 with C3 = 0 according to (5.12)).
For C3 = C1/100, the maximum peak is 3.62 and occurs for GmR3

∼= 200
(where it would be 7.07 with C3 = 0 ). Thus, with usual values of C3/C1,
the peak is never very large. However, just above the peak frequency, the
phase always reaches at least 90 degrees, which may have consequences on
the stability of an amplitude regulating loop, as will be seen further.

5.1.3 Dynamic Behavior of Oscillation Amplitude

For a constant DC component of drain current ID0 = I0, stable oscillation
is reached with a gate amplitude |V1| as plotted in Fig. 4.17 (or Fig. 4.16).
At this point the negative resistance Rn produced by the circuit compensates
exactly the motional resistance Rm of the resonator, and the time constant of
growth (or decay) τ defined by (3.3) is infinite.

Now, if at some time ID0 differs from this stable point by an amount
δ ID0(t), the instantaneous value of amplitude will depart by an amount
δ |V1|(t) from its stable value, as illustrated by Fig. 5.3.
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Figure 5.3 Calculation of the dynamic behavior of the oscillation amplitude.

As shown by the figure, this produces an instantaneous excess of current
δ Iex (that would tend to zero if δ ID0(t) would remain constant). Since all
these variables are time dependent, we can express them in the s-domain as:
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δ Iex = δ I0 −δ |V1|/Riv (5.14)

where resistance Riv is the slope of the |V1|(I0) curve corresponding to stable
oscillation. According to (4.55), this curve is the locus of Gm(1) = Gmcrit ,
where Gm(1) is the effective transconductance including the effect of nonlin-
earity of the transistor. The small excess current δ Iex produces an increase of
transconductance δGm(1), thus in the s-domain:

δGm(1) = k1δ Iex, (5.15)

where

k1 �
dGm(1)

dIex
(5.16)

This increase of Gm(1) is the same as what would be obtained by an increase
δ I0crit of the critical transconductance, as illustrated by the curve in inter-
rupted line. Since Gm(1) = Gm at Iocrit , the coefficient k1 can therefore be
expressed as

k1 =
dI0crit

dIex
· dGm

dID
|ID=I0crit

=
I0crit

I0
· 1

2nUT

(
1− e−

√
IC0√

IC0

+ e−
√

IC0

)
(5.17)

by using expression (3.55) of the transconductance Gm. In weak inversion,
I0/I0crit is given by (4.65) and IC0 � 1; (5.17) then becomes

k1 =
2IB1(v1)
|V1|IB0(v1)

(weak inversion) (5.18)

It must be remembered that Gm(1) = Gmcrit = Gmcrit0 +∆Gmcrit is the value
of transconductance needed to produce a negative resistance Rn equal the
motional resistance −Rm. Then, if the increase of critical transconductance
∆Gmcrit due to losses is constant, from (4.24):

k2 � − dRn

dGm(1)
=

Rm

Gmcrit0
=

1
ω2C1C2(1+C3/Cs)2 . (5.19)

Thus, the excess current δ Iex produces a net excess of negative resistance
given by

δRn =
dRn

dGm(1)
·

dGm(1)

dIex
δ Iex = −k1k2δ Iex (5.20)

The time constant τ given by (3.3) is then no longer infinite but, by introdu-
cing (5.20) and (5.14)
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1
τ(s)

=
δRn

−2Lm
=

k1k2

2Lm

(
δ I0 −

δ |V1|
Riv

)
, (5.21)

where all variables are in the s-domain. The exponential growth of gate
voltage amplitude can be expressed in the time domain as

d(δ |V1|)
dt

=
|V1|
τ

, (5.22)

which becomes, in the s-domain

sδ |V1| =
|V1|
τ(s)

= Kiv

(
δ I0 −

δ |V1|
Riv

)
, (5.23)

where

Kiv =
k1k2|V1|

2Lm
=

k1k2ω2Cm|V1|
2

. (5.24)

Solving (5.23) for δ |V1| gives low-pass the transfer function for the amp-
litude of oscillation

δ |V1|
δ ID0

=
Kiv

s+ Ωciv
, (5.25)

where
Ωciv = Kiv/Riv (5.26)

is the cut-off frequency. The differential resistance Riv is related to the slope
siv of the normalized function of Fig. 4.17 (or Fig. 4.16) by

Riv = siv/Gmcrit . (5.27)

The expressions (5.17) of k1 and (5.19) of k2 can be introduced in (5.24),
which gives

Kiv =
|V1|

4nUT
· I0crit

I0
· Cm

C1C2(1+C3/Cs)2 ·
(

1− e−
√

IC0√
IC0

+ e−
√

IC0

)
, (5.28)

where the term in parenthesis changes from 2 in weak inversion to 1/
√

IC0
in strong inversion. For the lossless case, Gmcrit = Gmcrit0 = Rm/k2 according
to (5.19). The cut-off frequency can then be expressed from (5.26) as

Ωciv =
ω

4Qsiv
· |V1|

nUT
· I0crit

I0
·
(

1− e−
√

IC0√
IC0

+ e−
√

IC0

)
(lossless case).

(5.29)
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It is proportional to the frequency of oscillation and inversely proportional
to the quality factor Q of the resonator. The amplitude of oscillation follows
the variations of the drain current for frequencies lower than Ωciv, with the
transresistance Riv. Beyond this frequency, the transfer function is that of an
integrator Kiv/s and the variations are attenuated. However, they are shifted
by 90 degrees, which may endanger the stability of an amplitude regulating
loop. As can be seen in (5.28), this integrating behavior does not depend on
the frequency of oscillation nor on the quality factor of the resonator.

5.1.4 Design Examples

Table 5.1 shows the values obtained for the implementation of the two ex-
amples introduced in Section 4.5.2 (Tables 4.1 and 4.2), using the results
of Table 4.3. For the calculation of the minimum value of the N-channel
threshold ensuring saturation of the active transistor, weak inversion has been
assumed for Example 1 with VDsat = 5UT , and strong inversion for Example
2. Both results are lower than the minimum value of 0.35V guaranteed for
the process.

To minimize the value of supply voltage VB in Example 1, the bias tran-
sistor T2 is operated at an inversion coefficient IC2 = 1 for which a value
of VDsat =150mV is assumed. The minimum supply voltage is then only
0.86V in the worst case of maximum threshold. Such a low value of IC2
would have required an excessively large transistor (W =2.3mm) in Example
2. Therefore, the inversion coefficient has been increased to 10, with the res-
ult of an increase of saturation voltage. Combined with the large inversion
coefficient of the active transistor and with the larger amplitude of oscilla-
tion, it increases the minimum value of VB to 1.62V in the worst case. Of
course, the oscillator would still works under this limit, but the amplitude of
oscillation would be limited by losses due to the output conductance of T2,
with the negative consequences discussed in Section 4.3.5.

Even if the gate voltage of the biasing transistor T2 is free of noise, the
contribution γb of the bias current noise is not negligible. It increases the
phase noise by 2dB in Example 1 and 4dB in Example 2.

Sizing the bias transistor is easy in Example 1. In Example 2, the channel
length L has been selected as short as possible while keeping a value of
output conductance Gds smaller than the estimated value of G3. Because
of the large current, a very wide transistor is however needed to limit the
inversion coefficient at a large value of current. For both examples, the added
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variable Example 1 Example 2 unit ref.
|V1 − nV2| 319 ·10−3 561 ·10−3 V (5.4)
VT0min 321 ·10−3 307 ·10−3 V (5.1),(5.3)
IC2 1.00 10.0 V choice
VD2sat 150 ·10−3 200 ·10−3 V (3.46),(3.47)
VBmin 0.86 1.62 V (5.5)
Gmb = Gm2 2.52 ·10−6 13.1 ·10−3 A/V (3.55)
γb 1.66 2.93 (4.138)
γ0 + γb 2.97 4.05
SΦ2

n 1/ f 2 at 1kHz -185 -146 dBc/Hz (3.30)

Ispec2 1.40 ·10−7 1.52 ·10−4 A (3.45)
W2/L2 0.7 760 (3.41)
L2 4 ·10−6 3 ·10−7 m choice
W2 2.8 ·10−6 228 ·10−6 m
VM2 160 12 ·10−6 V
Gds2 0.88 ·10−9 0.13 ·10−3 A/V (3.57)
Cd2 2.94 ·10−15 239 ·10−15 F
Cgd2 0.92 ·10−15 75.2 ·10−15 F
R3 1.00 ·107 5.00 ·103 V/A choice
Gm 4.14 ·10−6 5.23 ·10−3 A/V (5.7)
Ω0 32.0 ·103 68.2 ·106 1/s (5.10)
Qb 3.22 2.55 (5.12)
siv 2.05 5.33 Fig. 4.17
Riv 1.34 ·106 1.02 ·103 V/A (5.27)
Kiv 2.14 ·106 1.16 ·106 V/As (5.28)
Ωciv 1.60 1.13 ·103 1/s (5.26)

Table 5.1 Examples of practical implementations of the basic grounded source os-
cillator.

parasitic capacitors (drain and drain-to-gate) can be considered negligible
with respect to C2.

The only component of loss conductance G3 is the drain-to-gate bias res-
istor, so R3 = 1/G3. The resulting resonance of the bias circuit occurs at a
frequency sufficiently lower than the oscillation frequency.

The maximum frequency for which the amplitude of oscillation follows
the variations of drain current (Ωciv) is very low. Hence, these variations are
strongly attenuated at frequencies for which the phase is increased beyond
180 degrees by the other poles in a amplitude regulation loop. This will be
needed to ensure the stability of this loop.
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5.1.5 Implementation of the Drain-to-Gate Resistor

The drain-to-gate resistor R3 in the basic grounded-source oscillator of
Fig. 5.1 is needed to bias the active transistor T1 in saturation. Its value must
be sufficiently large to limit the loss conductance G3 (but not too large, in
order to keep Ω0 � Ωciv).

Many processes do not provide any possibility to implement a real resistor.
When they do, the sheet resistivity is usually high enough to implement the
few kiloohms needed in Example 2 above. But it is usually much to small to
implement the 10MΩ resistors of Example 1 on a acceptable area.

A possibility to replace a linear resistor by a transistor is illustrated in
Fig. 5.4. It is applicable when the imaginary part of (4.38) relating the AC
drain voltage V2 to the AC gate voltage V1 is much smaller than unity. Then
V2 = −V1 if C2 = C1.

>�

>�

��

��

�

�
�

����� ������

β%+
β

Figure 5.4 Implementation of a linear resistive element by a transistor.

The voltage V3 = 2V1 across transistor T3 varies symmetrically with re-
spect to some constant voltage Vb. This voltage is applied at the source of the
associated transistor T4, with a bias current Ib.

Assuming that both transistors are in strong inversion (Ib � Ispec4), the
application of (3.39) and (3.43) to the saturated T4 (ID4 = IF4 = Ib) and to
the non-saturated T3 (ID3 = IF3 − IR3 = I) that share the same constant gate
voltage VG yields

I =
β
Kr

(VG −VT 0 −nVb)V3 =
1
Kr

√
2nβ Ib ·V3, (5.30)

corresponding to a resistor of value

R = Kr/
√

2nβ Ib =
KrUT

Ispec
√

IC
(in strong inversion). (5.31)

where Ispec and IC are the specific current and the inversion coefficient of
transistor T4. This linearity is maintained as long as T3 is not saturated, hence
for value of voltage limited by
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|V3| <
2
n
(VG −VT0 −nVb) = 2

√
2Ib/βn = 4UT

√
IC. (5.32)

Once the value of IC has been selected to fulfill (5.32), the specific current
Ispec/Kr of transistor T3 needed for the desired value of R can be calculated
from (5.31).

If R is very large as in our Example 1, the corresponding value of Ispec/Kr

becomes very low, requiring a very large value of channel length L. But there
are limits to L. One limit is the area occupied by the device. Another limit
is the channel-to-substrate leakage current due to carrier generation in the
space charge region underneath the channel. Therefore, there is a limit to the
minimum possible value of Ispec/Kr. Below this limit, the only possibility
to further increase R given by (5.31) is to reduce the inversion coefficient,
thereby reducing the range of linearity given by (5.32).

The behavior of the circuit at low values of IC can be obtained by using
the full model (3.40) instead of (3.43) in the calculation of I(V3). This yields

KrI
Ispec

=
[
ln

(
1+ eV3/4UT (e

√
IC −1)

)]2
−

[
ln

(
1+ e−V3/4UT (e

√
IC −1)

)]2
.

(5.33)
This equation is plotted in Fig. 5.5 for several values of inversion coefficient
IC. As can be seen, this I(V3) function is linear within the voltage range rep-
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Figure 5.5 Current-voltage relationship in moderate and weak inversion.

resented for IC = 16 and 25, the slope corresponding to the value of R given
by (5.31). For IC = 9, the function is already slightly nonlinear; according
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to (5.32), it leaves the linear range for V3 > 12UT ). For lower values of IC,
the transistors are no longer truly in strong inversion, and the nonlinearity
increases. The limit case of weak inversion can be calculated either by the
limit of (5.33) for IC → 0 or by using (3.42) in the calculation of I(V3). The
result is then

I =
2Ib

Kr
sinh

V3

2UT
=

Ib

Kr

(
eV1/UT − e−V1/UT

)
(weak inversion) (5.34)

The slope of this function at V3 = 0 is the small signal equivalent conductance
G0 given by

G0 =
Ib

KrUT
(weak inversion). (5.35)

For amplitudes larger than UT , this function becomes nonlinear. Assuming
that the gate voltage V1 remains sinusoidal in spite of this small additional
nonlinearity, the equivalent conductance contributing to the loss conductance
G3 is the conductance for the fundamental frequency component:

G(1) �
I(1)

|V3|
=

I(1)

2|V1|
=

Ib

Kr
· 1

π

∫ 2π

0
sinφ

(
env1 sinφ − e−nv1 sinφ)

dφ (5.36)

where v1 = |V1|/(nUT ) as defined previously. By introducing (5.35) we ob-
tain finally

G(1) = G0 ·
2IB1(nv1)

nv1
(5.37)

This result is plotted in Fig. 5.6. As can be seen, G(1) = G0 for very small
values of |V |, but it increases rapidly for |V3| = 2|V1| > UT due to the strong
nonlinearity of equation (5.34). In Example 1 of Table 4.3, V3

∼= 10UT . Thus
G(1)

∼= 10G0 and a value of G0 = 10−8 A/V would have to be realized to ob-

tain G3 = 10−7 A/V as intended. According to (5.35), the saturation current
of T3 would then be Ib/Kr = 0.25nA.

Now, to implement the drain-to-gate bias resistor by means of the scheme
of Fig. 5.4, the bias voltage Vb must be equal to the DC component of gate
voltage VG0 of the active transistor T1. As illustrated in Fig. 5.7, this can
be done by means of an additional transistor T5 matched to T1. Indeed, if
the two transistors have the same inversion coefficient (Ib/Ispec5 = I0/Ispec1),
then Vb = VG0 in absence of oscillation (|V1| = 0 ). But when |V1| increases,
VG0 is reduced as illustrated by Fig. 4.18. This variation ∆VG0 is negligible
if |V1| remains small or if IC0 is large. Otherwise Vb must be reduced by the
same amount by reducing the inversion coefficient of T5.
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Figure 5.6 Equivalent loss conductance of the nonlinear resistor implemented by
transistors in weak inversion (for a symmetrical sinusoidal signal of total amplitude
|V3|).
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Figure 5.7 Implementation of the drain-to-source bias resistor R3 by transistor T3
(all transistors are in the same substrate).

If all transistors are in weak inversion, ∆VG0 is given by (4.68) (or by
Fig. 4.18) and is usually not negligible. But it can be compensated by choos-
ing

ln
IC5

IC0
=

∆VG0

nUT
or

IC5

IC0
=

|V1|/nUT

2IB1(|V1|/nUT )
, (5.38)

where IC0 is, as before, the inversion coefficient of T1 at the critical condition
of oscillation, and IB1 the modified Bessel function first order.

The implementation of R3 by this scheme increases the minimum value of
supply voltage VB of Fig. 5.4, because of the stack of transistors T5 and T4.
Indeed, to obtain the linearity provided by strong inversion, (5.32) implies

VG4 = VT 0 + nVG0 + n|V3|/2 > VD1max = VG0 + |V2|. (5.39)
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This problem may be alleviated by reducing the inversion coefficient T4 be-
low the limit given by (5.32). As shown by Fig. 5.5, the resulting nonlinearity
remains acceptable even for an inversion coefficient as low as 1.

5.1.6 Increasing the Maximum Amplitude

Even with a large supply voltage, the maximum of |V2| is limited by the
fact that the active transistor leaves saturation in the negative peaks of drain
voltage. This limitation is especially important when the threshold VT 0 is
low. In order to increase |V2|, some scheme must be implemented to raise
the DC component of drain voltage VD0 by ∆VD0 above the DC component
of gate voltage VG0. According to (5.2), the minimum possible value of VT0
in strong inversion is then decreased by n∆VD0 (but only by ∆VD0 in weak
inversion, according to (5.1)).

In the basic circuit of Fig. 5.1, VD0 and VG0 are forced to be equal by
the linear resistor R3. This situation is not changed if R3 is implemented by
a transistor as in Fig. 5.7 (because of the transistor is also a symmetrical
device), provided V2 = −V1. But the symmetry is lost if |V2| > |V1|, and VD0
is pushed above VG0. The amount of increase ∆VD0 can be calculated by stat-
ing that the average current through transistor T3 is zero, or that the average
forward component of current compensates the average reverse component
(according to the definition introduced in Section 3.8). If the transistor T3 re-
mains in weak inversion during the whole oscillation cycle, this is expressed
by means of (3.39) and (3.42) as

e
−VG0

UT

∫ 2π

0
e
− |V1|

UT
sinφ

dφ = e
−VD0

UT

∫ 2π

0
e
− |V2|

UT
sinφ

dφ , (5.40)

which yields finally

∆VD0 = VD0 −VG0 = UT ln
IB0(|V2|/UT)
IB0(|V1|/UT)

. (5.41)

Notice that ∆VD0 becomes negative (reduction of VD0) if |V2|/|V1| < 1.
In the case of a linear biasing resistor R3, a voltage shift ∆VD0 = R3Ib

can be created by flowing a current Ib � I0 through this resistor, as shown
in Fig. 5.8(a). If floating diodes are available in the process, a diode D can
be placed between gate and drain, as illustrated in Fig. 5.8(b). For an ideal
diode and an infinite resistance R3, the shift of drain voltage would depend
on the amplitude |V3| across the diode according to
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Figure 5.8 Ways to increase the maximum possible amplitude of oscillation; (a) by
flowing a DC current Ib through resistor R3; (b) by adding a floating diode D; (c)
shift ∆VD0 produced by an ideal diode D for R3 infinite.

∆VD0 = UT ln[IB0(|V3|/UT )]. (5.42)

The plot of Fig. 5.8(c) shows that this shift would be just slightly smaller
than the amplitude. But an integrated diode is never ideal, which reduces the
shift. Furthermore, a resistance R3 is usually still needed to ensure a sufficient
settling speed of the bias circuitry, according to (5.10), which further reduces
the shift.

If the polarity of the diode is inverted, then then VD0 < VG0. This may
be useful to reduce the minimum of supply voltage VB when desaturation of
the active transistor is not a problem (small amplitude and/or high threshold
VT 0).

5.2 Amplitude Regulation

5.2.1 Introduction

We know that an oscillator must be somewhat nonlinear in order to fix the
amplitude of oscillation. We have seen in Section 4.3.3 that the first nonlin-
earity that plays a role when the oscillation grows up is that of the transfer
function of the active transistor (this will no longer be true for the inverter-
oscillator that will be discussed discussed in Section 5.4.1). We have also
pointed out that this nonlinearity has only a small effect on the frequency of
oscillation (none at all if |Z3| is infinite). On the contrary, as illustrated by
the example of Section 4.3.1, other nonlinear effects (in particular the desat-
uration of transistors) may have a dramatic impact on the frequency, while
dissipating power uselessly. It is therefore very important to avoid these ef-
fects by limiting the bias current I0 of the active transistor.
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Best is to limit I0 just above its critical value I0crit as in our examples
of Section 4.5.2. But this requires a very precise value of bias current.
Moreover, I0crit depends not only on the precise value of capacitors, but also
on the quality factor of the resonator and on the amount of losses that are
neither predictable nor constant.

