INTEGRATED CIRCUITS AND SYSTEMS

Eric Vittoz Low-Power Crystal and MEMS Oscillators

The Experience of Watch Developments

Integrated Circuits and Systems

Series Editor Anantha Chandrakasan, Massachusetts Institute of Technology Cambridge, Massachusetts

For other titles published in this series, go to www.springer.com/series/7236

Eric Vittoz

Low-Power Crystal and MEMS Oscillators

The Experience of Watch Developments

Eric Vittoz Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland evittoz@ieee.org

ISSN 1558-9412 ISBN 978-90-481-9394-3 e-ISBN 978-90-481-9395-0 DOI 10.1007/978-90-481-9395-0 Springer Dordrecht Heidelberg London New York

Library of Congress Control Number: 2010930852

© Springer Science+Business Media B.V. 2010

No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work.

Cover design: Spi Publisher Services

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

To my wife Monique

Contents

Pre	eface		xi
Syı	nbols	3	xiii
1	Intr	oduction	1
	1.1	Applications of Quartz Crystal Oscillators	1
	1.2	Historical Notes	2
	1.3	The Book Structure	2
	1.4	Basics on Oscillators	4
2	Qua	artz and MEM Resonators	7
	2.1	The Quartz Resonator	7
	2.2	Equivalent Circuit	8
	2.3	Figure of Merit	10
	2.4	Mechanical Energy and Power Dissipation	15
	2.5	Various Types of Quartz Resonators	15
	2.6	MEM Resonators	18
		2.6.1 Basic Generic Structure	18
		2.6.2 Symmetrical Transducers	21
3	Ger	eral Theory of High-Q Oscillators	23
	3.1	General Form of the Oscillator	23
	3.2	Stable Oscillation	25
	3.3	Critical Condition for Oscillation and Linear Approximation .	27
	3.4	Amplitude Limitation	27
	3.5	Start-up of Oscillation	29
	3.6	Duality	30
	3.7	Basic Considerations on Phase Noise	31
		3.7.1 Linear Circuit	31

	2.0	3.7.2	Nonlinear Time Variant Circuit	33
	3.8	Mode	l of the MOS Transistor	36
4	The	eory of	the Pierce Oscillator	41
	4.1	Basic	Circuit	41
	4.2	Linea	r Analysis	42
		4.2.1	Linearized Circuit	42
		4.2.2	Lossless Circuit	46
		4.2.3	Phase Stability	50
		4.2.4	Relative Oscillator Voltages	51
		4.2.5	Effect of Losses	52
		4.2.6	Frequency Adjustment	54
	4.3	Nonli	near Analysis	55
		4.3.1	Numerical Example	55
		4.3.2	Distortion of the Gate Voltage	57
		4.3.3	Amplitude Limitation by the Transistor Transfer	
			Function	58
		4.3.4	Energy and Power of Mechanical Oscillation	68
		4.3.5	Frequency Stability	69
		4.3.6	Elimination of Unwanted Modes	71
	4.4	Phase	Noise	77
		4.4.1	Linear Effects on Phase Noise	77
		4.4.2	Phase Noise in the Nonlinear Time Variant Circuit	78
	4.5	Desig	n Process	84
		4.5.1	Design Steps	84
		4.5.2	Design Examples	89
5	Imp	olemen	tations of the Pierce Oscillator	93
	5.1	Grour	nded-Source Oscillator	93
		5.1.1	Basic Circuit	93
		5.1.2	Dynamic Behavior of Bias	95
		5.1.3	Dynamic Behavior of Oscillation Amplitude	97
		5.1.4	Design Examples	100
		5.1.5	Implementation of the Drain-to-Gate Resistor	102
		5.1.6	Increasing the Maximum Amplitude	106
	5.2	Ampl	itude Regulation	107
		5.2.1	Introduction	107
		5.2.2	Basic Regulator	108
		5.2.3	Amplitude Regulating Loop	115
		5.2.4	Simplified Regulator Using Linear Resistors	118

		5.2.5	Elimination of Resistors	120
	5.3	Extra	ction of the Oscillatory Signal	123
	5.4	СМО	S-Inverter Oscillator	124
		5.4.1	Direct Implementation	124
		5.4.2	Current-controlled CMOS-inverter oscillator	129
	5.5	Grour	nded-Drain Oscillator	132
		5.5.1	Basic Implementation	132
		5.5.2	Single-Substrate Implementation	133
6	Alte	ernativ	e Architectures	137
	6.1	Introd	luction	137
	6.2	Symn	netrical Oscillator for Parallel Resonance	137
		6.2.1	Basic Structure	137
		6.2.2	Linear Analysis with the Parallel Resonator	139
		6.2.3	Linear Analysis with the Series Motional Resonator	140
		6.2.4	Effect of Losses	143
		6.2.5	Nonlinear Analysis	144
		6.2.6	Phase Noise	149
		6.2.7	Practical Implementations	157
	6.3	Symn	netrical Oscillator for Series Resonance	164
		6.3.1	Basic Structure	164
		6.3.2	Linear Analysis	165
		6.3.3	Nonlinear Analysis	172
		6.3.4	Phase Noise	177
		6.3.5	Practical Implementation	183
	6.4	Van d	en Homberg Oscillator	190
		6.4.1	Principle and Linear Analysis	190
		6.4.2	Practical Implementation and Nonlinear Behavior	193
	6.5	Comp	parison of Oscillators	194
		6.5.1	Pierce Oscillator (1)	195
		6.5.2	Van den Homberg Oscillator (2)	196
		6.5.3	Parallel Resonance Oscillator (3)	196
		6.5.4	Series Resonance Oscillator (4)	197
Bib	oliogr	aphy .		201
Ind	lex .			203