Therefore, the only realistic way is to implement a control loop that reg-
ulates the voltage amplitude |V1| at the gate. Some kind of voltage reference
is needed, but it should not depend on process parameters or on the supply
voltage.

The next section describes an amplitude regulator that has become a stand-
ard in low-power oscillators for time-keeping. It uses UT as an internal
voltage reference.

5.2.2 Basic Regulator

The basic circuit of the regulator is shown in Fig. 5.9(a). It is driven by the
voltage V1 produced at the gate of the oscillator, and delivers the bias current
I0 of the oscillator. Transistors T6 and T8 are designed to operate in weak
inversion. They have the same channel length, but their channel widths are
in the ratio

Kw � W8/W6 > 1. (5.43)

They are in the same substrate but the source of T8 is degenerated by a res-
istor R6.
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Figure 5.9 (a) Basic amplitude regulator; (b) DC solutions.
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In absence of oscillation (V1 = 0), the circuit settles to DC values. Resist-
ors R4 and R5 can be considered as short circuits since there are no gate cur-
rents. The two N-channel transistors are saturated so the expressions (3.39)
and (3.42) of the drain currents for IR negligible give

I8 = I6 ·Kwe−R6I8/UT , (5.44)

which is represented in a normalized form in Fig. 5.9(b) for Kw = 10.
The one-to-one complementary mirror T9−T7 forces the two branch cur-

rents to be equal with I6 = I8. This is represented by the interrupted line in
the same figure.

Two solutions are possible corresponding to point P and Q. It can be
shown that P is stable, hence Q is unstable. The circuit is self-starting (from
noise). The current at stable point P is obtained by equating I6 and I8 in
(5.44); it is multiplied by the gain Ki of the current mirror T9 −T2 to pro-
duce the start-up value of I0:

I0start =
KiUT

R6
lnKw. (5.45)

It should be pointed out that if the transistor T8 is placed inside a separate
well connected to its source (as shown in dotted line in Fig. 5.9(a), then UT
is replaced by nUT in (5.45).

Although this circuit is in principle self-starting, this might no longer
be true if some leakage currents are present (e.g. currents of reverse-biased
drain-substrate junctions). Fig. 5.9(b) shows in dotted line the case of a dom-
inant leakage current flowing across T6 and/or T9. If this current is small, the
new stable solution P’ remains very close to P, but a third solution appears at
point M, between P’ and Q. This solution is unstable, therefore Q becomes
stable. This does not occur in the opposite case of a leakage current across
T7 and/or T8. It is therefore very important to implement the ratio Kw by
W8 = KwW6 and not by L6 = KwL8. The dominant drain leakage of the wider
T8 then ensures that the circuit is self-starting.

If I0start is larger than Icrit of the oscillator, the oscillation grows up and
V1 is superimposed on the DC component of gate voltage for T6, but not
for T8, since V1 is blocked by the low-pass filter of time constant R5C5. The
two transistors still have the same DC component of gate voltage but the
average drain current of T6 is amplified by IB0(v1) (with v1 = |V1|/(nUT ) as
previously), as is shown by (4.58). Thus, from (5.44):

I6 =
IB0(v1)

Kw
I8eR6I8/UT . (5.46)
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Again, equating the two currents provides their value, which is then multi-
plied by Ki to obtain the current delivered to the oscillator:

I0 =
KiUT

R6
ln

Kw

IB0(v1)
, (5.47)

or, by introducing (5.45):

I0

I0start
=

ln [Kw/IB0(v1)]
lnKw

= 1− ln [IB0(v1)]
lnKw

. (5.48)

This result is plotted in Fig. 5.10(a) for several values of Kw. The limit of the
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Figure 5.10 (a) Regulation curve; (b) maximum regulated amplitude.

regulated amplitude for I0 � I0start is obtained by nulling the left hand side
of (5.48), giving

IB0(v1max) = Kw, (5.49)

which is plotted in Fig. 5.10(b). For amplitudes larger than v1max, the regu-
lator delivers just a very small current essentially due to the drain to substrate
leakage of T8.

It should be noticed that, according to (4.58), the shift ∆VG06 of the DC
gate voltage component of T6 due to the AC amplitude |V1| at a fixed bias
current I6 is

∆VG06 = −nUT ln [IB0(v1)]. (5.50)
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It is different from the shift ∆VG0 at constant Gm(1) = Gmcrit expressed in
(4.68).

The slope svi of the regulator’s normalized transfer function is obtained
by differentiating (5.48):

svi = − 1
lnKw

· IB1(v1)
IB0(v1)

, (5.51)

since the derivative of IB0(v1) is IB1(v1). The variation of this slope with the
normalized current can be calculated by using (5.51) and (5.48) as paramet-
ric equations, v1 being the parameter. It is plotted in Fig. 5.11 for several
values of Kw. After de-normalization, this slope is the transconductance of
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Figure 5.11 Normalized transconductance of the regulator.

the regulator

Gvi � δ I0

δ |V1|
=

I0start

nUT
svi = − I0start

nUT lnKw
· IB1(v1)

IB0(v1)
= − Ki

nR6
· IB1(v1)

IB0(v1)
, (5.52)

where the last form has been obtained by introducing (5.45). Now for
|V1| > nUT (v1 > 1), the ratio IB1(v1)/IB0(v1) is comprised between 0.5 and
1. Hence, Gvi is approximately equal to Ki/(nR6).

The previous results are only valid if transistor T6 remains in weak inver-
sion, even in the peaks of drain current. Its maximum inversion coefficient
can be expressed from (4.56) as
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IC6max = eve · ev1 , (5.53)

with v1 and ve defined by (4.57) applied to T6 and T8. Now, the DC current
I6 obtained from (4.58) is

I6 = Ispec6IB0(v1)e
ve , (5.54)

but it can also be expressed from (5.48) as

I6 = I6start

ln(Kw/IB0(v1))
lnKw

. (5.55)

The value of ve can be obtained by equating these two expressions. It can
then be introduced in (5.53), which yields

IC6max

IC6start
=

ln(Kw/IB0(v1))
lnKw

ev1

IB0(v1)
, (5.56)

where IC6max is the inversion coefficient of T6 for I6 = I6start . Combined with
(5.48) (applied to I6/I6start ) and using v1 as a parameter, this equation gives
the variation of IC6/IC6start in the whole possible range of I6. It is plotted in
Fig. 5.12 for several values of Kw.
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Figure 5.12 Peak inversion coefficient of transistor T6.

It can be seen that the maximum value of IC6 is 1.5 to 3IC6start . Thus, to
ensure weak inversion with IC6 < 0.1, IC6start should be smaller than 0.03 to
0.06. As shown by the simulations reported in Fig. 5.13, this requirement is
exaggerated and a value

IC6start < 0.2 (5.57)
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is sufficient to remain very close to the theoretical result for weak inversion
(shown in dotted line).

But if Ispec6 is reduced further, the voltage scale is expanded at high cur-
rent because of strong inversion, but unchanged at low current. As a con-
sequence, the slope svi increases at intermediate current levels, and finally
becomes negative. The overall loop will then be unstable.

The inversion coefficient of T8 is always smaller, since this transistor is
Kw-times wider as does not receive the AC voltage.
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Figure 5.13 Effect of strong inversion on the regulator characteristics. The theoret-
ical curve for weak inversion is shown in dotted line.

Capacitor C6 is needed in Fig. 5.9(a) to limit the AC drain variation of
transistor T6, thereby keeping it in saturation. For the fundamental compon-
ent, the AC amplitude |VD6| at the drain is

|VD6| =
1−Gm6(1)R4√
1+(ωR4C6)2

V1, (5.58)

with, according to (4.62)

Gm6(1) =
I6

|V1|
· 2IB1(v1)

IB0(v1)
= Gm6 ·

2IB1(v1)

v1IB0(v1)
. (5.59)

It could in principle be cancelled by choosing Gm6(1)R4 = 1, but the harmonic
components would remain. An upper bound of |VD6| including all compon-
ents may be estimated by assuming that the drain current is a very large spike
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of negligible length with respect to the period of oscillation 2π/ω . The drain
voltage would then be a triangular wave of amplitude

|VD6|max
∼=

πI6

ωC6
. (5.60)

The DC component of gate voltage is obtained by applying (4.58) to tran-
sistor T6:

VG06 = VT 0 + nUT ln
I6

Ispec6 · IB0(v1)
. (5.61)

In order to maintain T6 in saturation, C6 should be sufficiently large to ensure

VG06 −|VD6| > 5UT (5.62)

for the largest value I6 = I6start .
The values of R4 and R5 should be sufficiently large to limit the loss con-

ductance G1 of the oscillator.
The regulator of Fig. 5.9 is a positive feedback loop. At equilibrium, its

open-loop low-frequency gain for constant input voltage |V1| can be calcu-
lated to be

GR0(ol) =
1

1+ α
≤ 1, (5.63)

with

α � VR6

nUT
=

I0

I0start
lnKw, (5.64)

where VR6 is the voltage across resistor R6. This gain is always smaller than
unity, but it approaches unity if the bias current becomes much smaller than
the start-up current.

If the output noise current spectral density (noise content of current I0) in
open-loop is Si2n0(ol), when the loop is closed it becomes

Si2n0
=

(
1

1−G0

)2

Si2n0(ol) =
(

1+
1
α

)2

Si2n0(ol), (5.65)

showing that the noise content of the output current I0 increases with I0max/I0.
This noise may be reduced by an RC filter before it reaches the gate of T2,
but care must be taken to maintain the stability of the overall amplitude reg-
ulating loop discussed in Section 5.2.3.

For a frequency Ω much lower than the frequency Ωci of each of the
N poles inside the regulator loop, the phase of the open-loop gain can be
approximated by
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ΦR(ol) = −
N

∑
1

Ω
Ωci

. (5.66)

Hence, the closed-loop gain GR (for constant |V1|) is given by

1
GR

=
1

GR0(ol)(1+ jΦR(ol))
−1 =

α − jΦR(ol)

1+ ΦR(ol)
. (5.67)

For ΦR(ol) � 1, it becomes

GR =
1+ jΦR

α
, (5.68)

with
ΦR = ΦR(ol)(1+ 1/α). (5.69)

Thus, reducing the value of α also results in an increase of the phase shift
in the regulator, which may endanger the stability of the regulation loop.
According to (5.64), the ratio I0start/I0 must therefore be limited.

If R4 is a perfectly linear resistor, the DC voltage component at the drain
of T6 is equal to that at its gate. Thus, the resistor R5 of the low-pass filter
can be connected to the drain instead of the gate, as illustrated in dotted
line in the figure. This variant offers the advantage of reducing the load on
the oscillator. Furthermore, it improves the attenuation of the residual AC
component that reaches the gate of T8.

A very large value of ratio Kw is required to reach an amplitude larger
than 4UT , as can be seen in Fig. 5.10(a). Instead, the regulated amplitude can
be increased by attenuating the input voltage of the regulator. This can be
done by adding a capacitor C7 shown in dotted line in Fig. 5.9(a). A part of
C7 can be the gate capacitance of transistor T6. It can be shown that, since
this transistor is in weak inversion, its gate capacitor is the oxide capacitor
multiplied by (n−1)/n < 1.

5.2.3 Amplitude Regulating Loop

The amplitude regulating loop is realized by combining the oscillator of
Fig. 5.1 with the regulator of Fig. 5.9(a). The input of the regulator is con-
nected to the gate of T1, since it is the gate voltage amplitude that needs to
be regulated.

As illustrated in Fig. 5.14, a stable amplitude is reached at the intersection
S of the |V1|(I0) function of the oscillator with the I0(|V1|) function of the



116 5 Implementations of the Pierce Oscillator


�*��	��
�

�
�


���
	
��



<�	��
�

��������

�� ����	
�

5��5

4
�
�
���
�
�
�
��
��
�
�


���
	
��
�
�


�*��	��
���	���*�
?�	3�����
����

��	������
���	����

����	���


��	"	�����
B
��

�

$

DI

)� J

Figure 5.14 Amplitude regulating loop; a stable amplitude is reached at point S
if the regulator has the monotonic descending transfer function obtained in weak
inversion. If it leaves weak inversion, monotonicity is lost and a relaxation cycle
may occur.

regulator. But this is true only if the current delivered by the regulator is
descending monotonically when the amplitude increases, as obtained when
the transistor T6 is maintained in weak inversion by observing the condition
(5.57).

This monotonicity is lost if the transistor leaves weak inversion during the
peaks of AC current. If the intersection with the |V1|(I0) function of the os-
cillator occurs in a region of positive slope (point U), the loop is no longer
stable. Instead, a relaxation cycle takes place, as shown in interrupted line
in the figure. At start-up, the amplitude |V1| increases and the current I0
decreases down to point M where the slope becomes positive. The current
jumps abruptly to a very low value (point O) where the amplitude starts de-
creasing, until point P is reached. The current then jumps to a high value at
point N and the cycle is repeated.

A negative slope of the regulator is thus a necessary condition for a stable
loop, but this condition is not sufficient. Indeed, the loop must also satisfy
the Nyquist criterion of stability.

Neglecting all other poles than the dominant pole Ωciv of the oscillator
amplitude, the gain of the open loop is obtained by combining (5.25), (5.26)
and (5.52):

Gol � δV1

δ ID0
· δ I0

δ |V1|
=

KivGvi

s+ Kiv/Riv
, (5.70)
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variable Example 1 Example 2 unit reference
C7/C4 0 1 choice
Kw 16 8 choice
I0/Istart 0.12 0.21 Fig. 5.10a
I0start 1.17 ·10−6 7.24 ·10−3 A from I0
Ki 10 100 choice
I6start 0.117 ·10−6 72.4 ·10−6 A from I0start
R6 0.617 ·106 74.7 ·103 V/A (5.45)
Ispec6 584 ·10−9 362 ·10−6 A (5.57)
W6/L6 1.17 724
L6 = L8 2 ·10−6 0.5 ·10−6 m choice
W6 2.34 ·10−6 362 ·10−6 m
W8 = KwW6 37.4 ·10−6 2.89 ·10−3 m
v1C4/(C4 +C7) 4 3
−svi 0.31 0.39 (5.51)
−Gvi 10.8 ·10−6 83.4 ·10−3 A/V (5.52)
Ω1 23 96.5 ·103 1/s (5.71)
Ω0/Ω1 1400 706

Table 5.2 Examples of practical implementations of the amplitude regulator.

where Kiv and Riv and Gvi are given by (5.28), (5.27) and (5.52) respectively.
For very low frequencies including DC, it has the absolute value RivGvi that
should be sufficiently higher than unity to obtain a good regulation. But for
frequencies higher than Ωciv = Kiv/Riv, it behaves as an integrator with a
unity gain frequency (or gain-bandwidth product) simply given by

Ω1 = Kiv|Gvi|. (5.71)

There are several other poles in the loop. Indeed, we have seen that the
dynamic behavior of the oscillator bias has a resonant frequency with two
poles at Ω0. Moreover, the basic regulator of Fig. 5.9(a) may introduce three
more poles. For loop stability, each of these poles should be at frequency
much higher than Ω1. If this condition is verified, the phase margin at Ω1
can be approximated by using (5.69) and (5.66):

∆Φ =
Π
2
−2

Ω1

Ω0
− (1+ 1/α)

N

∑
i=1

Ω1

Ωci
, (5.72)

where N is the number of poles in the regulator and Ωci the frequency of pole
i.

Examples of implementation of regulators adapted to the two examples of
oscillators described in the previous sections (Tables 4.1, 4.2, 4.3 and 5.1)
are given in Table 5.2.
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To avoid a too large value of Kw in Example 2, the input voltage of the
regulator is divided by two by introducing C7 = C4. The regulator is then
designed for v1 = 3 instead of 6.

In this example, in spite of a large current ratio Ki, a very large width of
transistors T6 and T8 is needed to maintain them in weak inversion.

For both examples, the unity gain frequency Ω1 is, as it should, much
lower than the resonant frequency Ω0 of the biasing circuit. The loop will
be stable if the additional poles due to the regulator itself are also at a much
higher frequency. Their number and their values depend on the specific im-
plementation of the regulator. Several possibilities will be discussed in the
following sections.

5.2.4 Simplified Regulator Using Linear Resistors

If R4 is a linear resistor, the DC component VD0 of drain voltage remains
equal to VG0 at the gate. If C6 is sufficiently large, it will limit the amplitude
of drain voltage |VD6| evaluated by (5.58) to a very low value, so that the
low-pass filter R5C5 can be removed, as shown in Fig. 5.15. For a correct
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Figure 5.15 Simplified form of the regulator; the low-pass filter R5C5 is suppressed
and T8 is driven directly by the DC component of drain voltage VD06 that follows
VG06.

operation of the regulator, the residual AC amplitude |VD6| should be smaller
than about 0.3nUT . If the required value of C6 is to large, it might be better
to keep the additional low-pass filter R5C5.

Another simplified version of the regulator is depicted in Fig. 5.16(a).
Here, the low-pass filter R5C5 is maintained, but the drain of T6 is directly
connected to the gate. This transistor is therefore a nonlinear load for the
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Figure 5.16 (a) Simplified form of the regulator; the drain of T6 is directly connec-
ted to the gate. (b) The equivalent conductance loading the oscillator is smaller than
the small-signal transconductance Gm6.

oscillator, which should be made negligible. The contribution to G1 is the
transconductance for the fundamental component Gm6(1) given by (5.59) and
plotted in Fig. 5.16(b).

Thanks to the DC shift, it is always smaller than the small-signal conduct-
ance Gm6 for ID6 = I6. To avoid a too large loss conductance G1, the branch
current I6 should be much smaller than the bias current I0 of the oscillator.

The most compact solution is obtained by merging the regulator with the
oscillator as illustrated in Fig. 5.17 [21]. Transistors T6 and T7 of the reg-
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Figure 5.17 Compact regulating loop by merging the oscillator with the regulator.

ulator are merged with T1 and T2 of the oscillator, so that T1 and T8 have
the same DC gate voltage. Since transistor T6 must be in weak inversion,
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this solution is only possible if the oscillator is designed with T2 in weak
inversion, with Ispec1 > 5I0start according to (5.57).

5.2.5 Elimination of Resistors

A possible implementation of the regulator without any resistor is depicted
in Fig. 5.18.
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Figure 5.18 Possible implementation of the amplitude regulator without resistors.
Resistor R4 of Fig. 5.15 is replaced by transistor T12; this modifies the characteristics
of the regulator. Resistor R6 is replaced by transistor T10.

The role of resistor R6 of the original circuit (Fig. 5.9) is to define the
value of start-up current. It is here replaced by transistor T10 operating in
strong inversion with VD �VDsat (or IF − IR � IF ). The corresponding res-
istance is the inverse of the source transconductance of T10 given by (3.50).
If transistors T10 and T11 are identical, the equivalent resistance is then

R6 =
UT√

IF10Ispec10
=

UT√
I11Ispec10

. (5.73)

The bias current I11 must be provided by some external current reference.
This could be avoided by suppressing T11 and connecting the gate of T10 to
some bias voltage Vb. From (3.50), the equivalent resistance would then be

R6 =
1

β10(Vb −VT0)
. (5.74)

A simple possibility is to use the supply voltage VB as bias voltage Vb, with
the risk of perturbing the oscillator by the noise content of VB.
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The linear resistor R4 of Fig. 5.15 is replaced by transistor T12, according
to the scheme described in Fig. 5.4 (with T3,T4 becoming T12,T13). How-
ever, to obtain a linear element, this scheme required symmetrical voltage
variations at the two ends of the device. It is therefore not applicable to elim-
inate the AC component without producing an additional shift of the DC
component. Since the AC component of voltage is filtered out at the drain,
this voltage shift for weak inversion can be obtained by applying (5.41) with
|V2| = 0:

∆VD06 = VD06 −VG06 = −UT ln
(
IB0(nv1)

)
. (5.75)

This shift must be added to ∆VG06 (given by (5.50)) in the calculation of the
regulator transfer function. The result (5.48) is modified to

I0

I0start
= 1− ln [IB0(v1)]+ ln [IB0(nv1)]/n

lnKw
, (5.76)

which becomes dependent on the value of n. It is plotted in Fig. 5.19 for
n = 1.30. Compared to those of Fig. 5.10, these regulation curves have a
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Figure 5.19 Regulation curve for the circuit of Fig. 5.18 with T12 in weak inversion.

reduced voltage scale, thereby requiring a larger value of the ratio Kw to
achieve a given amplitude.

The contribution of the regulator to the loss conductance G1 of the oscil-
lator is the conductance G(1) of transistor T12 for the fundamental frequency
component (at the gate node of T6). Assuming that all N-channel transistors
are in weak inversion, this conductance can be calculated to be :
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G(1) = G0 ·
2IB1(nv1)

nv1
. (5.77)

This result is identical to (5.37) plotted in Fig. 5.6, but the small signal value
G0 is

G0 = e(VG14−VG06)/UT
I8

KrUT
(5.78)

with Kr = β13/β12. The voltage difference (VG14 −VG06) depends on the rel-
ative size of transistors T6 and T14 and on the shift of DC gate voltage of T6
given by (5.50):

VG14 −VG06 = nUT · ln
[

β6

β14
IB0(v1)

]
, (5.79)

thus (5.78) becomes

G0 =
[

β6

β14
IB0(v1)

]n I8

KrUT
, (5.80)

which is can be made independent of n by choosing β14/β6 = IB0(v1).
To improve the amount of filtering, the low-pass filter R5C5 of Fig. 5.9(a)

can be implemented by means of an additional transistor T15 (shown in dot-
ted line in Fig. 5.18) with the same gate voltage as T12. This transistor does
not produce any voltage shift since it only receives the very small residual
AC voltage, but it should have a smaller value of specific current to com-
pensate for the additional voltage shift given by (5.75). To obtain the same
small signal conductance G0 as T12:

β15 = β12/IB0(nv1). (5.81)

Now, even if T12 and T13 are in strong inversion, with inversion coef-
ficients IC12 = IC13 much larger that unity, T12 cannot behave as a linear
resistor, since there is no AC voltage at the drain of T6. The voltage shift can
be calculated to be

∆VD06 = VD06 −VG06 = 2UT

√
IC13

[
1−

√
1− |V1|2

8U2
T IC13

]
, (5.82)

which is only valid if the peaks of V1 do not saturate T12, i.e. for

|V1| < 2UT

√
IC13. (5.83)

This shift can be made negligible with respect to ∆VG06 expressed by (5.50)
by choosing a large value of inversion coefficient IC13. The basic regulation
curves of Fig. 5.10(a) will then remain valid.
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5.3 Extraction of the Oscillatory Signal

The amplitude |V1| of the signal produced by the oscillator is usually not
sufficient for the intended application and must therefore be amplified. The
most simple amplifier is shown in Fig. 5.20. The complementary transistors
T16 and T17 replicate T1 and T2 of the oscillator with a ratio Ka in specific
current, current and transconductance (e.g. Ispec16 = KaIspec1). Their capacit-
ive load C8 is usually much smaller than the functional capacitance C2 of the
oscillator. Since the gate of T16 is connected to that of T1, the transconduct-
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Figure 5.20 Buffer amplifier for signal extraction.

ance for the fundamental is proportional to the critical transconductance of
the oscillator: Gm16(1) = KaGmcrit . The voltage gain is the given by

Av =
KaGmcrit

ωC8.
(5.84)

The input capacitance of this amplifier can be included in the functional ca-
pacitor C1 of the oscillator. But the unavoidable drain-to-gate capacitance
produces an increase of the loss conductance G1. Indeed, as long as the two
transistors remain saturated, a fraction CGD16/(C8 +CGD16) of the drain cur-
rent variations is feed back to the input, which corresponds to an input con-
ductance for the fundamental

Gin(1) = KaGmcrit
CGD16

C8 +CGD16
. (5.85)

The noise of this amplifier can be characterized by its input-referred noise
voltage spectral density Sv2

na. The white noise component of this spectrum
can be expressed as

Sv2
na =

4γakT
KaGmcrit

, (5.86)



124 5 Implementations of the Pierce Oscillator

where γa is the noise excess factor of the amplifier. This factor is always lar-
ger than 1/2, but it may be much larger than unity if T16 is in strong inversion
with an inversion coefficient much larger than that of T17.

This voltage noise results in a component of phase noise, with a spectrum
given by given by

Sφ 2
n a = Sv2

na/|V
2

1 |. (5.87)

This noise is added to the phase noise of the oscillator (given by (3.29) or
(3.30)) and dominates at frequencies distant from the frequency of oscilla-
tion.

5.4 CMOS-Inverter Oscillator

5.4.1 Direct Implementation

One of the earliest implementations of a CMOS oscillator is illustrated by
Fig. 5.21. It is a simple CMOS inverter biased in active mode by a resistor
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Figure 5.21 Direct implementation of a CMOS inverter as an oscillator.

R, to which the two functional capacitors of the Pierce circuit are added.
It is still a grounded-source configuration, since both sources are grounded
with respect to AC signals. The transconductances of the two transistors are
added, but they are produced by the same current I0. If the transistors are
designed to have the same specific current, the combined transconductance
is doubled. According to (3.55), the critical current is thus reduced by a factor
2 for any given value of inversion coefficient IC0.

However, this simple circuit suffers from two major drawbacks.



Low-Power Crystal and MEMS Oscillators 125

First, the current drawn from the supply voltage is not constant and its
average value I0 depends on the supply voltage and on the threshold voltage
of the two transistors. This dependency increases when the inversion factor
is decreased and is maximum in weak inversion.

The second drawback is that, at low values of the inversion coefficient,
the nonlinearity of the transfer function of the inverter results in an increase
of the transconductance for the fundamental frequency Gm(1) with the amp-
litude of oscillation. Thus, as soon as the critical transconductance is reached
(for a critical value of VB), the amplitude increases abruptly, until it is lim-
ited by the loss conductance of the transistors leaving saturation in the peaks
of oscillation. The corresponding variation of Zc(1)(|Ic)| simulated in an ex-
ample is shown in Fig. 5.22. The simulated circuit is depicted in part (a) of
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Figure 5.22 Simulation of the circuit impedance for the fundamental frequency
Zc(1) of a CMOS-inverter oscillator.

the figure. The two complementary transistors have approximately identical
specific currents and the loss due to the biasing resistor is practically negli-
gible.

Part (b) of the figure shows the loci of Zc(1)(|Ic|) calculated from simula-
tions with several values of supply voltage VB. As long as the amplitude |Ic|
of the sinusoidal current injected in the circuit is smaller than 100nA, the cir-
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cuit remains linear and its small-signal transconductance Gm increases with
VB. The corresponding values of the linear circuit impedance Zc are located
approximately on the expected circular locus (shown in thin line). The small
departure for large values of VB is caused by the output conductance Gds of
the transistors. Indeed, this conductance is not constant but increases with
the current, thereby progressively shifting the circle.

For larger values of |Ic|, the circuit becomes nonlinear. Its impedance Zc(1)
for the fundamental frequency starts changing with the amplitude.

For VB ≤ 1V, the bias current is small and the transistors are in weak
or moderate inversion. The negative resistance first increases with the amp-
litude as a result of the increase of Gm(1). It only starts decreasing when the
amplitude is so large as to push the transistors out of saturation, which cre-
ates a large equivalent loss conductance G2. The current drain I0 is always
much larger than its critical value and the excess of power is dissipated in
losses.

For VB ≥ 1.2V, the transistors are in strong inversion and the voltage-to-
current transfer function of the inverter are approximately linear (difference
of two approximately identical shifted square laws). Thus, as soon as the
critical transconductance is reached, the amplitude grows until the transistors
leave saturation, thereby reducing the negative resistance.

With the values selected, this circuit provides a maximum negative res-
istance of about 580kΩ at VB=1.2V. Simulation results obtained with a mo-
tional resistance Rm=50kΩ are illustrated in Fig. 5.23(a).

Starting from low values of VB, the critical value of the current I0 flowing
through the transistors is reached for VB=0.78V (point b). At this point, the
amplitude of oscillation grows until the peak-to-peak value of the voltage
at the drains reaches approximately VB (point c). The current is then much
larger than its critical value, and the drain voltage is strongly distorted. A
further increase of VB is followed by the drain amplitude, and results in a
further increase of I0. The motional current Im also increases first, but then
decreases. This is because the increase of losses produced by desaturated
transistors overcomes the increase of bias current.

Starting from high values of VB, the oscillation is sustained down to VB =
0.62V (point d). At this point, it decreases to zero and I0 falls down much
lower than its critical value

The explanation of this hysteresis loop can be found in part (b) of the
figure. To each value of supply voltage VB corresponds one locus of the fun-
damental impedance Zc(1)(|Ic|). The figure shows only the loci simulated for
the two critical values of VB. With the amplitude |Ic| increasing, these loci
first follow the circular locus of the linear circuit (corresponding to an in-
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Figure 5.23 Simulation of the CMOS inverter-oscillator of Fig. 5.22(a) with
Rm =50 kΩ ; (a) variation of motional current, current drain and peak-to-peak drain
amplitude; (b) partial Zc(1) complex plane explaining the hysteresis loop.

crease of the negative resistance |Rn|). This is because Gm(1) increases with
the amplitude, as explained above. When the losses at the drain becomes
too important, the loci loop back and the negative resistance decreases as
normally.

The locus of the motional impedance −Zm(p) for Rm=50kΩ is repres-
ented in dotted line in the same figure. As explained in Chapter 3, stable
oscillation can be reached for Zc(1) = Zm.

Starting from low values of VB, the first solution is found at point b (origin
of the Zc(1) locus for VB = 0.78V). But this solution is unstable since the
amplitude stability criterion (1.3) is not met. At this value of VB, the amp-
litude first increases and then decreases until the stable point c is reached.
Larger values of VB correspond to lower positions of this stable solution.

When VB is reduced below 0.78V, the stable solution will move on inter-
mediate loci, until point d is reached for VB=0.62V. But this point is meta-
stable since for any small change of amplitude the negative resistance be-
comes smaller than Rm. At this value of VB, the amplitude decreases until
point a is reached.

This hysteresis loop can disappear if the transistors are both in strong
inversion at the critical value of VB. But this requires a higher value of VB
and the critical current is increased, thus the advantage of minimizing the
current is lost. It is very difficult in practice to avoid dissipating much more
power than the minimum needed for a given amplitude of oscillation.
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The current (and thus the excess of negative resistance) is strongly de-
pendent on the supply voltage and on the gate threshold voltage of the tran-
sistors. Since the amplitude limitation is achieved by increasing the losses,
the amount of frequency pulling depends also strongly on these voltages and
thus on the temperature. Furthermore, because of this strong possible over-
drive, this circuit is prone to parasitic oscillation on unwanted modes of the
resonator.

Its only advantages are a possible rail-to-rail output (peak-to-peak drain
voltage close to VB) and a large power efficiency

η =
Pm

VBI0
. (5.88)

The mechanical power Pm and the efficiency η calculated from the simula-
tion of the circuit of Fig. 5.22 are plotted in Fig. 5.24. The power efficiency
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Figure 5.24 Mechanical power and power efficiency of the CMOS inverter-
oscillator of Fig. 5.22(a) with Rm =50 kΩ .

reaches a maximum close to 50% at the minimum value of VB but decreases
for higher values with the increase of losses.

Compared to the current-biased Pierce oscillator, the high value of Pm (and
thus of Em for a given value of Q) might be an advantage to reduce the phase
noise, according to (3.30). However, the noise excess factor γ is increased by
a higher current due to losses, which compensates this higher energy of os-
cillation. Moreover, for high frequency resonators, Pm might largely exceed
the acceptable value (it was close to the limit in Example 2 of Tables 4.1 to
4.3).

In spite of its apparent simplicity the direct implementation of a CMOS
inverter-oscillator illustrated in Fig. 5.21 is not recommended because of its
many pitfalls.
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5.4.2 Current-controlled CMOS-inverter oscillator

The best way of exploiting the increased transconductance provided by
a complementary inverter is to impose its bias current as illustrated by
Fig. 5.25 [22].
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Figure 5.25 CMOS-inverter oscillator biased by current I0. The coupling capacitor
Cc is necessary to activate the P-channel transistor.

As for the basic grounded source circuit of Fig. 5.1 and all its variants
and extensions, the bias current I0 is imposed by transistor T2. A coupling
capacitor Cc must be added to ensure the activity of the P-channel part of the
inverter. Its impedance must be much lower than the source transconduct-
ance of the transistor. Assuming that the two complementary transistors have
about the same transconductance (otherwise the complementary scheme is
useless):

ωCc � nGmcrit/2 (5.89)

For the Example 1 of Section 4.5.2, this gives Cc � 4.9pF, thus a large
capacitance of at least 50pF is needed.

The large signal behavior of this complementary circuit is exactly the
same as that of the basic circuit. When the amplitude grows, the DC compon-
ent VG0 of the N-channel transistors decreases by ∆VG0 according to Fig. 4.18
to keep I0 constant. For the P-channel transistor, the current is kept constant
by a decrease ∆V0 of the voltage V0 at its source. According to (3.40), the
saturated drain current is controlled by VG − nVS. Hence, for symmetrical
transistors (Ispecp = Ispecn):

∆V0 = 2∆VG0/n. (5.90)
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To minimize losses, the two transistors should remain saturated in the
peaks of drain amplitude:

VDS0n + |V2| < VDSsatn and VDS0p + |V2| < VDSsat p, (5.91)

where VDS0n and VDS0p are the DC component of the voltage across the tran-
sistors, and |V2| is, as before, the amplitude of oscillation at the drain.

Considering the case of weak inversion, (4.58), VDS0n is obtained directly
from (4.68):

VDS0n = VG0n = VT 0n −nUT ln

[
Ispec

I0critmin
·

2IB1(v1)

v1

]
(5.92)

The same DC current I0 flows through the two complementary transistors.
It is given by (4.58) with

ve = ven =
VGon −VT0n

nnUT
(5.93)

for the N-channel transistor and

ve = vep =
VGop −VT0p −nVSp

npUT
(5.94)

for the P-channel device (with the definitions of Fig. 3.10 for voltages). If
the transistors are symmetrical (Ispecp = Ispecn and np = nn), equating the two
expressions of I0 yields

VSp = (VG0p −VT0p −VG0n +VT0n)/n, (5.95)

where VT 0n and VT 0p are the values of threshold VT 0 for the two types of
transistors. Now VG0p = VB −VG0n, thus

VDS0p = VG0p −VSp = VB

(
1− 1

n

)
+VG0n

(
2
n
−1

)
+

VT 0p −VT0n

n
, (5.96)

or, by introducing (5.92)

VDS0p =
VT 0p

n
+

n−1
n

(VB −VT0n)− (2−n)UT ln

[
Ispec

I0critmin
·

2IB1(v1)

v1

]
.

(5.97)
The drain amplitude |V2| must then be limited to fulfill the two condi-

tions of (5.91) with VDSsatn = VDSsat p
∼= 5UT . If needed, the DC voltage VDS0n
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Figure 5.26 CMOS-inverter oscillator modified to allow an increase of drain amp-
litude.

across the N-channel transistor can be increased by one of the schemes dis-
cussed in Section 5.1.6.

If the DC voltages across both transistors must be increased, the solution
depicted in Fig. 5.26 can be implemented. Two separate resistors Rn and Rp

are used to bias the gates of the two transistors, and a small current Ib is flown
through them. The voltage drops ∆Vn and ∆Vp across them are equivalent to
an increase of VT n and VT p in equations (5.92) and (5.96). The gate of the
P-channel transistor is coupled by means of capacitor Cp.

If transistors must be used to implement resistors, the floating resistor Rp

is hard to realize. It is then better to bias the gate of the P-channel transistor
from a separate voltage source of adequate value.

As shown by (5.96), VDS0p increases with VB. This would not be the case
if the P-channel transistor were put in a separate well connected to its source
(as indicated in dotted line in Fig. 5.25). The DC voltage across the transistor
would then be symmetrical to that of the N-channel device:

VDS0p = VG0p = VT 0p −nUT ln

[
Ispec

I0critmin
·

2IB1(v1)

v1

]
, (5.98)

which is always smaller than the value given by (5.96). The advantage would
be a reduction of the minimum value of supply voltage VB.



132 5 Implementations of the Pierce Oscillator

5.5 Grounded-Drain Oscillator

5.5.1 Basic Implementation

The basic grounded-drain version of the Pierce oscillator is shown in Fig. 5.27.
To avoid modulation by the source, the active transistor T1 is put in a sep-
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Figure 5.27 Basic grounded-drain version of the 3-point Pierce oscillator.

arate well connected to its source. In this N-channel implementation, the
drain of T1 is connected to the positive rail of the power supply (which is
the ground of the AC signal), and a bias current I0 is delivered by a current
source T2 (also N-channel). As in the grounded-source version, T1 is biased
in saturation by means of resistor R3.

All the results obtained in Chapter 4 for the Pierce oscillator are applicable
to this circuit. But there are some notable differences with respect to the
grounded-source implementation of Section 5.1.

One side of the resonator is grounded. Therefore, only one additional pin
is needed, hence its appellation “single pin oscillator” [23]. But this advant-
age also turns out to be a drawback, since C3 now includes parasitic capacit-
ors to ground (connecting pad, package feedthrough, external connections).
Even if these are minimized, it includes C10 or C20 of the resonator itself.
As a result, C3 becomes much larger than its minimum value C12 due to the
resonator. The radius of the circular locus of Fig. 4.6 and the margin factor
Km defined by (4.17) are thus drastically reduced, with the various negative
consequences discussed in Chapter 4.

One potential advantage of this implementation is that the voltage V3
across the resonator can be used as the output signal. As expressed by (4.37)
this voltage is larger than V1. However, this will further increase the over-
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all value of C3. It might also increase the loss conductance G3, which has a
strong effect on the critical transconductance, according to (4.45).

Another negative point is the fact that the relatively large capacitance
to ground of the separate well is now part of C2. Since this capacitance is
voltage dependent, the frequency stability is degraded.

As for the grounded-source realization, even with a large value of supply
voltage, the maximum amplitude is limited by the desaturation of the active
transistor in the peak of oscillation. This limit can be pushed by flowing some
current through the bias resistor R3, thereby lowering the DC voltages at the
gate and at the source and substrate node.

The resistor can be implemented by means of a P-channel transistor T3
biased in the linear region of strong inversion. Then, according to (3.50):

R3 =
1

Gms3
=

UT√
IF3Ispec3

. (5.99)

The circuit of Fig. 5.27 assumes that a the N-channel active transistor can
be put in a separate P-type well. If only N-type wells are available, P-channel
devices must be used.

The amplitude of oscillation can be controlled by the regulator discussed
in Section 5.2 (or by its P-channel version). This circuit can be capacitively
coupled to the gate of T1 to control |V3|, or to its drain to control |V2|. It
delivers the bias current I0.

5.5.2 Single-Substrate Implementation

It might be tempting to avoid a separate well for the active transistor T1 and
to realize the circuit as shown in Fig. 5.28. This was the only possibility for
the first implementation of this oscillator in a P-MOS process [24]. The com-
mon substrate of the N-channel devices is now the negative rail of the power
supply (reference 0). The source voltage VS and drain voltage VG are both
changing with the oscillatory signal, whereas the drain voltage is constant
and equal to VB.

The general expression of the circuit impedance Zc is now

Zc =
Z1Z3 + Z2Z3 + nGmZ1Z2Z3

Z1 + Z2 + Z3 + GmZ2[nZ1 +(n−1)Z3]
, (5.100)

where each impedance Zi is defined by (4.1). It would be reduced to (4.2)
(impedance of the basic circuit) for n = 1. The circuit impedance is still a
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Figure 5.28 Grounded-drain 3-point Pierce oscillator without separate well.

bilinear function of the gate transconductance Gm, hence the locus of Zc(Gm)
is still a circle.

For the lossless circuit (Zi = 1/ jωCi), this circle is centered on the ima-
ginary axis, as illustrated in Fig. 5.29.
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Figure 5.29 Loci of Zc(Gm): a: Single-substrate with C1 = C2; b: separate well
with C1 = C2 (optimum ratio); c: single-substrate with C2/C1 = 2n− 1 (optimum
ratio). All three loci have the same value of Cs +C3, thus same frequency pulling
for Rm � |Rn0|max. The radius of the loci for the single-substrate is dramatically
reduced.

Compared to the basic implementation of Fig. 5.27 (corresponding to n =
1), the upper point of the circle (Gm = 0) is not changed, but the lower point
(Gm = ∞) is much higher, due to the term C1(n− 1)/n added to C3. The
radius of the circle is therefore drastically reduced. The maximum value of
negative resistance (radius of the circle) is reduced to
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|Rn0|max =
n− (n−1)C1/Cs

2ωC3(1+C3/Cs)(n+(n−1)C1/C3)
, (5.101)

where Cs is the series combination of C1 and C2.
For Rm � |Rn0|max (which is much more difficult to satisfy), the critical

transconductance for the lossless case is

Gmcrit0
∼=

ω2Rm(C1C2 +C2C3 +C3C1)
2

C1[C2 − (n−1)C1]
, (5.102)

or, by combination with (4.21) (which is not modified):

Gmcrit0
∼=

ωCm

Qp2
c
· (C1 +C2)

2

4C1[C2 − (n−1)C1]
, (5.103)

which reduces to (4.26) for n = 1. The optimum is no longer for C1 =C2, but
for

C2 = (2n−1)C1 giving Gmcrit0
∼= n

ωCm

Qp2
c
. (5.104)

Thus, even with the optimum capacitance ratio, the critical transconductance
for a given value of frequency pulling is increased by factor n. As shown in
Fig. 5.28 (curve c), the radius of the locus is slightly larger than for C1 = C2
(curve a), but still much smaller than for the optimum implementation with
a separate well (curve b).

In summary, the implementation of the grounded-drain Pierce oscillator in
a single substrate (with no separate well) strongly reduces the radius of the
circular locus, thereby reducing the margin factor Km defined by (4.17). The
minimum critical transconductance is increased and is obtained with C1 <C2
(and thus |V1| > |V2| according to (4.38)). In view of these many drawbacks,
this solution should be avoided.



Chapter 6
Alternative Architectures

6.1 Introduction

The basic 3-point Pierce oscillator of Fig. 4.1 is the only possible configur-
ation of a quartz (or MEMS) oscillator using a single active transistor. As
soon as two or more active transistors are considered, many configurations
become possible. Three of them will be discussed in this last Chapter.

Two-transistors symmetrical circuits for parallel and series resonance will
be analyzed in Sections 6.2 and 6.3. An example of more complicated ar-
chitecture using an operational transconductance amplifier (OTA) will by
presented more briefly in Section 6.4. These three circuits will be compared
with the Pierce oscillator in Section 6.5.

6.2 Symmetrical Oscillator for Parallel Resonance

6.2.1 Basic Structure

The standard circuit used for a symmetrical parallel resonance oscillator is
illustrated in Fig. 6.1(a). It is based on a known circuit using vacuum tubes
(figure 68b, page 82 of [15]). The negative resistance produced by the cross-
coupled differential pair is simply

Zc00 = −2/Gm, (6.1)

E. Vittoz, Low-Power Crystal and MEMS Oscillators: The Experience of Watch Developments, 137
Integrated Circuits and Systems, DOI 10.1007/978-90-481-9395-0_6, 
© Springer Science+Business Media B.V. 2010 
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Figure 6.1 Basic parallel resonance oscillator; (a) standard circuit for a R,L,G res-
onator; (b) modified circuit adapted to the absence of a DC path in the resonator
(without bias circuitry).

where Gm is the transconductance of each transistor. The critical condition
for oscillation is thus

Gm = 2G, (6.2)

and oscillation will take place exactly at the resonant frequency of the res-
onator, since the circuit admittance is real (except for the effect of parasitic
capacitors).

This circuit produces a voltage stable negative resistance compatible with
parallel resonance. It would not provide a stable oscillatory solution with a
plain series resonator. One obvious reason is that a DC path is needed across
the resonator, otherwise the circuit becomes bistable. But even if bistability
is avoided by some means, no stable oscillation would be possible, because
the basic condition (1.2) for phase stability would not be fulfilled. Therefore,
if this circuit is associated with a quartz resonator, it must exploit the parallel
resonance discussed in Chapter 2. For this parallel resonance, the parallel
capacitance CP is part of the resonator. If necessary, this capacitance may be
increased to a value CD > CP to reduce the amount of frequency pulling.

To eliminate the DC bistable solution, the DC coupling between the
sources of the transistors must be replaced by a capacitive coupling CS as il-
lustrated in Fig. 6.1(b). The circuit impedance (without parallel capacitance)
becomes

Zc0 = − 2
Gm

+ j
n

ωCS
. (6.3)
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Away from the resonant frequencies of the quartz, the drains are simply
connected by a parallel capacitance CD and a parasitic oscillation may occur
at the frequency ωp that cancels the imaginary part of the total admittance:

Im

[
1

Zc0(ωp)

]
+ ωpCD = 0, (6.4)

which results in

ω2
p =

nG2
m

4CDCS

(
1− nCD

CS

)
. (6.5)

Thus if
CS < nCD, (6.6)

this frequency does not exist and no parasitic oscillation can occur.

6.2.2 Linear Analysis with the Parallel Resonator

The variation of the parallel impedance Zp of the resonator (i.e with the par-
allel capacitance CP across the motional impedance Zm) was discussed in
Chapter 2, with the locus of Zp(Qp) illustrated in Fig. 2.3. This circular
locus is reproduced in Fig. 6.2, with the figure of merit M replaced by its
value for the loaded dipole resonator defined by

ML � QCm

CD
≤ MD < M0. (6.7)

The circuit impedance Zc0 given by (6.3) (without the parallel capacitance
CD that is now part of the parallel resonator) is a linear function of 2/Gm

with a constant imaginary part. The locus of −ωCDZc0 is plotted in dotted
line in Fig. 6.2. It is an horizontal strait line that is below -1 in order to fulfill
condition (6.6). One of its two intersections with ωCDZp(p) corresponds to
the critical condition for oscillation (the other can be shown to be unstable).

As can be seen, the oscillation frequency is always above the parallel res-
onance frequency. By introducing the definition (6.7) of ML, the range of
possible pulling can be expressed as

Cm

2CD
≤ pc ≤

Cm

2CD
+

1
2Q

, (6.8)

whereas the range of critical transconductance for the lossless circuit is
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Figure 6.2 Normalized loci of Zp(p) and −Zc0(Gm). Their intersection defines the
critical condition for oscillation.

2ωCD

ML
≤ Gmcrit0 ≤

4ωCD

ML
. (6.9)

In normal cases, ML � 1 (very large circle) whereas nCD/Cs is not much
larger than unity. Then Gmcrit0 has the lowest value of this range:

Gmcrit0 =
2ωCD

ML
=

2ωC2
D

QCm
= 2ω2C2

DRm. (6.10)

6.2.3 Linear Analysis with the Series Motional Resonator

Although it is basically a parallel resonance oscillator, this circuit can be
analyzed as was done for the previous circuit, by separating the motional
impedance Zm of the resonator from the overall circuit impedance Zc (that
includes the parallel capacitance CD). Both approaches are equivalent for
the small-signal linear analysis, but the splitting (Zm,Zc(1)) is needed to con-
sider nonlinear effects, as explained in Chapter 3. Indeed, the current flowing
through Zp is no longer sinusoidal when the voltage across it is distorted.

The impedance of the whole circuit shown in Fig. 6.3(a) in the general
case with losses is

Zc =
ZDZc0

ZD + Zc0
=

ZD(2+ nGmZS)
2+ nGmZS −GmZD

, (6.11)
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Figure 6.3 Parallel resonance oscillator with lossy impedances ZS and ZD; (a) full
circuit without bias; (b) small-signal equivalent circuit.

It corresponds to the small-signal equivalent circuit of Fig. 6.3(b).
The values of Zc for the extremes of Gm are

Zc = ZD for Gm = 0 and
nZDZS

nZS −ZD
for Gm = ∞. (6.12)

If the two impedances are simply capacitors (lossless circuit), these limits
become − j/ωCD and − j/ω(CD −CS/n), and the circular locus of Zc is
centered on the imaginary axis, as illustrated in Fig. 6.4.

The stable locus with CS <CD looks similar to the locus of Zc(Gm) for the
Pierce lossless oscillator, represented in Fig. 4.6. However, there is a major
difference due to the fact that CD plays the role of C3 +Cs, but can be much
smaller. The amount of pulling can therefore be larger than for the Pierce
circuit, with the advantage of a smaller value of critical transconductance
(given by (6.10)), and the drawback of a larger dependency on CD.

As for the Pierce circuit, the locus of −Zm(p) is also represented in
Fig. 6.4. The critical condition for oscillation is at its intersection A with
Zc(Gm).

The maximum value of negative resistance is easily obtained by inspec-
tion, since it is the radius of the circle:

|Rn0|max =
1

2ωCD(nCD/CS −1)
. (6.13)

It is reached for Gm = Gmopt given by

Gmopt =
2ωCD

nCD/CS −1
. (6.14)
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Figure 6.4 Loci of Zc(Gm) and −Zm(p) for the circuit of Fig. 6.1(b); the limit case
for nCS = CD and the unstable case for nCS > CD are represented in thinner lines.

The maximum negative resistance increases to infinity for the limit case
CS = nCD. In practice, it is limited by the need to ensure some margin of
security. This margin depends on the worst mismatch expected between CD
and CS/n. This mismatch can be large, since the two capacitors do not have
the same structure.

Let us define the maximum relative mismatch

εmax � (nCD/CS)max − (nCD/CS)min

(nCD/CS)max +(nCD/CS)min
. (6.15)

Since the minimum value of nCD/CS must be larger or equal to unity, its
nominal value must be at least 1/(1− εmax) and its maximum value will be
(1+ εmax)/(1− εmax). The maximum value of negative resistance will be in
the range

1− εmax

4ωCD · εmax
≤ |Rn0|max ≤ ∞, (6.16)

with CD ≥CP.
Now, as was discussed for the Pierce circuit, the motional resistance Rm

should be much smaller than the maximum negative resistance |Rn|max, so
that the point A corresponding to stable oscillation remains located at the
top of the circle. The imaginary part is then −1/ωCD, which introduced in
(3.10) gives
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pc =
Cm

2CD
, (6.17)

the minimum of the range defined by (6.8).
By introducing this result in (6.10), the critical transconductance can be

expressed as

Gmcrit0 =
ωCm

2Qp2
c
. (6.18)

An inspection of Fig. 6.3 shows that the amplitudes at the gates and at
the sources are simply related by Vin/∆VS = −Zx/ZS, where Zx is the par-
allel combination of Zm and ZD (Zx = Zp if ZD is just the lossless parallel
capacitance CD).

Now, at the critical condition for oscillation, Zx = Zc0. In the lossless case,
Zc0 is given by (6.3). Hence, with Gmcrit given by (6.10):

Vin

∆VS
= −Zc0

ZS
= n+ j

2ωCS

Gmcrit
= n+ j

CS

CD
· QCm

CD
= n+ j

CS

CD
·ML. (6.19)

If CD is not too large, the figure of merit ML defined by (6.7) remains
much larger than unity. Moreover, CS/CD is close to n. Hence, the voltage
ratio Vin/∆VS is essentially imaginary and much larger than unity. But this
is no longer true if CD is made much larger than CP to reduce the frequency
pulling given by (6.17).

6.2.4 Effect of Losses

The lossy impedance at the drain can be expressed as

ZD =
1

GD + jωCD
. (6.20)

Its real part is then

Re(ZD) =
GD

G2
D +(ωCD)2

∼=
GD

(ωCD)2
︸ ︷︷ ︸

for G2
D�(ωCD)2

. (6.21)

Since most of the oscillatory current flows around the loop ZmZD, this resist-
ance comes in series with the motional resistance Rm (thereby reducing the
quality factor Q). According to (6.10), this increases the critical transcon-
ductance by
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∆Gmcrit = 2ω2C2
DRe(ZD) ∼= 2GD. (6.22)

With losses, the imaginary part of ZD is

Im(ZD) =
−1

ωCD

[
1+

(
GD

ωCD

)2
] . (6.23)

The effective value of CD is thus increased, which increases the margin of
stability imposed by (6.6). But it also has an effect of the frequency of oscil-
lation, according to (6.17).

Losses associated with CS at the oscillation frequency are best character-
ized by a series resistance RS:

ZS = RS +
1

jωCS
. (6.24)

This resistance has no effect on the pulling, but half of it degenerates the
transconductance of each transistor. Introducing (6.22), the critical transcon-
ductance with losses becomes

Gmcrit =
Gmcrit0

1−nRSGmcrit0/2
+ 2GD. (6.25)

6.2.5 Nonlinear Analysis

The most immediate way of biasing the active transistors is shown in Fig. 6.5
[25]. The two transistors are biased by separate current sources I0, and load
resistors R fix the common mode drain voltage at VB −RI0. The value of
these resistors should be high enough to limit the drain loss conductance
GD = 1/2R. Indeed, according to (6.22) they cause an increase of critical
transconductance ∆Gmcrit = 1/R.

Now, the AC drain voltage is produced by the drain current flowing
through the parallel resonant circuit of impedance Zp. At the frequency of
oscillation Fig. 6.2 shows that for the usual case of ML � 1

ωCDZp = ML − jnCD/CS. (6.26)

Hence, |Zp| is much larger than the impedance of CD alone. Since the lat-
ter is further reduced for harmonic components of current produced by the
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Figure 6.5 parallel resonance oscillator biased by current sources I0 and resistors
R.

transistors, these are virtually short-circuited, and the voltage Vin across it
remains approximately sinusoidal.

The active part of the circuit can be seen as a differential pair with the
source transconductance of each transistor degenerated by a series capacit-
ance 2CS. The degeneration can be neglected if

Gms = nGm � 2ωCS. (6.27)

By introducing the expression (6.10) of Gmcrit0, this condition becomes

Gm

Gmcrit0
· nCD

CS
� ML. (6.28)

Thus, as long as the figure of merit ML of the loaded resonator is sufficiently
large, a good approximation is obtained by considering the circuit as a differ-
ential amplifier biased by a current source 2I0, and driven by the differential
sinusoidal gate voltage Vin.

When the bias current I0 exceeds a critical value I0crit , the amplitude |Vin|
increases until it is limited by the nonlinear transfer function of this dif-
ferential pair. A small values of Vin produces a small difference of drain
currents ∆ ID = GmVin that mainly flows through the parallel resonator. In-
deed, the small-signal transconductance of the differential pair is equal to
the transconductance Gm of one of the transistors alone, and the critical con-
dition of oscillation is obtained for Gm = Gmcrit .

When |Vin| increases ∆ ID is distorted, and its fundamental component
∆ ID(1) is reduced. Stable oscillation is reached when Gm(1) = Gmcrit , where
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Gm(1) is the transconductance of the differential pair for the fundamental fre-
quency defined by

Gm(1) � |∆ ID(1)|/|Vin|. (6.29)

If the transistors are in weak inversion, the transfer function of the differ-
ential pair is a hyperbolic tangent and the fundamental component of output
current is given by

∆ ID(1) = 2I0 ·
1
π

∫ 2π

0
tanh (

vin

2
sinφ) sinφ ·dφ

︸ ︷︷ ︸
fw(vin)

, (6.30)

where vin is the normalized value of the amplitude |Vin| defined by

vin � |Vin|
nUT

. (6.31)

Introducing (6.30) in (6.29) gives at stable oscillation

Gm(1) =
2I0

nUT
· fw(vin)

vin
≡ Gmcrit =

I0critmin

nUT
, (6.32)

or finally
I0

I0critmin
=

vin

2fw(vin)
. (6.33)

This result is plotted in Fig. 6.6 .
If the transistors are in strict strong inversion, the transfer function of the

differential pair biased by 2I0 can be calculated from (3.43). The dependency
of the two drain currents on the differential input voltage Vin obtained from
this calculation is

ID1 = I0(1−mvd

√
2−m2

vd) and ID2 = I0(1+ mvd

√
2−m2

vd), (6.34)

where

mvd � |V |in
2nUT

√
2IC

=
vin

2
√

2IC
,≤ 1, (6.35)

is the index of voltage modulation of the differential pair and IC = I0/Ispec

is the inversion coefficient of the transistors at current I0. Notice that this
inversion coefficient is different from its value IC0 = I0crit/Ispec as soon as
the amplitude is increased. But introducing IC0 instead of IC does not result
in a closed form solution.

The difference of drain currents is then
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Figure 6.6 Amplitude limitation by a differential pair. These results are applicable
to the parallel resonance oscillator if |Vin| � |∆VS| according to (6.19). Here, the
curves for strong inversion correspond to a constant value of inversion coefficient
IC, and not to a constant Ispec of the transistors.

∆ ID

2I0
= mvd

√
2−m2

vd. (6.36)

The fundamental component of output current is given by

∆ ID(1) = 2I0 ·
1
π

∫ 2π

0
mvd sin2 φ

√
2− (mvd sinφ)2 ·dφ

︸ ︷︷ ︸
fs(mvd)

. (6.37)

Introducing again this result in (6.29) gives at stable oscillation

Gm(1) =
2I0

nUT
· fs(mvd)

vin
≡ Gmcrit =

I0critmin

nUT
, (6.38)

where I0critmin is the minimum critical current (that would be reached in weak
inversion). Finally, knowing that I0crit =

√
IC0 · I0critmin:

I0 =
vin

2fs(
vin

2
√

2IC
)
I0critmin =

√
2mvd

fs(mvd)
·
√

IC
IC0

I0crit . (6.39)

This result is also plotted in Fig. 6.6 for several values of inversion coeffi-
cient IC. Now, the parameter IC = I0/Ispec is not constant if the bias current
I0 is increased to increase the amplitude. Thus, the curves for strong inver-
sion do not represent the variation of amplitude for a given value of Ispec.
The design process should therefore be the following:
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- select an amplitude vi
- select an inversion coefficient IC
- obtain the value of I0 from the graph and from I0critmin = nUT Gmcrit .
- calculate the required value of Ispec = I0/IC.
Part of the curves are missing in the calculation due to the limit of validity

of (6.36), but all curves finally merge at the limit value

|Vin|lim =
8nUT I0

πI0critmin
=

8
π
· I0

Gmcrit
(6.40)

corresponding to a square waveform of the drain currents.
Knowing the voltage amplitude |Vin| across the resonator, the motional

current can be calculated. For Rm � 1/(ωCD) (hence for ML � 1), 1/Zm =
−1/Zc

∼= − jωCD. The motional current is then

Im = Vin/Zm = − jωCDVin. (6.41)

This result can be introduced in (2.23) and (2.24) to obtain the energy of
mechanical oscillation and the power dissipated in the resonator:

Em =
C2

D|Vin|2
2Cm

and Pm =
ωC2

D|Vin|2
2QCm

. (6.42)

In order to avoid clipping the sinusoidal drain voltage, the voltage drop RI0
across the resistors should be larger than half the amplitude |Vin| = k|Vin|lim,
with k ≤ 1 and |Vin|lim given by (6.40). The resistance produces a loss con-
ductance 2GD = 1/R, which must be added to the lossless transconductance
Gmcrit0 according to (6.22). This gives the condition

R ≥ 1
Gmcrit0

(
4k
π

−1

)
, (6.43)

which is easily fulfilled, even with the maximum value of k = 1 (or |Vin| =
|Vin|lim). However, at this limit, the critical transconductance is increased by
a factor close to 5 by the losses due to the resistor. To reduce these losses, the
value of R must be increased much above this limit, at the cost of an increase
of supply voltage VB. In order to limit the excess of transconductance ∆Gmcrit
to a small value α ·Gmcrit0, the voltage drop across R must be increased to

RI0 =
π(1+ α)

4α
· |Vin|lim

2
. (6.44)

For example, for α = 0.1, the voltage drop must be increased to 8.6 times
the maximum amplitude |Vin|lim/2, which requires a large value of supply
voltage VB. This can be avoided by using the practical implementations dis-
cussed in Section 6.2.7.
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6.2.6 Phase Noise

6.2.6.1 Noise Current

The noise analysis of the basic lossless circuit of Fig. 6.1(b) can be carried
out with the equivalent circuit of Fig. 6.7.
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Figure 6.7 Equivalent circuit for the calculation of noise.

Although the circuit is physically symmetrical, the transconductance Gm1
and Gm2 of the transistors vary in opposite phase along each cycle of oscil-
lation. Therefore, their values are not equal. Furthermore, the noise sources
In1, In2, VnG1 and VnG1 are not correlated. Calculations with this circuit give
the cyclostationary noise current flowing through CD:

αiIn =
Gm2In1 −Gm1In2 + Gm1Gm2(VnG1 −VnG2)

(Gm1 + Gm2)+ Gm1Gm2(n/CS −1/CD)/ jωn
. (6.45)

According to (6.6), the equivalent capacitance

Ceq � 1
n/CS −1/CD

=
CD

nCD/CS −1
(6.46)

is always positive for the stable circuit. The corresponding imaginary part in
(6.45) is negligible if

ωnCeq � Gmeq =
Gm1Gm2

Gm1 + Gm2
. (6.47)

or, by using (6.46), (6.10) and (6.7)

ωnCD

nCD/CS −1
� Gmeq =

Gmeq

Gmcrit0
· 2ωC2

D

QCm
=

Gmeq

Gmcrit0
· 2ωCD

ML
. (6.48)

Hence, the imaginary part in (6.45) can be neglected for
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ωn

ω
�

(
nCD

CS
−1

)
· Gmeq

Gmcrit0
· 2

ML
. (6.49)

The right hand term is normally much smaller than unity, therefore this con-
dition is fulfilled even for noise frequencies ωn much lower than the oscilla-
tion frequency ω . The expression (6.45) can then be approximated by

αiIn =
Gm2In1 −Gm1In2 + Gm1Gm2(VnG1 −VnG2)

Gm1 + Gm2
. (6.50)

This approximation corresponds to a worst case, since the imaginary term
would reduce the value of αiIn.

Because of the capacitance CS between the two sources, the transconduct-
ance of the differential amplifier is slightly reduced. Although this effect can
be (and has been) neglected in the calculation of the amplitude, it creates a
phase shift ∆φ between the gate voltages and the drain currents. This phase
shift is given by

tan∆φ =
nGm1Gm2

ωCS(Gm1 + Gm2)
. (6.51)

For small amplitudes, Gm1 = Gm2 = Gmcrit , thus

tan∆φ =
nGmcrit

2ωCS
=

nCD

CS
· 1

ML
· Gmcrit

Gmcrit0
, (6.52)

where the last form has been obtained by introducing the expression (6.10)
of Gmcrit0. This phase shift has a minimum value ∆φ = arctan (1/ML) for
CS = nCD and Gmcrit = Gmcrit0 (no loss in the circuit).

For large amplitudes, ∆φ is variable along each cycle (which means that
it participates to the distortion of the drain currents), but we will use the ap-
proximation of a constant phase shift given by (6.52), which is the maximum
value of (6.51).

6.2.6.2 Phase Noise of the Linear Circuit

If the amplitude is very small, the circuit remains linear, and the phase noise
can be calculated as explained in Section (3.7.1). The noise voltage Vn across
CD is obtained from (6.50) with αi = 1 (stationary noise), VG1 = VG2 = 0
(since the 1/f gate noise voltage cannot be transposed around the oscillation
frequency) and Gm1 = Gm2 = Gmcrit :

Vn =
In1 − In2

2 jωCD
. (6.53)
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If the noise currents are solely the channel noise of the transistors, their
spectra are given by (3.60). The noise spectrum of Vn can then be expressed
as

SV 2
n

= 2kT nγt
Gmcrit

(ωCD)2 = 4kT nγtRm · Gmcrit

Gmcrit0
, (6.54)

where the second form has been obtained by introducing the expression
(6.10) of the critical transconductance for the lossless circuit.

The small-amplitude noise excess factor due to the channel noise of the
active transistors is then obtained by inspection of Fig. 3.7:

γ0 =
SV 2

n

4kT Rm
= nγt

Gmcrit

Gmcrit0
, (6.55)

where Gmcrit/Gmcrit0 is the increase of critical transconductance due to pos-
sible losses.

6.2.6.3 Phase Noise due to White Channel Noise in the Nonlinear Time
Variant Circuit

For a large amplitude of oscillation, the voltage Vin across CD remains ap-
proximately sinusoidal but the drain currents are distorted. From (6.50) and
(3.60), the spectrum of the cyclostationary noise current injected in CD is
then

α2
i SI2

n
=

G2
m2SI2

nD1
+ G2

m1SI2
nD2

(Gm1 + Gm2)2 = 4kT nγt
Gm1Gm2

Gm1 + Gm2
. (6.56)

Notice that the simplification in the second form is made possible by the in-
troduction of the channel noise sources of the two transistors. This is possible
since the values of α2

i corresponding to each source will be simply added in
the calculation of Γ 2

i .
Neglecting the effect of CS, the drain currents in weak inversion can be

expressed as

ID1 =
2I0

1+ evin sinφ and ID2 =
2I0

1+ e−vin sinφ , (6.57)

where vin is the normalized voltage amplitude defined by (6.31) and φ = ωt.
The corresponding transconductances in saturation are thus given by (3.54):

Gm1 =
2I0

nUT (1+ evin sinφ )
and Gm2 =

2I0

nUT (1+ e−vin sinφ )
, (6.58)
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Using (6.33) to replace I0 by I0critmin, these expressions can be introduced in
(6.56), which gives

α2
i SI2

n
= 2γtqI0critmin ·

vin

2fw(vin)︸ ︷︷ ︸
S

I2
n

· 4
2+ evin sinφ + e−vin sinφ︸ ︷︷ ︸

α2
i

. (6.59)

According to (3.34), the mean squared RMS value of the effective impulse
sensitivity function (ISF) is thus, for weak inversion

Γ 2
i = cos2 (φ + ∆φ)α2

i =
1

2π

∫ 2π

0

4cos2 (φ + ∆φ)
2+ evin sinφ + e−vin sinφ dφ , (6.60)

where ∆φ is the phase shift approximated by (6.52). The phase noise spec-
trum is then obtained by introducing the above values of SI2

n
and Γ 2

i in (3.33),
which results in

Sφ 2
n

= Sφ 2
n 0 ·

vin

fw(vin)
·Γ 2

i , (6.61)

where

Sφ 2
n 0 =

γtqI0critmin

2(CD|Vin|)2∆ω2 ·
(

Cm

CD

)2

, (6.62)

or, by introducing (3.54), (6.10) and (2.3), and knowing that CDVin = Im/ω :

Sφ 2
n 0 =

γtnkT ω2

|Im|2Q2Rm∆ω2 ·
Gmcrit

Gmcrit0
. (6.63)

Comparing this result with (3.29) gives the expression (6.55) of the noise
excess factor γ0 for small amplitudes, which was obtained from the linear
model.

For larger amplitudes, according to (6.61), the noise excess factor is

γ = γ0 ·
vin

fw(vin)
·Γ 2

i . (6.64)

This result is plotted in Fig. 6.8 for ∆φ = 0 and ∆φ = 0.4.
As can be seen, in weak inversion γ remains constant with the amplitude

if ∆φ = 0. If ∆φ �= 0, it decreases when the amplitude increases, but only
slightly even for a large phase shift ∆φ = 0.4.

In strict strong inversion the two drain currents are given by (6.34). The
transconductance variations can thus be obtained by introducing these cur-
rents in (3.56), which gives
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Figure 6.8 Variation of the noise excess factor with the drain-to-drain amplitude.
The results for strong inversion are based on the approximation IC = IC0.

Gm1(2) =

√
I0Ispec

nUT

√
1∓mvd sinφ

√
2− (mvd sinφ)2. (6.65)

Thus, from (6.56):

α2
i SI2

n
= 2nγt kT ·

√
I0Ispec

nUT
·α2

i , (6.66)

with

α2
i =

2
1√

1+mvd sinφ
√

2−(mvd sinφ)2
+ 1√

1−mvd sinφ
√

2−(mvd sinφ)2

. (6.67)

We do not have a closed form expression for the variation of I0 with the
amplitude of oscillation. Indeed, both mvd and IC depend on I0 in (6.39). We
shall neglect these dependencies, and approximate IC by IC0.

By using (6.39) to replace I0 by I0crit and (3.56) to express Gmcrit from
I0crit , (6.66) becomes

α2
i SI2

n
=

S
I2
n0︷ ︸︸ ︷

2nkT γtGmcrit

√√
2mvd

fs(mvd)︸ ︷︷ ︸
S

I2
n

α2
i , (6.68)

According to (3.34), the squared RMS value of the effective impulse sens-
itivity function (ISF) is
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Γ 2
i =

1
2π

∫ 2π

0
cos2 (φ + ∆φ)α2

i dφ , (6.69)

where ∆φ is the phase shift between gate voltage and drain current approx-
imated by (6.52).

For small amplitudes, SI2
n

= SI2
n0

, α2
i = 1 and therefore Γ 2

i = 0.5. Intro-

ducing these values in (3.33) gives, as could be expected, the phase noise
spectrum Sφ 2

n 0 obtained for weak inversion and by given (6.63), and the noise
excess factor γ0 given by (6.55).

For large amplitudes:

γ = γ0 ·2

√√
2mvd

fs(mvd)
·Γ 2

i . (6.70)

This variation of γ is also plotted in Fig. 6.8 for various values of IC0, using
the definition (6.35) of mvd (with the approximation IC = IC0).

These results do not include the additional noise due to the biasing cir-
cuitry and to losses. But they already include in γ0 the increase of transcon-
ductance Gmcrit/Gmcrit0 due to losses.

6.2.6.4 Phase Noise Due to 1/f Flicker Noise

According to the simple model introduced in Section (3.8), the flicker noise
of each of the two transistors can be modelled by a noise voltage VnG, with a
spectral density given by (3.62).

The expression (6.45) of the noise current flowing through CD shows that
the function weighting the noise voltages VnG1 and VnG2 is symmetrical with
respect to Gm1 and Gm2. For this reason the mean value of the ISF given
by (3.34) is zero. Hence, no 1/f noise is transferred around the oscillation
frequency if the noise source is a bias independent noise voltage at the gates
(which corresponds to a drain current noise spectral density proportional to
the square of the transconductance).

But this model is an approximation. Let us introduce a more general model
by defining a drain current noise spectral density

SI2
nD1/ f =

Fa

ωn

(
Gm

Ga

)a

, (6.71)

where Ga is the value of Gm for which the spectrum density has the value
Fa/ωn. Considering the noise of transistor T1 only, the resulting cyclosta-
tionary noise spectrum is then, from (6.50):
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α2SI2
n
=

(
Gm2

Gm1 + Gm2

)2 Fa

ωn

(
Gm1

Ga

)a

. (6.72)

In weak inversion, the transconductance is given by (6.58) or, by using
(6.33) to replace I0 by its critical value I0critmin = nUT Gmcrit :

Gm1 =
2Gmcrit

1+ evin sinφ · vin

2fw(vin)
and Gm2 =

2Gmcrit

1+ e−vin sinφ · vin

2fw(vin)
. (6.73)

Introducing these expressions in (6.72) yields

α2SI2
n
=

Fa

ωn

(
2Gmcrit

Ga

)a (
vin

2fw(vin)

)a

︸ ︷︷ ︸
Kfi/ωn

(
1+ evin sinφ)2−a

(2+ evin sinφ + e−vin sinφ )2

︸ ︷︷ ︸
α2

i

, (6.74)

where Kf i/ωn is the power spectrum of a fictitious source of stationary flicker
noise current.

The average value of the effective ISF is thus

Γi = αi cos (φ + ∆φ) =
1

2π

∫ 2π

0

(
1+ evin sinφ)1−a/2

cos (φ + ∆φ),
2+ evin sinφ + e−vin sinφ dφ .

(6.75)
which is equal to zero for ∆φ = 0. Using the decomposition cos (φ + ∆φ) =
cosφ cos∆φ − sin φ sin∆φ , the dependency on ∆φ can be made more expli-
cit:

Γi =
−sin∆φ

2π

∫ 2π

0

(
1+ evin sinφ)1−a/2

sin φ
2+ evin sinφ + e−vin sinφ dφ . (6.76)

For a very small amplitude vin � 1, this ISF becomes

Γi0 = −1−a/2

23+a/2
vin sin∆φ . (6.77)

Furthermore, for very small amplitudes 2fw(vin) = vin, thus from (6.74):

Kf i0 = Fa

(
2Gmcrit

Ga

)a

. (6.78)

The phase noise spectrum for very small amplitude is then obtained by in-
troducing (6.77) and (6.78) in (3.36) with Ci = CD and Vi = Vin, which gives

Sφ 2
n 0 = 2

(
(1−a/2)Cm sin∆φ

8nUTC2
D

)2 (Gmcrit/Ga)aFa

∆ω3 , (6.79)
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where a factor 2 has been introduced to include the noise of the second
transistor T2. This result can be further simplified by using the expression
(6.10) of the lossless critical transconductance Gmcrit0 = I0crit0/(nUT ), which
yields:

Sφ 2
n 0 =

(
(1−a/2)ω sin∆φ

QI0critmin0

)2 (Gmcrit/Ga)aFa

8∆ω3 , (6.80)

where I0critmin0 is the critical bias current for the lossless circuit. Notice that
if the flicker noise of the transistor is characterized at the critical transcon-
ductance, then Ga = Gmcrit and the expression is further simplified.

As could be expected, the phase noise cancels for a = 2, which corres-
ponds to the model (3.62) that assumes a bias-independent noise voltage at
the gate. This situation is approached when the transistors operate at the up-
per limit of weak inversion [18].

For large amplitudes, Kf i0 is multiplied by [vin/(2fw)]a according to (6.74)

and Γi0 is replaced by Γi given by (6.76). Thus:

Sφ 2
n

= Sφ 2
n 0

(
Γi

Γi0

)2 (
vin

2fw(vin)

)a

. (6.81)

This variation is represented in Fig. 6.9 for several values of a.
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Figure 6.9 Variation of the 1/∆ω3 noise due to flicker noise with the amplitude
(transistors in weak inversion). The noise spectrum for very small amplitudes Sφ 2

n 0
is given by (6.80). The parameter a defined in (6.71) represents the dependency of
the drain current flicker noise on the transconductance.
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Now, it should be remembered that these results for flicker noise are based
on the expression (6.50) of the cyclostationary noise, in which the imaginary
part of the full expression (6.45) has been neglected. For frequencies ωn that
are to small to fulfill condition (6.49), the noise is reduced, thus the phase
noise spectrum stops increasing with 1/∆ω3.

6.2.7 Practical Implementations

To avoid the need to increase the supply voltage in order to reduce the losses,
the parallel resonance oscillator can be biased as illustrated in Fig. 6.10(a).
The biasing resistors are replaced by current sources I0 and the common-
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Figure 6.10 Practical biasing of the parallel resonance oscillator.

mode drain voltage of the active transistors Ta is controlled by a feedback
loop through the biasing transistors Tb. The role of the resistors is to ex-
tract this common-mode voltage, hence their value can be very large without
increasing the minimum supply voltage. At the DC bias point, the two tran-
sistors Ta and Tb in series are equivalent (by symmetry) to a single transistor
having is gate connected to its drain. Hence, the common mode voltage is
the gate voltage corresponding to a drain current equal to I0.

Now, transistors Tb are not saturated since they have the same gate voltage
as Ta. According to (3.50) and (3.40), their drain (trans)conductance is pro-
portional to the source transconductance of the active transistors:
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Gmdb = Ks ·Gmsa with Ks �
Ispecb

Ispeca
, (6.82)

since the drain voltage of Tb is the source voltage of Ta. This drain con-
ductance corresponds to a loss conductance GS = Gmdb/2 in parallel with
CS. But this loss conductance is now proportional to the transconductance
Gm = Gmsa/n of the active transistors, with the consequence that the locus
of Zc(Gm) is no longer a circle. This locus can be computed by introducing

1/ZS = jωCS + KsnGm/2 (6.83)

in the expression (6.11) of the circuit impedance. The result is illustrated in
Fig. 6.11 for two values of the ratio Ks of specific currents. As can be seen,
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Figure 6.11 Normalized locus of circuit impedance Zc(Gm) for the oscillator of
Fig. 6.10(a), with negligible losses due to resistors R. The locus for the lossless
circuit is shown in dotted line.

the losses due the biasing transistors Tb are negligible for small values of
the transconductance Gm, but the loci depart from the lossless case when Gm

increases. For this particular (but typical) case with n = 1.3 and CS = CD, the
maximum value of negative resistance is not reduced for Ks = 0.01, but it is
reduced by about 50% for Ks = 0.1.

Now, for the calculation of the loci shown in Fig. 6.11 the value of resistor
R was assumed to be very large. But to maintain a stable bias point this value
has an upper limit. Indeed, because of the DC path provided by transistors
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Tb, the circuit can become bistable. The active transistor Ta has its source
degenerated by the drain (trans)conductance of Tb given by (6.82), hence its
equivalent gate transconductance at low frequencies is

Gmequ =
GmsaGmdb

n(Gmsa + Gmdb)
=

Gm

1+ 1/Ks
. (6.84)

Bistability is avoided if the voltage gain GmequR of each branch is smaller
than unity, which results in the following condition for stability of the bias
point:

R <
1+ 1/Ks

Gmmax
, (6.85)

where Gmmax is gate transconductance of Ta alone obtained at the maximum
value of bias current I0. Hence, Ks must be very small to limit the losses due
to R, especially if I0 � I0crit at start-up.

To avoid using resistors, the gates of the biasing transistors Tb can be
connected as shown in Fig. 6.10(b) [25]. The DC bias point remains the
same, since by symmetry the two drains are at the same (common mode)
potential. But the transistors Tb are now active, with a gate transconductance
Gmb. The circuit impedance without the parallel capacitance CD becomes

Zc0 =
1+ Ks + 2

nGmZS

Gmb
2 − 1

nZS
− KsGm

2

. (6.86)

Now, the relationship between Gmb and the gate transconductance Gm of
the main active transistors depends on their mode of operation. Knowing that
Ta and Tb have the same gate voltage with Ta saturated, their components of
drain current can be expressed as

IRb = KsIFa = KsI0 and IFb = I0 + IRb = (1+ Ks)I0. (6.87)

If both transistors are in strong inversion, the corresponding values of gate
transconductance are obtained from (3.53) and (3.51):

Gm =

√
I0Ispeca

nUT
and Gmb =

√
I0Ispecb

(√
1+ Ks−

√
Ks

)

nUT
, (6.88)

and their ratio is

Gmb

Gm
=

√
Ks(1+ Ks)−Ks (in strong inversion). (6.89)



160 6 Alternative Architectures

This ratio tends to
√

Ks for Ks � 1 and never exceeds 0.5.
The introduction of (6.89) in (6.86) gives Zc0(Gm), which can be com-

bined with ZD according to (6.11) to obtain the full circuit impedance
Zc(Gm). The analytical result is too complicated to be expressed, but the nu-
merical calculation can be carried out step by step. The result for the lossless
case (GD = GS = 0) is plotted in full lines in Fig. 6.12(a) for two values of
the ratio Ks of specific currents.
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Figure 6.12 (a) Normalized locus of circuit impedance Zc(Gm ≥ 0) for the oscil-
lator of Fig. 6.10(b); full lines: for all transistors always in strong inversion; dotted
lines: for all transistors always in weak inversion. The circular lossless locus for the
basic circuit of Fig. 6.1(b) is shown in fine dotted line for comparison. (b) Variation
of the real and imaginary parts with the normalized transconductance.

Compared to the circular locus of the basic circuit (shown in fine dot-
ted line), the maximum negative resistance is reduced by the activity of the
biasing transistors.

If the transistors are in weak inversion, the gate transconductance only
depends on the total drain current that is the same for the two transistors,
hence Gmb ≡ Gm. The degradation is increased due to the larger Gmb, as
shown by the corresponding results in dotted lines. However, as can be seen
in part (b) of the figure, as long as the negative resistance Rn = −Re(Zc)
is much smaller than its maximum value, it always depends linearly on the
transconductance with

Rn = − Gm

2(ωCD)2 , (6.90)
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thereby resulting in the critical condition for oscillation Gmcrit0 for the
lossless circuit given by (6.10).

Furthermore, for |Rn| � |Rn|max, the imaginary part remains close to -1,
thus the expression (6.17) of the frequency pulling is not affected.

Now, the plots of Fig. 6.12 have been obtained by assuming the all tran-
sistors are always in weak or in strong inversion. In reality, all transistors
are in weak inversion at very low currents (i.e. for very low values of the
transconductance), and all transistors are in strong inversion for very high
currents. The transition occurs at a level of current that depends on the spe-
cific currents Ispeca and Ispecb, according to the general equation (3.50) for
the transconductance. No analytical expression of Zc(Gm) can be found in
the general case.

��
��*

?�	3

�&�

�&�

+�#�&� ��
��*

��
��*

?�	3

?�	3

�&�
�&�

+��#�

�&�

�&�

� � � � � '�

�

��&�

��&,

��&�

��

��

��

��

�'

)�
�	�������
	��
����
�	�
��
���

ω�;

ω�;!���
�

ω�; ���
�

��	���ω�;�


�)�#�&��
�$#�;
+�#�&��

�	� ������

��

��

��

��

+��#�

Figure 6.13 (a) Normalized locus of circuit impedance Zc(Gm ≥ 0) for the oscil-
lator of Fig. 6.10(b) with transistors Ta in weak inversion and Tb in strong inversion
characterized by parameter Kl (defined by (6.92)). Curves in dotted lines are for the
asymptotic cases of all transistor in weak and in strong inversion. (b) Variation of
the real and imaginary parts with the normalized transconductance.

To minimize the value of the critical bias current I0crit , the active tran-
sistors Ta must be operated in weak inversion, whereas the biasing transist-
ors Tb should be in strong inversion to reduce their transconductance. Their
transconductance given by (6.88) can then be expressed as a function of the
main transconductance Gm = I0/(nUT :
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Figure 6.14 Parallel resonance oscillator with amplitude regulation.

Gmb

ωCD
=

√
Kl ·

√
Gm

ωCD

(√
1+ Ks−

√
Ks

)
, (6.91)

where Kl is a parameter defined by

Kl �
Ispecb

ωCDnUT
(6.92)

that characterizes the level of the specific current.
This new expression of Gmb can again be combined with (6.86) and (6.11)

to obtain Zc(Gm). An example with Ks = 0.01 and several values of Kl is
illustrated in Fig. 6.13. The results are between the extreme cases of weak
and strong inversion for both transistors.

The amplitude of oscillation can be regulated by delivering the bias cur-
rent from the regulator discussed in Section (5.2). A more compact solution
is depicted in Fig. 6.14 [25].

Two pairs of transistors matched to the main pairs Ta −Tb have been ad-
ded. The same current I0 flows through all four branches. The common mode
voltage of the main pairs is extracted by transistors Tr1 and Tr2 matched to
their biasing transistor Tcr.

The pair Ta3 −Tb3 is identical to the main pair. Hence, in absence of os-
cillation, all four gates nodes G1 to G4 are at the same potential. But the
specific currents of the transistors of the fourth pair are Kw times larger than
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those of the main pair, which must be compensated by a voltage drop RI0
across resistor R.

If all pairs are in weak inversion, a stable solution without oscillation is
reached as in the regulator of Section (5.2) for

I0 = I0start =
UT

R
lnKw. (6.93)

If this current is larger than the critical current, the oscillation starts growing,
but unlike for the single transistor of the Pierce oscillator, the common mode
voltage remains essentially constant at constant I0. Hence no amplitude reg-
ulation would occur if the common mode would be extracted by linear res-
istors instead of transistors. But the nonlinearity of the transistor produces a
voltage drop at the node G4 given by (5.41) with |V2| = 0 and |V1| replaced
by |Vin|/2:

∆VG0 = −UT ln [IB0(|Vin|/2UT)]. (6.94)

The transfer function of the regulator is then obtained by adding ∆VG0/n to
UT lnKw in the expression (6.93) of the current, which yields:

I0

I0start
= 1− ln [IB0(|Vin|/2UT)]

n lnKw
, (6.95)

where |Vin| is the gate to gate amplitude of oscillation. This function is plotted
in Fig. 6.15 for several values of ratio Kw.
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Figure 6.15 Regulation curves for the circuit of Fig. 6.14 with all transistors oper-
ated in weak inversion. The small drain voltage shift due to the distortion of drain
current is neglected.
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The loss conductance due to transistors Tr (for the fundamental fre-
quency) can be obtained as discussed in Section 5.1.5, with Vin/2 across
each transistor:

G1 ≡ G(1) = G0
2IB1(|Vin|/2UT)

|Vin|/2UT
. (6.96)

With the specific current of the biasing transistor Tcr Kr-times larger than that
of one of the transistors Tr, the small-signal value G0 of this loss conductance
is now

G0 =
I0

2KrUT
. (6.97)

6.3 Symmetrical Oscillator for Series Resonance

6.3.1 Basic Structure

The basic symmetrical oscillator circuit intended for series resonators is
shown in Fig. 6.16(a). It is based on a current stable negative resistance
circuit developed for vacuum tubes (Fig. 69e, page 82 of [15]). A ver-
sion with bipolar transistors was used in early developments of electronic
watches [26]. Each of the two cross-coupled transistors is biased by a cur-
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Figure 6.16 Symmetrical oscillator for series resonator; (a) complete oscillator; (b)
negative resistance circuit without bias sources; (c) small-signal general equivalent
circuit.
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rent source I0 and is loaded by a resistor of value RL/2. As long as the circuit
remains symmetrical, the effect of all capacitors at the drains can be repres-
ented by a single load capacitance CL between the two drains. The resonator
connects the sources of the two transistors. The transistors are assumed to be
in the same local substrate.

6.3.2 Linear Analysis

6.3.2.1 Circuit Impedance in the General Case

To calculate the small-signal circuit impedance Zc, the circuit may be repres-
ented as in Fig. 6.16(b), after removing the biasing elements. Capacitance CP
is the capacitance C0 of the quartz resonator considered as a dipole defined
by (2.1), augmented by the parasitic capacitors in the circuit.

At frequencies for which the capacitors can be neglected, the circuit im-
pedance is easily calculated to be

Zc|ω=0 =
2−GmRL

Gms
=

1
n
(2/Gm −RL), (6.98)

where Gms is the source transconductance, which is n times larger than the
gate transconductance Gm, according to (3.55). Hence, unlike the Pierce os-
cillator, this circuit provides a DC negative resistance. It becomes DC un-
stable, that is bi-stable, when it is connected to a resistor of value smaller
than this negative resistance.

But it can also become AC unstable, i.e. an oscillator, when it is connected
to the sole capacitance CP. The AC circuit impedance Zc0 without CP is given
by

Zc0 =
2−GmZL

Gms
=

1
n
(2/Gm −ZL), (6.99)

where the load impedance ZL including CL can be expressed as

ZL =
RL − jωCLR2

L

1+(ωCLRL)2 . (6.100)

Thus

Zc0 =
2

nGm
− RL/n

1+(ωCLRL)2 + j
ωCLR2

L/n
1+(ωCLRL)2 . (6.101)

When CP is connected, an oscillation can occur at the frequency for which
Im(ZC0) = 1/(ωCP), that is for
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ω2 =
1

CLR2
L(CP/n−CL)

. (6.102)

this frequency does not exist if

CL > CP/n, (6.103)

which is a sufficient condition to avoid this parasitic oscillation. But this
condition is not absolutely necessary, since the real part of Zc0 in (6.101)
must be negative at the frequency given by (6.102). This requirement gives
the following necessary condition for no parasitic oscillation:

CL >
CP

n

(
1− 2

RLGm

)
, (6.104)

which is reduced to (6.103) for RLGm � 1.
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Figure 6.17 Loci of circuit impedance Zc/RL for ωRLCP = 0.3 and n = 1.3. Notice
that CL/CP = 0 will produce a parasitic oscillation whereas CL/CP = 1/n corres-
ponds to the sufficient condition (6.103) for no parasitic oscillation.

Adding the impedance ZP of the parallel capacitor CP (with possible
losses) in parallel with Zc0 gives the overall circuit impedance

Zc =
ZP(2−GmZL)

2+ Gm(nZP −ZL)
, (6.105)
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which corresponds to the equivalent circuit of Fig. 6.16(c). It is a bilinear
function of the transconductance Gm. The corresponding circle in the com-
plex plane is plotted in Fig. 6.17 for particular values of ωRLCP and slope
factor n, and for various values of the capacitance ratio CL/CP.

6.3.2.2 Particular Case with CL = CP/n

The analytic expressions of the real and imaginary parts of Zc are complic-
ated, but they can be simplified for the particular (and realistic) case for
which the sufficient condition (6.103) is just fulfilled, i.e. for CL = CP/n.
All the following derivations will be made with this assumption.

The results are then

Re(Zc) =
1

ωCP
· AB(2B + 2/B−A)

4+(2B−A)2 (6.106)

Im(Zc) =
1

ωCP
· 4(AB−B2−1)

4+(2B−A)2 , (6.107)

where

A � Gm

ωCL
=

nGm

ωCP
and B � ωCLRL = ωCPRL/n. (6.108)

The locus of the normalized circuit impedance for positive values of
transconductance Gm is plotted in Fig. 6.18 for various values of B (thus
of RL for ωCP/n constant). This locus is a circle of radius (1+ B2)/2 that is
always centered on the imaginary axis.

For Gm = 0 the transistors are not active and the impedance is that of the
parallel capacitance CP.

The value of transconductance needed to obtain a negative resistance is
obtained from (6.106):

Gm > Gmlim =
2(1+ B2)

RL
=

2ωCP

n
(B + 1/B). (6.109)

The imaginary part of Zc at the limit of negative resistance (for Re(Zc) = 0)
is

Im(Zc)lim = Im(Zc)|Re(Zc)=0 =
B2

ωCP
= BRL/n. (6.110)

Eliminating B between these two equations gives
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Figure 6.18 Locus of the normalized circuit impedance ωCPZc for several values
of B = ωCPRL/n. The locus of −Zm(p) for a particular value of motional resistance
Rm is represented in dotted line.

Gmlim =
2ωCP

n

(√
ωCPIm(Zc)lim +

1√
ωCPIm(Zc)lim

.

)
. (6.111)

If the maximum value of negative resistance (−Rn)max is much larger than
the motional resistance Rm of the resonator (as depicted in dotted line in
Fig. 6.18), that is if

B � ωCPRm = 1/MD (6.112)

(with MD defined by (2.22)), then the imaginary part of Zc can be approxim-
ated by (6.110). According to (4.3), the amount of frequency pulling at the
critical condition for oscillation is then

pc
∼= − Cm

2CP
B2. (6.113)

The comparison with (4.21) shows that CP/B2 plays the same role as Cs +
C3 in the Pierce oscillator. But B depends on a resistance, which is usually
much less precise and stable with the temperature than a capacitor in an
integrated circuit. Another important difference is that pc is now negative:
the frequency of oscillation is lower than the mechanical resonant frequency
of the resonator.

For Gm very large, (6.106) gives:
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Zc|Gm=∞ = − B
ωCP

= −RL/n. (6.114)

This is the maximum possible value of negative resistance that can be ob-
tained for B ≤ 1. But for B > 1, a larger negative resistance can be obtained,
corresponding to the radius (1 + B2)/2 of the circle, as can be observed in
Fig. 6.18:

(−Rn)max =
1+ B2

2ωCP
=

B + 1/B
2n

RL (for B > 1) (6.115)

for a value Gmopt of the transconductance given by

Gmopt =
ωCP

n
· 2(B2 + 1)

B−1
. (6.116)

For Gm > Gmopt , the slope of the locus becomes negative, and no stable solu-
tion exists, as was the case for solution B in Fig. 4.4. Therefore, the only use-
ful range of transconductance for B > 1 is between Gmlim given by (6.109)
and Gmopt .

The critical transconductance for oscillation is the value of Gm for which
Re(Zc) = Rn = −Rm. It is obtained by solving (6.106) with respect to A =
nGm/(ωCP). This gives:

Gmcrit =
ωCP

n
· 1+ B2 −2BωCPRm +

√
(1+ B2)2 − (2ωCPRm)2

B−ωCPRm
. (6.117)

This critical transconductance can also be expressed as

Gmcrit = Gmlim + ∆Gm(Rm). (6.118)

For Rm � (−Rn)max, ∆Gm can be approximated linearly by

∆Gm
∼=

2ω2C2
P

nB2 Rm =
2nRm

R2
L

=
ωCP

n
· 1

Q|pc|
, (6.119)

where |pc| has been obtained from (6.113). The combination of (6.118),
(6.109) and (6.119) gives an approximation of the critical transconductance

Gmcrit
∼= 2ωCP

n

(
B +

1
B

+
1

2Q|pc|

)
. (6.120)

It is worth noticing that, as long as Q|pc| is sufficiently large, it has no effect
on the critical transconductance:
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Gmcrit = Gmlim =
2ωCP

n
(B + 1/B) for 2Q|pc| �

B
1+ B2 . (6.121)

Unlike for the Pierce oscillator (see (4.26)), the critical transconductance is
not reduced by a large value of quality factor Q. But it still depends on pc

through the design parameter B (i.e. through the choice of load resistance
RL).

The dependency of the various important values discussed above on the
parameter B is plotted in Fig. 6.19.
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Figure 6.19 Normalized values of Gmlim, −Rn/∆Gm, Im(Zc) at Gmlim (thus for
Rn = 0), (−Rn)max and Gmopt as functions of parameter B.

For a fixed value of parallel capacitance CP, the limit value Gmlim of the
transconductance has a minimum for B = 1:

Gmlimmin
= 4ωCP/n = 4/RL for B = 1. (6.122)

For B > 1 the imaginary part of Zc increases dramatically, thereby in-
creasing the amount of frequency pulling given by (6.113). The only reason
to choose B > 1 would thus be to produce a very large value of negative
resistance, at the cost of an increase transconductance and an increase of pc.

As already pointed out, B = 1 corresponds to a minimum value of limit
transconductance Gmlim. The corresponding locus of Zc(Gm) is illustrated in
Fig. 6.20(a) with the real and imaginary parts in Fig. 6.20(b).

The exact critical transconductance given by (6.117) becomes

Gmcrit |B=1 =
2ωCP

n

(
1+

√
1+ ωCPRm

1−ωCPRm

)
, (6.123)
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Figure 6.20 Normalized circuit impedance ωCPZc for CL = CP/n and minimum
limit transconductance (B = 1). The approximation (6.120) of Gmcrit (Rn) is also
shown in dotted line.
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Figure 6.21 Normalized circuit impedance ωCPZc for CL = CP/n and B = 0.5.

and the exact amount of frequency pulling obtained by introducing (6.107)
in (4.3) with B = 1 is

pc|B=1 = − Cm

2CP

√
1− (ωCPRm)2. (6.124)

For B < 1, The maximum negative resistance is decreased according to
(6.114). The imaginary part of Zc decreases rapidly with B (thereby decreas-
ing the amount of frequency pulling pc), at the cost of an increase of the
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necessary value of transconductance. But this increase can be small for a
large reduction of |pc|. For example, choosing B = 0.5 results in just a 25%
increase of Gmlim whereas pc is decreased by a factor 4. This particular case
in illustrated in Fig. 6.21.

6.3.2.3 Relative Oscillation Currents

At the critical condition for oscillation, the frequency pulling is approxim-
ately given by (6.113). Thus the motional impedance expressed by (2.8) be-
comes

Zm|p=pc = Rm − j
B2

ωCP
= Rm(1− jMDB2), (6.125)

where MD is the factor of merit defined by (2.22).
The AC component of drain current I1 is split between the motional cur-

rent Im and the current IP through the parallel capacitance CP according to

IP

Im
= jωCPZm = B2 +

j
MD

∼= B2, (6.126)

and the AC component of drain current I1 is related the motional current Im

by
I1

Im
= 1+ jωCPZm = (1+ B2)+

j
MD

∼= (1+ B2). (6.127)

6.3.3 Nonlinear Analysis

As soon as the transconductance Gm exceeds the critical value given by
(6.117) (or by its approximation (6.120)), the amplitude of oscillation grows.
The drain current of each transistor can then be expressed as

ID = I0 + I1, (6.128)

where I0 is the DC component imposed by the biasing current source, and I1
is the AC oscillatory current.

According to (6.126), if B � 1 and MD � 1 most of the AC current
I1 flowing through the transistors is the motional current of the resonator.
Hence I1 remains approximately sinusoidal. Therefore the gate voltage re-
mains also sinusoidal, but the source voltage VS is distorted by the nonlinear
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transfer function of the transistors. The effective transconductance is reduced
and more bias current I0 is needed to further increase I1, until it reaches its
maximum value equal to I0 (100% modulation of bias current I0).

The variation of the amplitude of oscillation with the bias current can
be obtained by an approach similar to that used for the Pierce oscillator in
Section 4.3.3. However, the source of the transistor is not grounded and the
drain current is modulated by gate and source voltage variations. According
to (3.40), the drain current in saturation depends on a control voltage

Vc � VG −VT0 −nVS (6.129)

of normalized amplitude

vc � |Vc|
nUT

(6.130)

The corresponding transconductance is equal to the gate transconductance
at the same value of current:

dID

dVc
=

dID

dVG
= Gm (6.131)

Let us assume that the AC component of drain current is perfectly sinusoidal,
with

ID = I0(1+ mi sinΦ), (6.132)

where
mi � |I1|/I0 (6.133)

is the index of current modulation.
The value of Gm for the fundamental frequency can be expressed as

Gm(1) =
|I1|

|Vc(1)|
=

miI0

nUT vc(1)
, (6.134)

where |Vc(1)| is the amplitude of the fundamental component of Vc and vc(1)
its value normalized to nUT . Stable oscillation is obtained when Gm(1) equals
the critical value of Gm

Gmcrit =
I0critmin

nUT
, (6.135)

where I0critmin is the minimum possible value of I0 needed to produce Gmcrit
(that is in weak inversion). Equating (6.134) with (6.135) yields

I0

I0critmin
=

vc(1)

mi
. (6.136)
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In weak inversion, the saturation drain current ID = IF given by (3.42) can
be rewritten

ID = Ispec exp(vc) or vc = ln
ID

Ispec
= ln

I0

Ispec
+ ln(1+ mi sinφ) (6.137)

The fundamental component of vc is thus given by

vc(1) =
1
π

∫ 2π

0
ln(1+ mi sinΦ)sin Φ ·dΦ . (6.138)

Introducing this result in (6.136) yields the relation between the bias current
I0 in weak inversion and the index of modulation mi. It is plotted in Fig. 6.22.
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Figure 6.22 Index of current modulation as a function of the bias current. The para-
meter IC0 is the inversion coefficient at the critical bias current I0crit . Circles are
simulation results of |Im|/I0 in weak inversion, showing that, except for B � 1, the
distortion of the drain current cannot be neglected when saturation is approached.

In strong inversion, the saturation drain current ID = IF given by (3.43)
can be written

ID = Ispec

(vc

2

)2
or vc = 2

√
ID

Ispec
. (6.139)

As for the Pierce circuit, the level of inversion can be characterized by the
inversion coefficient at the critical current for oscillation:
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IC0 � I0crit

Ispec
(6.140)

The fundamental component of vc can then be expressed as

vc(1) =

√
I0

I0crit
IC0 ·hs(mi), (6.141)

with

hs(mi) =
2
π

∫ 2π

0

√
(1+ mi sinΦ) · sinΦ ·dΦ (6.142)

According to (3.56), the critical current in strong inversion is related to its
minimum value (reached in weak inversion) by

I0crit = I0critmin

√
IC0, (6.143)

therefore (6.141) becomes

vc(1) =

√
I0

I0critmin
· 4
√

IC0 ·hs(mi), (6.144)

Introducing this result in (6.136) and solving for I0/I0critmin gives finally

I0

I0critmin
=

√
IC0 ·

(
hs(mi)

mi

)2

, (6.145)

which is plotted in Fig. 6.22 for several values of IC0. As can be seen in
this figure, |I1| saturates to the value I0 for I0 >

√
2I0crit (slightly more in

weak inversion). But a part of I1 flows through the load capacitor CL and the
voltage amplitude at the drain is limited to

|VD(1)| =
RLI0

2
√

1+ B2
. (6.146)

Similarly, a part of I1 is diverted from the resonator itself to flow through the
parallel capacitor CP, according to (6.127).

But it must be remembered that this calculation of the amplitude is only
an crude approximation, since it is based on the assumption that the AC
component I1 of drain current is perfectly sinusoidal. In reality, when the
source voltage is distorted, harmonic components of current can flow through
the parallel capacitance CP and the drain current is distorted.

In practice, except for B � 1, nonlinear effects cannot be neglected when
|I1| reaches its assumed saturation value I0. This is illustrated by the simu-
lation results of |Im|/I0 (for |Rn| � RL) represented by circles in Fig. 6.22.
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According to (6.127), |Im| ∼= |I1| for the values of B used in the simulation
(negligible current in CP). It should therefore saturate at I0. However, when
saturation is approached, the drain current tends to become a square wave of
amplitude I0, therefore the maximum value of its fundamental components
tends to 4/π · I0.

For values of B approaching unity, nonlinear effects must be analyzed by
the general technique introduced in Chapter 3. An example of such an ana-
lysis is depicted in Fig. 6.23 for the case of B = 1 (with CL slightly larger than
CP/n). From (6.109), the minimum transconductance producing a negative
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Figure 6.23 Measurement of Zc(1)(|Ic|) in a simulated circuit with B = 1. The bias
current I0 is kept constant at a value much larger than its limit for negative resistance.

resistance is 2 µA/V, which corresponds to a limit bias current I0lim= 63nA.
With I0 = 200nA applied in this example, the negative resistance is reduced
abruptly when the sinusoidal current |Ic| reaches 127nA, corresponding to
its saturation value. Compared to the linear case, the imaginary part of Zc(1)
is reduced by about 10%.

The variations of Im(Zc(1)) with the normalized bias current I0/I0lim for
Re(Zc(1))

∼= 0 has been simulated for the same circuit, by connecting it to
a motional impedance with Rm = 0. The result is shown in dotted line in
Fig. 6.24.

For I0 < 7I0lim, the reduction of |Zc(1)| is smaller than 10%. With the mo-
tional capacitance Cm = 2.1 fF of Example 1 in Table 4.1, this would cor-
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Figure 6.24 Measurements of Zc(1)(I0) and |Ic|(I0) in the simulated circuit of
Fig. 6.23(b).

respond to a maximum variation of frequency pulling of 3.5 · 10−5. It starts
changing more drastically for larger values of I0.

The same figure shows the variation of the sinusoidal current |Ic| = |Im|
with the bias current. The ratio |Ic|/I0 reaches a first plateau that is about
4/π higher than what would be calculated by (6.127) for a sinusoidal drain
current of amplitude |I1| = I0, before further increasing.

6.3.4 Phase Noise

6.3.4.1 Noise Voltage

The effect of the channel noise can be analyzed by means of the equival-
ent circuit of Fig. 6.25. Besides the channel noise sources InD1 and InD1 of
the two transistors, the thermal noise current InR of the load resistance is in-
cluded. Calculations on this circuit for the limit case CP = nCL yields the
cyclostationary noise voltage across the motional impedance Zm:

αvVn =
1
n
· RLInR +(1+ jBn)(InD1/Gm1 − InD2/Gm2)

(1− xB2
n)+ jxBn

, (6.147)

where Bn is the value of B defined in (6.108) with ω replaced by ωn, the
frequency at which the noise is considered. The local variable x is defined by

x � 1
RL

(
1

Gm1
+

1
Gm2

)
(6.148)
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Figure 6.25 Equivalent circuit for noise calculation of the series resonance oscil-
lator.

It varies periodically along each cycle of oscillation.
Using the expression (3.60) of the spectrum of InD, the spectrum of this

cyclostationary voltage is then

α2
v SV 2

n
=

4kT RL

n2 · 1+(1+ B2
n)nγt x

B2
nx2 +(1−B2

nx)2 , (6.149)

6.3.4.2 Phase Noise of the Linear Circuit

For very small amplitudes, the circuit remains linear and only noise frequen-
cies close to the oscillation frequency have to be considered, thus αv = 1,
Gm1 = Gm2 = Gmcrit and Bn = B. After approximating Gmcrit by Gmlim given
by (6.109), the voltage noise spectral density becomes

SV 2
n0

= 4kT RL
1+ nγt

n2 (1+ B2). (6.150)

According to Fig. 3.7, the phase noise excess factor at very small amplitudes
is obtained after division of the thermal noise spectrum of Rm:

γ0 =
1+ nγt

n2 (1+ B2)
RL

Rm
, (6.151)

showing that γ0 is minimum for B small and for RL close to Rm.
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6.3.4.3 Phase Noise due to White Noise in the Nonlinear Time Variant
Circuit

The calculation of phase noise for large amplitudes is made complicated
by the fact that the spectrum of the cyclostationary noise voltage expressed
by (6.149) depends on Bn, i.e. on the frequency ωn at which the noise is
considered. Furthermore, this spectrum depends on the value of x that varies
along each cycle with Gm1 and Gm2, according to (6.148). This variation is
illustrated by Fig. 6.26.
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Figure 6.26 Spectrum of the cyclostationary noise for various values of x.

To render the problem tractable analytically, we shall assume that the
spectrum remains constant at its value at the oscillation frequency by re-
placing Bn by B. As can be seen in the figure, this approximation is only
valid for ωn � ω/B and x not too large. This domain of validity includes
noise frequencies above ω only if B � 1 and mi not to close to unity (since
the peaks of x tend to infinity when mi approaches unity).

The spectrum (3.60) of the cyclostationary voltage is thus approximated
by

α2
v SV 2

n
=

4kT RL

n2︸ ︷︷ ︸
S

V 2
n

· 1+(1+ B2)nγt x
B2x2 +(1−B2x)2
︸ ︷︷ ︸

α2
v

, (6.152)

where SV 2
n

is the spectrum of a fictitious noise voltage modulated by αv.
If the transistors operate in weak inversion, the transconductance is given

by (3.54) and varies cyclically with the drain current according to (6.132):
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Gm1,2 =
I0

nUT
(1±mi sinφ) = Gmcrit ·

vc(1)

mi
(1±mi sinφ), (6.153)

where the second form has been obtained by using (6.136) to replace I0 by
its critical value, with vc(1) given by (6.138).

As done previously, the critical transconductance Gmcrit can be approxim-
ated by the limit value Gmlim given by (6.109). The local variable x defined
by (6.148) then becomes

x =
1

1+ B2 ·
mi

vc(1)
· 1

1−m2
i sin2φ

(6.154)

and can be introduced into (6.152) to obtain α2
v . The mean square value of

the effective impulse sensitivity function is then given by

Γ 2
v = α2

v cos2 (φ + ∆φ) =
1

2π

∫ 2π

0
α2

v cos2 (φ + ∆φ)dφ , (6.155)

where ∆φ is the phase shift between the current I1 through the transistor and
the motional current Im. Indeed, the peaks of the noise voltage modulation
function αv coincide with the peaks of current through the transistors. Thus,
from (6.127)

tan∆φ =
1

MD(1+ B2)
(6.156)

Now, SV 2
n

in (6.152) is independent of the current modulation index mi.
Therefore, according to (3.31), the spectral density of the phase noise due to
the circuit is proportional to Γ 2

v . Thus the variation of the phase noise excess
factor γ is

γ
γ0

=
Γ 2

v

Γ 2
v /|mi=0

. (6.157)

Results obtained by introducing (6.154) and (6.152) in (6.155) are plotted
in Fig. 6.27 for two values of the normalized bandwidth B. They show that
the noise excess factor remains approximately constant with the index of
modulation.

It must be reminded that the approximation by a white noise voltage spec-
trum (Bn = B in (6.149)) is only valid for B � 1. Otherwise, if the modula-
tion factor approaches unity, Gm1 or Gm2 becomes very small in the peaks
of oscillation and x defined by (6.148) becomes very large. As illustrated
by Fig. 6.26, the noise is then no longer white but is concentrated at low
frequencies.
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Figure 6.27 Variation of the phase noise excess factor with the amplitude of oscil-
lation, with transistors operated in weak inversion. These results are calculated with
the approximation of a white noise voltage spectrum across the motional impedance
of the resonator.

6.3.4.4 Phase Noise due to the Flicker Noise of the Active Transistors

As for the parallel resonance oscillator, a bias independent voltage source of
flicker noise at the gate (as in the simple model defined by (3.62)) produces
no phase noise, due to the symmetry of the circuit. Let us use again the
more general model (6.71) for a flicker noise drain current. For the noise of
transistor T1 only, the spectral density of cyclostationary noise voltage across
the motional impedance given by (6.147) becomes

α2
v SV 2

n
=

(1+ B2
n)

(1− xB2
n)2 + x2B2

n
· Fa(Gm1/Ga)a

ωnn2G2
m1

. (6.158)

For low-frequency flicker noise, Bn = ωn/ω � 1. Furthermore xBn � 1, ex-
cept when x defined by (6.148) becomes very large in the peaks of oscillation
(Gm1 or Gm2 very small). Therefore, (6.158) can be simplified to

α2
v SV 2

n
=

FaGa−2
m1

ωnn2Ga
a
. (6.159)

In weak inversion, the variation of Gm1 along each cycle is given by (6.153),
hence

α2
v SV 2

n
=

FaGa−2
mcrit

ωnn2Ga
a
·
(vc(1)

mi

)a−2

︸ ︷︷ ︸
1
2 ·

Kf v
ωn

·(1+ mi sinφ)a−2

︸ ︷︷ ︸
α2

v

. (6.160)

The spectrum of the fictitious flicker noise voltage modulated by αv is thus
characterized by
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Kf v = 2Fa ·
(

Gmcrit

Ga

)a

· 1
n2G2

mcrit

·
(vc(1)

mi

)a−2

, (6.161)

where a factor 2 has been introduced to account for the noise of the second
transistor.

The average value of the effective ISF is

Γv = αv cos (φ + ∆φ) =
1

2π

∫ 2π

0
(1+ mi sinφ)a/2−1 cos (φ + ∆φ)dφ ,

(6.162)
with ∆φ given by (6.156). After decomposing cos (φ + ∆φ), (6.162) be-
comes

Γv =
−sin∆φ

2π

∫ 2π

0
(1+ mi sinφ)a/2−1 sinφdφ . (6.163)

Before introducing (6.161) and (6.163) in (3.35) to obtain the phase noise
spectrum due to the flicker noise of the transistors, the motional current can
be expressed as a function of the current modulation index mi. By using
(6.127) and (6.136):

Im
∼=

I1

1+ B2 =
miI0

1+ B2 =
miI0critmin

1+ B2 ·
vc(1)

mi
. (6.164)

The phase noise spectrum obtained from (3.35) is then

Sφ 2
n

=
2Fa

∆ω3

(
Gmcrit

Ga

)a (
ω2Cm(1+ B2)sin ∆φ

nI0critminGmcrit

)2

·

(vc(1)

mi

)a−4
[∫ 2π

0 (1+ mi sinφ)a/2−1 sinφdφ
2πmi

]2

, (6.165)

where vc(1) is given by (6.138).
The first line of this expression is independent of the amplitude, whereas

the second line takes the value (a− 2)2/16 for mi = 0. The spectral density
for very small amplitudes is thus

Sφ 2
n 0 =

2Fa

∆ω3

(
Gmcrit

Ga

)a (
(a−2)ω2Cm(1+ B2)sin ∆φ

4nI0critminGmcrit

)2

, (6.166)

or after replacing I0critmin by Gmcrit approximated by Gmlim (given by (6.109)):

Sφ 2
n 0

∼=
2Fa

∆ω3

(
Gmcrit

Ga

)a (
(a−2)ω2CmR2

L sin∆φ
16n2UT (1+ B2)

)2

. (6.167)
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Figure 6.28 Variation of the 1/∆ω3 phase noise (due to flicker noise) with the
index of current modulation mi, for various values of the exponent a of the transistor
flicker noise current spectrum described by (6.71).

The variation with mi of the 1/∆ω3 noise phase spectrum described by
(6.165) is plotted in Fig. 6.28. It must be remembered that these results are
calculated for xBn � 1, i.e. for flicker noise frequencies of the transistors

ωn �
1

CL(1/Gm1 + 1/Gm2)
. (6.168)

They are therefore not valid for mi very close to unity. As can be seen, the
1/∆ω3 noise does not depart significantly from its value for small amp-
litudes expressed by (6.166) or (6.167).

6.3.5 Practical Implementation

Complementary oscillatory signals can be extracted at the drains of the active
transistors by simple voltage followers. If no resistors are available, they can
be replaced by a non-saturated P-channel transistors TR associated with a
bias transistor TB, as shown in Fig. 6.29, both operated in strong inversion.
If the maximum current I = 2I0 is sufficiently smaller than its saturation
value Isat given by

Isat = IB ·
IspecR

IspecB
, (6.169)

then the current I remains an approximately linear function of the voltage
V across TR, with a slope equal to the source transconductance GmsR. Intro-
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Figure 6.29 Implementation of the load resistor RL/2 by means of transistor TR;
(a) circuit; (b) I −V function.

ducing (6.169) in the expression (3.56) of the source transconductance then
yields

RL = 2/GmsR =
2UT

IspecR

√
IspecB

IB
. (6.170)

The drain voltage amplitude could be regulated, for example by the scheme
developed for the Pierce oscillator and described in Section 5.2. But the sim-
ulated example of Fig. 6.23 shows that the nonlinear effects on the imaginary
part (and thus on the frequency) are already limited for B = 1. They are fur-
ther reduced for lower values of B, so that amplitude regulation is not really
necessary. Anyway, an amplitude regulator would not drastically reduce the
current consumption, since the negative resistance increases rapidly with the
bias current as soon as the limit transconductance is reached, as can be ob-
served in Fig. 6.20(b).

This circuit is by nature a current-mode oscillator, and the signal is
best extracted as a current (or two complementary currents), as depicted in
Fig. 6.30. The P-channel transistors T3 and T4 of the output mirrors are in
series with the load resistors. Thus, in the small-signal analysis, the inverse
of the transconductance Gmp of the P-channel transistors must be added to
RL/2. But this transconductance depends on the bias current I0 and thus
changes with the transconductance Gm of the N-channel active transistors
T1 and T2. The circuit impedance Zc is therefore no longer a bilinear func-
tion of Gm and its locus is no longer a circle.

Still, the essential characteristics of the basic circuit can be maintained
if Gmp � Gm. Since the same current flows through both transistors, (3.56)
shows that this can only be obtained if the active N-channel transistors op-
erate in strong inversion with specific current much smaller than that of the
P-channel input transistors of the mirrors, i.e. if

Ispec1,2 � I0 and Ispec1,2 � Ispec3,4. (6.171)

These conditions can be fulfilled without reducing Ispec1,2 too much if the
mirrors operate in weak inversion (i.e with Ispec3,4 > I0).
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Figure 6.30 Extraction of the oscillatory signals by current mirrors.

If all transistors are in weak inversion, then, according to (3.54), their
transconductance are almost equal (with just a small difference due to differ-
ent values of n for P-channel and N-channel devices). The transconductance
Gmp of the P-channel devices can no longer be neglected.

Let us assume that Gmp ≡ Gm. Since 1/Gmp is connected in series with
RL/2, RL must be replaced by RL + 2/Gm in (6.98). Then Zc|ω=0 = −RL.
A DC negative resistance would be obtained for an infinitely small value
of transconductance. But a finite transconductance is needed to obtain an
AC negative resistance. The analysis of Section 6.3.2 can be modified by
replacing B by

B ⇒ ωCL(RL + 2/Gm) = B + 2/A. (6.172)

From (6.106), the real part of the impedance Re(Zc) then changes sign for

2(B + 2/A)+
2

(B + 2/A)
−A = 0. (6.173)

This is a third order equation in A, but a second order equation in B. Solving
it for B gives:

B =
1
4

(
A− 8

A
±
√

A2 −16

)
. (6.174)

This result is plotted as A(B) in Fig. 6.31(a). The minimum transconductance
producing a negative resistance is the same as for the basic circuit of Fig. 6.16
(Gmlim = 4ωCL), but it is reached for B = 0.5 instead of B = 1. The imaginary
part of Zc at this limit is obtained by applying the substitution (6.172) in
(6.110). The result is plotted in Fig. 6.31(b).
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Figure 6.31 (a) Limit transconductance for negative resistance. (b) Im(Zc) at this
limit for the circuit of Fig. 6.30 with Gmp = Gm. The corresponding curves for the
basic circuit of Fig. 6.16 (equations (6.106) and (6.110)) are shown in dotted lines.

The relation between the limit transconductance for a negative resistance
Gmlim and the imaginary part of the circuit impedance at this limit is given by
(6.111). It does not depend on B. It is thus the same for the modified circuit
as for the basic circuit, as illustrated by the example of points P and Q on the
curves.

As already pointed out, Zc is no longer a bilinear function of Gm. As an
example, the locus of Zc(Gm) calculated for B = 0.5 (minimum of Gmlim) is
plotted in Fig. 6.32. The locus is now a spiral that is decentered with respect
to the imaginary axis. Compared to the locus of the basic circuit with B = 1,
the slope is no longer zero on the imaginary axis. This will result in a larger
dependency of the frequency pulling on the quality factor and on nonlinear
effects.

Another variant of the basic circuit is illustrated in Fig. 6.33. The load
resistors of Fig. 6.30 have been eliminated and replaced by the transconduct-
ance Gmp of the P-channel transistors. The necessary voltage gain is obtained
by choosing

Gmp = Gm/Kt , (6.175)

where Kt is a constant factor sufficiently larger than unity. This is not pos-
sible in weak inversion but, according to (3.56), it can be obtained in strong
inversion by sizing the transistors so that
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Figure 6.32 Locus of Zc(Gm) for the circuit of Fig. 6.30 with Gmp = Gm and B =
0.5. The locus for the basic circuit of Fig. 6.16 with B = 1 is shown in dotted line
for comparison.
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Figure 6.33 Implementation without resistors.

Ispec

n2 |P−channel =
1

K2
t
· Ispec

n2 |N−channel or
β
n
|P−channel =

1
K2

t
· β

n
|N−channel.

(6.176)
The factor Kt will not be very precise and will depend on temperature and
process variations, since P-channel and N-channel transistors are not well
matched. In practice, a value of K2

t ranging between 2 and 4 will be obtained
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for identical dimensions of N-channel and P-channel devices, due to the dif-
ference of mobility between electrons and holes.

With this scheme, the original load resistance RL/2 is replaced by Kt/Gm

thus, according to (6.108):

B =
2KtωCL

Gm
=

2Kt

A
, (6.177)

which, introduced in (6.106) and (6.107) gives

Re(Zc) =
1

ωCP
· 2Kt(4Kt/A + A/Kt −A)

4+(4Kt/A−A)2 (6.178)

Im(Zc) =
1

ωCP
· 4(2Kt −4K2

t /A2 −1)
4+(4Kt/A−A)2 , (6.179)

with the normalized transconductance A defined by (6.108). The locus of
Zc(Gm) is plotted in Fig. 6.34(a) for several values of the transconductance
ratio Kt . It is again a spiral, but |Zc| tend to zero when Gm tends to infinity.
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Figure 6.34 (a) Locus of Zc(Gm) for the circuit of Fig. 6.33 for several values of
Kt = Gm/Gmp. The locus for the circuit of Fig. 6.30 with Gmp = Gm and B = 0.5 is
shown in dotted line for comparison. (b) Real and imaginary parts of Zc for Kt = 2.

No negative resistance is possible for Kt ≤ 1. The slope at Re(Zc = 0) is
further worsened, as indicated by the comparison with the locus of Fig. 6.32,
repeated here in dotted line.
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Part (b) of the figure shows the variations of the real and imaginary parts
of the circuit impedance with the transconductance, for Kt = 2. Compared
to Fig. 6.20(b) for the basic circuit, the maximum of negative resistance is
already reached for a small excess of transconductance Gm/Gmlim, and the
imaginary part is strongly dependent of Gm.

Using (6.178), the limit transconductance for a negative resistance (i.e. for
Re(Zc) = 0 is

Gmlim =
2Kt√
Kt −1

· ωCP

n
. (6.180)

As shown in the plot of Fig. 6.35, it has a minimum at Kt = 2. It increases
rapidly below Kt = 1.5 but only slowly above its minimum.
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Figure 6.35 Variation of the limit transconductance with the transconductance ratio
Kt .

The imaginary part of the circuit impedance for Gm = Gmlim is obtained
by introducing (6.177) and (6.180) in (6.110)

Im(Zc)lim = Im(Zc)|Re(Zc)=0 =
Kt −1
ωCP

. (6.181)

This can be verified in Fig. 6.34.
Nonlinear effects in the modified circuits are difficult to express analyt-

ically, since the active devices and their loads are both nonlinear. Results of
a simulation of the transistors-only circuit of Fig. 6.33 for Re(Zc(1)) = 0 are
plotted in Fig. 6.36.

As could be expected from the shape of the impedance locus, Im(Zc(1) =
|Zc(1)| (since Re(Zc(1)=0) is very dependent on the bias current: nonlinearities
have a much larger effect on the frequency of oscillation than in the basic
circuit (see Fig. 6.24).
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Figure 6.36 Measurements of Zc(1)(I0) and |Ic|/I0 in a simulation of the modified
circuit of Fig. 6.33 for Re(Zc(1))=0 with Kt = 2.2.

6.4 Van den Homberg Oscillator

6.4.1 Principle and Linear Analysis

A good example of an oscillator based on an operational transconductance
amplifier (OTA) is illustrated in Fig. 6.37 [27]. The main purpose of this

I>4

���

����� +*�����

�	 ���

�


��
����	

Figure 6.37 Principle of the oscillator proposed by van den Homberg.

structure is to provide a single pin oscillator (one side of the quartz groun-
ded) with grounded capacitors only. The input Vin of the OTA is the dif-
ference of voltages across the two capacitors Ca (that include the electrical
capacitor C0 of the resonator defined by (2.1)) and Cb. It delivers two separ-
ate output currents. The first one is proportional to Vin by a transconductance
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Gm and produces a positive feedback. The second one, with a proportional
transconductance KgGm creates a negative feedback.

Assuming an ideal OTA and replacing the capacitances by more general
impedances Za and Zb including possible losses, the small-signal circuit im-
pedance is

Zc =
Za + KgGmZaZb

1+ Gm(KgZb −Za)
, (6.182)

which is again a bilinear function of the transconductance Gm. The locus of
Zc(Gm) is thus once more a circle. Without the motional impedance Zm, the
circuit must be stable, hence the real part of the poles of Zc must be negative.

With lossless capacitors, the condition for stability becomes

Cb < KgCa, (6.183)

meaning that the negative feedback gain KgGm/(ωCb) must be larger than
the positive feedback gain Gm/(ωCa). The circular locus is centered on the
imaginary axis as depicted in Fig. 6.38.
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Figure 6.38 Locus of the circuit impedance for the oscillator of Fig. 6.37 with an
ideal OTA and lossless capacitors.

The real part of Zc is

Re(Zc) =
−Gm

(ωCa)2 + G2
m(KgCa/Cb −1)2 , (6.184)

and provides a maximum value of negative resistance

|Rn0|max =
1

2ωCa(KgCa/Cb −1)
for Gm = Gmopt =

ωCa

KgCa/Cb −1
, (6.185)
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with Ca ≥CP.
For Rm � |Rn0|max (margin factor Km � 1), the frequency pulling at the

critical condition for oscillation is simply, from (4.3)

pc
∼= Cm

2Ca
, (6.186)

and the term in G2
m in the denominator of (6.184) can be neglected. Thus,

from (3.9), the critical transconductance for the lossless circuit can be ap-
proximated by

Gmcrit0
∼= ω2C2

aRm =
ωC2

a

QCm
=

ωCm

4Qp2
c

(6.187)

The locus of Zc(Gm) resembles that for the Pierce oscillator depicted in
Fig. 4.6. Here, Ca plays the role of C3 +Cs and C3 is replaced by Ca−Cb/Kg.
The latter could in principle be made as large as wanted, thereby increas-
ing the value of |Rn0|max. In practice, it is limited by the need to satisfy the
stability condition (6.183) in the worst case of mismatch, as for the parallel
resonance oscillator of Section 6.2.

Using (6.16), the maximum value of negative resistance is therefore in the
range

1− εmax

4ωCa · εmax
≤ |Rn0|max ≤ ∞, (6.188)

where ε is given by (6.15) with nCD/CS replaced by KgCa/Cb.
Since Ca in this circuit includes not only the electrical capacitor C0 of

the resonator, but also the overall interconnection capacitance to ground, a
good matching with Cb cannot be ensured. Furthermore, since the transcon-
ductance ratio Kg must be obtained by a ratio of drain currents, it will be
affected by a random error that increases when the inversion decreases. For
these reasons, the practical value of |Rn0|max is not larger than for the basic
Pierce oscillator.

The comparison of (6.187) with (4.26) shows that the critical transcon-
ductance for a given amount of frequency pulling pc is four times smaller
than for the Pierce oscillator. But this does not necessarily result in a re-
duction of power consumption, since the OTA consumes much more current
than a single transistor to produce the same transconductance.

At the critical condition for oscillation, the transconductance is given by
(6.187) and the voltages across the capacitors are related to the differential
input voltage of the OTA by

Vb = − j
KgCa

Cb
· Ca

QCm
Vin and Va = Vb +Vin. (6.189)
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The value of KgCa/Cb is not much larger than unity to maximize the radius
of the circular locus of Fig. 6.38. The value of Vb/Vin therefore depends
essentially on QCm/Ca = 2Qpc. This value is often much larger than unity,
resulting in |Vb| � |Vin| and |Va| ∼= |Vin|.

6.4.2 Practical Implementation and Nonlinear Behavior

A full circuit implementation of the principle explained by Fig. 6.37 is shown
in Fig. 6.39 [27]. The two feedback loops are implemented by adequate com-
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Figure 6.39 Circuit implementation of the oscillator of Fig. 6.37.

binations of P-channel and N-channel current mirrors. The DC bias current
of each branch is I0, except in the output stage driving Cb where it is KgI0.
Thus, the total current is (4+Kg)I0, plus the current flowing through the bias
resistors R1 and R2. The ratio of these resistances is chosen for best centering
of the output oscillatory signal, and their value must be sufficiently large to
minimize the loss conductance Ga across Ca.

Some power could be saved by reducing the bias current in some branches.
But this would increase the noise excess factor γ defined in Section 3.7 and
the phase noise would be increased.

When the oscillation grows, the amplitude is limited by the nonlinear be-
havior of the input differential pair. Thus its dependency on the bias current
I0 is given by (6.33) if the pair is in weak inversion, or by (6.39) if it is in
strong inversion. These results are plotted in Fig. 6.6.

As for the other oscillator schemes, the bias current may be adjusted to
the desired amplitude by means of a regulating loop.
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6.5 Comparison of Oscillators

The main results obtained for the different types of oscillators are summar-
ized in Table 6.1 for comparison.

1 2 3 4
van den

Pierce Homberg parallel series resonance
Section 4 and 5 6.4 6.2 6.3

branches 1 5 2 2

pc
Cm

2(Cs+C3)
Cm
2Ca

Cm
2CD

−CmB2

2CP

pcmax < Cm
2CP

Cm
2CP

Cm
2CP

� |− Cm
2CP

|

Gmcrit0
ωCm
Qp2

c

ωCm
4Qp2

c

ωCm
2Qp2

c

2ωCP
n

(
B2+1

B + 1
2Q|pc|

)

Icritmin
ωCmnUT
(2)Qp2

c

5ωCmnUT
4Qp2

c

ωCmnUT
Qp2

c
4ωCPUT

(
B2+1

B + 1
2Q|pc|

)

amplitude Fig. 4.17 Fig. 6.6 Fig. 6.6 Fig. 6.22

γ0 nγt
C1Gmcrit
C2Gmcrit0

- nγt
Gmcrit
Gmcrit0

1+nγt
n2 (1 + B2) RL

Rm

Table 6.1 Comparison of oscillators.

The number of branches has an impact on the total current I since a current
proportional to I0 flows through each branch.

The amount of pulling pc at the critical condition for oscillation is a meas-
ure of how much the frequency of oscillation differs from the mechanical
resonant frequency of the resonator. Since pc depends on electrical paramet-
ers that may vary with temperature and supply voltage, a large value can be
expected to degrade the inherent frequency stability of the resonator, as was
discussed in Section 4.3.5. The maximum possible pulling characterizes the
limit of tunability of the oscillator.

The critical transconductance Gmcrit depends on the requirement on pc,
and on the various parameters of the resonator. The minimum current I0critmin
needed to obtain this transconductance is obtained in weak inversion and the
minimum critical total current Icritmin is proportional to I0critmin through the
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number of branches. Somewhat larger values are needed to obtain a usable
amplitude.

Calculations have shown that the phase noise excess factor γ does not
change very much with the amplitude of oscillation. Its value γ0 at small
amplitude is therefore used in the comparison. The effect of the noise coming
from the bias current is not included.

6.5.1 Pierce Oscillator (1)

It is the most simple structure since the basic circuit (Fig. 4.1) requires a
single active transistor. The current can be minimized by using the current-
controlled CMOS implementation of Fig. 5.25, but the simple implement-
ation with a CMOS inverter (Fig. 5.21) has many drawback, and should
be avoided. The two functional capacitors C1 and C2 are grounded in the
grounded source implementations (Fig. 5.1 ), but the resonator is not. The
resonator may be grounded by using the grounded-drain implementation
(Fig. 5.27), but C1 is then floating.

Oscillation is only possible if the total impedance Z3 + Zm between gate
and drain is inductive. Therefore, according to the condition (4.16), the fig-
ure of merit M defined by (2.9) must be larger than 2. This condition should
be satisfied with a large margin to maximize the frequency stability, but this
margin is reduced in the grounded-drain implementation. The motional im-
pedance Zm is also inductive at stable oscillation, thus the pulling pc given
by (4.21) is always positive. It may be reduced by increasing Cs, the series
connection of the two functional capacitors C1 and C2. The maximum pulling
is limited by CP, the electrical capacitance C0 of the resonator augmented by
unavoidable parasitic capacitors.

The critical transconductance of the lossless circuit Gmcrit0 is related to pc

by (4.26) and is minimum for C1 = C2. The minimum critical total current is
simply nUT Gmcrit0. It may be reduced by a factor 2 by replacing the single
transistor by a complementary pair.

The amplitude of oscillation depends on I0/I0critmin according to Fig. 4.17.
A current I ≥ 2.8Icritmin is needed to obtain an amplitude |V1| = 5nUT at the
gate.

The noise excess factor γ0 is minimum for C1 = C2. It increases with the
increase of critical transconductance Gmcrit/Gmcrit0 due to lossy components,
but the noise associated with these components is not included.



196 6 Alternative Architectures

6.5.2 Van den Homberg Oscillator (2)

This is the most complicated of the 4 schemes, since it requires a full
double output operational transconductance amplifier (OTA), as illustrated
in Fig. 6.37. Thus a minimum of 5 branches are needed with at least 5 in-
ternal nodes (Fig. 6.39). The poles related to these internal nodes should be
made negligible, as was implicitly assumed in the analysis. The two func-
tional capacitors Ca and Cb are grounded, as well as the resonator that is
used as a dipole.

This circuit has no requirement on a minimum value of the figure of merit,
but the condition for stability (6.183) must be fulfilled so that the negative
feedback through Cb overrides the positive feedback through Ca. The circuit
impedance Zc is therefore always capacitive and thus the pulling pc given
by (6.186) always positive. It can be reduced by increasing Ca. Its maximum
value pcmax is obtained for Ca = CP.

The minimum critical transconductance for a given value of pc is close to
one fourth of that of the Pierce circuit. However, the total critical current is
about the same as the non-complementary implementation if the currents in
the 5 branches are equal, as it should be to avoid increasing the noise.

The amplitude of oscillation is limited by the transfer function of the dif-
ferential pair. Its dependency on I/Icritmin is plotted in Fig. 6.6. A current
I ≥ 2.5Icritmin is needed to obtain an amplitude |Vin| = 5nUT at the input of
the OTA. According to (6.189), the amplitude |Va| across the resonator is
always larger or equal to |Vin|.

The phase noise has not been evaluated for this oscillator, but its is expec-
ted to be increased by the larger number of active components.

6.5.3 Parallel Resonance Oscillator (3)

This is a symmetrical circuit which delivers complementary output voltages
at the drain of the two transistors (Fig. 6.1(b)). It emulates a parallel resonator
by using the parallel resonance of the motional impedance Zm combined
with the parallel capacitor CP. The latter can be increased to a value CD
by an additional capacitor to reduce the pulling. This additional capacitor
can be connected across the resonator, or it can be split in two grounded
capacitor of double value. The sources of the transistor must be AC coupled
by a capacitor CS to avoid DC bistability. This capacitor can also be replaced
by two grounded capacitors of value 2CS.
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There is no condition on the maximum value of CD (and thus on the min-
imum value of the figure of merit ML defined by (6.7)). But to ensure AC
stability at other frequencies then that of the resonator, the maximum value
of CS is limited by the condition (6.6). The impedance Zc of the stable circuit
is always capacitive, thus the pulling pc given by (6.17) is always positive.
Its minimum value is obtained when CD is limited to CP ≥C0.

The minimum critical transconductance for the lossless circuit Gmcrit0 is
half that of the Pierce oscillator, but the minimum critical current Icritmin is
the same, since the bias current flows in 2 branches.

As long as the impedance of the capacitance CS is negligible compared
to their source transconductance (condition (6.28) fulfilled), the active tran-
sistors operate as a differential pair. The variation of the drain to drain (or
gate to gate) voltage amplitude |Vin| with I/Icritmin is shown in Fig. 6.6 for
weak inversion, and for strong inversion with a given value of inversion coef-
ficient IC = I0/Ispec (thus not for a fixed value of specific current Ispec of the
transistors).

The small-amplitude noise excess factor γ0 is the same as that of the Pierce
oscillator with C1 = C2.

6.5.4 Series Resonance Oscillator (4)

Whereas the first three oscillators above have comparable characteristics in
spite of their different architectures, the series resonance oscillator depicted
in Fig. 6.16 is very different in many aspects.

The function of the active devices of this symmetrical circuit is to change
the sign of the load resistor RL to obtain a negative resistance. Because of the
capacitance CP across the motional impedance Zm of the resonator, a load ca-
pacitance CL is needed to avoid parasitic oscillations. It must be sufficiently
large to fulfill the condition (6.104), but not too large, since it would reduce
the negative resistance. To simplify the analysis, all the derivations have
been carried out with the assumption that the sufficient condition (6.103)
is just fulfilled, i.e. CL = CP/n. The circuit impedance is always inductive
(Re(Zc > 0), thus the pulling pc is always negative; the frequency of oscilla-
tion is lower than the mechanical resonance frequency of the resonator. The
pulling depends on the value of the load resistor RL. But this load resist-
ance is neither precise nor constant in an integrated circuit. The value of |pc|
increases with B2, and its maximum is not limited.
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As expressed by (6.98) for the DC case, the transconductance Gm cor-
responds to a positive resistance is series with the negative resistance. It
must therefore reach a limit value Gmlim given by (6.109) before some neg-
ative resistance is produced. This value is minimum for B = 1, that is for
|pc|=Cm/2CP. It must be increased by a small amount ∆Gm given by (6.119)
to obtain the critical transconductance. This amount remains negligible as
long as 4Qpc � 1.

The amplitude of oscillation is best characterized by the index of modu-
lation of the bias current I0 by the oscillatory signal. Results based on the
assumption of a perfectly sinusoidal current of amplitude |I1| are plotted in
Fig. 6.22. Just a small excess of current of about 50% is sufficient to achieve
100% current modulation. Simulations show that for higher values of bias
current, the drain current tends to a square wave.

The phase noise excess factor γ0 is much larger than for oscillators 1 and
2 if the load resistance RL is much larger than the motional resistance Rm. It
increases rapidly for B > 1.

The performance of this oscillator (number 4) is compared with that of
the three others in 4 numerical examples presented in Table 6.2.

parameter Example a Example b Example c Example d Unit
Q 50000 5000 50000 500
Rm 1.06 10.6 1.06 106 kΩ
MD 50 5 50 0.5
|pc|max(1,2,3) 500 500 500 500 ppm

|pc| 100 100 10 5000 ppm
Icritmin(1,2,3) 1.27 12.7 127 - µA
Icritmin(4) 5.46 7.22 16.1 7.21 µA

RL 30.8 30.8 9.75 218 kΩ
Table 6.2 Numerical comparison of oscillators. The frequency is 1 MHz with Cm=
3 fF, C0= 2 pF, CP= 3 pF, n = 1.3 and UT = 26 mV.

Example a illustrates a standard case with a high value of quality factor
Q and a frequency pulling of 100 ppm. The minimum critical current for
the series resonance oscillator (4) is more than four times larger than for the
three others.

In Example b, Q is only 5000. Oscillator 4 requires less current than the
others.
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In Example c, Q is large but the pulling is reduced to 10 ppm. The min-
imum critical current is now about 8 times smaller than for the other oscil-
lators.

Knowing that the parameter B is related to |pc| by (6.113) (if condition
(6.112) is fulfilled), the ratio of the minimum critical current for the series
resonance oscillator to that of the 3 others can be expressed as

Icritmin(4)

Icritmin(1,2,3)
=

1
n

(
MDB5 + MDB3 + B2) , (6.190)

where MD is the figure of merit of the dipole resonator defined by (2.22).
This ratio is plotted in Fig. 6.40. This comparison curves shows that when
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Figure 6.40 Relative total critical current of the series resonance oscillator. For the
parts of the curves in interrupted line, the condition (6.112) is not fulfilled, thus
|pc| < CmB2/2CP. Points a, b and c correspond to the first 3 examples of Table 6.2.

a very small pulling |pc| is required (to minimize de frequency dependence
on electrical parameters), the series resonance oscillator requires much less
current than the three others.

In Example d, the required pulling is very large and Q is very small. This
is possible with oscillator 4 with just a small increase in current. The load
resistance has a large value, and can be used to tune the oscillator in a wide
frequency range. The voltage drop across RL/2 is 414 mV at the critical
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current, so about 600 mV for full current modulation; this is still compatible
with low supply voltage.

The series resonance oscillator is thus interesting for its large tuning range
capability, for minimizing the current when a very low value of pulling is
required, and/or for low-Q resonators.
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load
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nonlinear
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simulation of, 56, 125, 176
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transfer function, 58, 65

oscillation
amplitude, 24, 61, 62, 65, 146
critical condition for, 27, 43
energy, 15, 33
mode of, 8, 16

unwanted, 128
parasitic, 139, 166
signal extraction, 123, 185
stable, 25, 26, 31, 59
start-up of, 29
start-up of

time constant, 29, 47
oscillator

applications of, 1
basics on, 4
comparison of, 194, 200
current-mode, 184
parallel resonance, 196
Pierce, 2, 41, 91, 93, 135, 195

CMOS inverter, 124, 131
grounded drain, 132, 135
grounded source, 93, 131

quartz, 1
series resonance, 197
single pin, 132, 190
symmetrical
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for parallel resonance, 137, 164
for series resonance, 164, 189

van den Homberg, 190, 193, 195

parallel resonance oscillator, 137, 164,
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phase
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stability, 5, 31, 43, 50, 138
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practical implementation
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crystal, 15
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resistor
elimination, 120
implementation, 102

load, 165
resonance

parallel, 11, 138
series, 11

resonant circuit
parallel, 30
series, 8, 30

resonator
dipole, 14
mechanical, 7
MEM, 18, 21, 22
quartz, 7

saturation
drain voltage, 94
of MOS transistor, 37

series resonance oscillator, 164, 189,
197

strong inversion, 37, 63, 80, 82, 94,
146, 152

strict, 66, 88, 94, 146

thermodynamic voltage, 37
transconductance

amplifier, 190
critical, 44, 49, 52, 59, 139, 143, 169,

170, 194
drain transconductance, 38
for the fundamental frequency, 59,

67, 146
gate transconductance, 38
in saturation, 39
limit for negative resistance, 167, 189
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van den Homberg oscillator, 190, 193,
195

weak inversion, 37, 60, 62, 64, 72, 79,
81, 86, 89, 94, 146, 151, 155


	Low-Power Crystal and MEMS Oscillators
	Copyright
	Contents
	Preface
	Symbols
	Chapter 1:
Introduction
	Chapter 2:
Quartz and MEM Resonators
	Chapter 3:
General Theory of High-Q Oscillators
	Chapter 4:
Theory of the Pierce Oscillator
	Chapter 5:
Implementations of the Pierce Oscillator
	Chapter 6:
Alternative Architectures
	Bibliography
	Index