Preface

In the early 60s, the watchmaking industry realized that the newly invented integrated circuit technology could possibly be applied to develop electronic wristwatches. But it was immediately obvious that the precision and stability required for the time base could not be obtained by purely electronic means. A mechanical resonator had to be used, combined with a transducer. The frequency of the resonator had to be low enough to limit the power consumption at the microwatt level, but its size had to be compatible with that of the watch. After unsuccessful results with metallic resonators at sonic frequencies, efforts were concentrated on reducing the size of a quartz crystal resonator. Several solutions were developed until a standard emerged with a thin tuning fork oscillating at 32kHz and fabricated by chemical etching. After first developments in bipolar technology, CMOS was soon identified as the best choice to limit the power consumption of the oscillator and frequency divider chain below one microwatt. Low-power oscillator circuits were developed and progressively optimized for best frequency stability, which is the main requirement for timekeeping applications. More recent applications to portable communication devices require higher frequencies and a limited level of phase noise. Micro-electro-mechanical (MEM) resonators have been developed recently. They use piezoelectric or electrostatic transduction and are therefore electrically similar to a quartz resonator.

The precision and stability of a quartz is several orders of magnitude better than that of integrated electronic components. Hence, an ideal oscillator circuit should just compensate the losses of the resonator to maintain its oscillation on a desired mode at the desired level, without affecting the frequency or the phase of the oscillation. Optimum designs aim at approaching this ideal case while minimizing the power consumption. This book includes the experience accumulated along more than 30 years by the author and his coworkers. The main part is dedicated to variants of the Pierce oscillator most frequently used in timekeeping applications. Other forms of oscillators that became important for RF applications have been added, as well as an analysis of phase noise. The knowledge is formalized in an analytical manner, in order to highlight the effect and the importance of the various design parameters. Computer simulations are limited to particular examples but have been used to crosscheck most of the analytical results.

Many collaborators of CEH (Centre Electronique Hologer, Watchmakers Electronic Center), and later of CSEM, have contributed to the know-how described in this book. Among them, by alphabetic order, Daniel Aebischer, Luc Astier, Serge Bitz, Marc Degrauwe, Christian Enz, Jean Fellrath, Armin Frei, Walter Hammer, Jean Hermann, Vincent von Kaenel, Henri Oguey, and David Ruffieux. Special thanks go to Christian Enz for the numerous discussions about oscillators and phase noise during the elaboration of this book.

Eric A. Vittoz Cernier, Switzerland February 2010

Symbols

Symbol	Description	Reference
a	Power factor of the flicker noise current	(6.71)
Α	Normalized transconductance in series resonance oscillator	(6.108)
В	Normalized bandwidth in series resonance oscillator	(6.108)
C_a, C_b	Functional capacitors	Fig. 6.37
C_D	Capacitance between drains	Fig. 6.1
C_L	Load capacitance in series resonance oscillator	Fig. 6.16
$C_m(C_{m,i})$	Motional capacitance (of mode <i>i</i>)	Fig. 2.2
C _P	Total parallel capacitance of the resonator	(2.22)
C_s	Series connection of C_1 and C_2	(4.9)
C_{S}	Capacitance between sources	Fig. 6.1
$\tilde{C_0}$	Parallel capacitance of the dipole resonator	(2.1)
C_1	Total gate-to-source capacitance	Fig. 4.1
C_2	Total drain-to-source capacitance	Fig. 4.1
C_3	Total capacitance across the motional impedance	Fig. 2.2
E_m	Energy of mechanical oscillation	(2.23)
f	Frequency	
f_m	Motional resonant frequency	(4.140)
f_s	Frequency of stable oscillation	(3.24)
$\mathbf{f}_s(m_v)$	Fundamental function in strong inversion	(6.37)
$f_w(v_{in})$	Fundamental function in weak inversion	(6.30)
F_a	Flicker noise current constant	(6.71)
G_a	Reference conductance for the flicker noise current	(6.71)
G_{ds}	Residual output conductance in saturation	(3.57)
G_m	Gate transconductance of a transistor	(3.53)

Table 0.1 S	ymbols and	their	definitions.
-------------	------------	-------	--------------

continued from previous page

Symbol	Description	Reference
G_{ms}	Source transconductance of a transistor	(3.49)
G_{md}	Drain transconductance of a transistor	(3.49)
G_{mcrit}	Critical transconductance for oscillation	Fig. 4.4
G_{mcrit0}	Critical transconductance for lossless circuit	Fig. 4.6
G_{mlim}	Limit transconductance in series resonance oscillator	(6.109)
G_{mmax}	Maximum possible transconductance for oscillation	Fig. 4.4
G_{mopt}	Optimum value of transconductance	Fig. 4.4
$G_{m(1)}$	Transconductance for the fundamental frequency	(4.54)
G_{vi}	Transconductance of the regulator	(5.52)
$h_s(m_i)$	Transconductance function in strong inversion	(6.142)
$I_{B0}(x)$	Modified Bessel function of order 0	(4.59)
$I_{B1}(x)$	Modified Bessel function of order 1	(4.61)
I_c	Circuit current	Fig. 3.1
I_{cs}	Value of I_c at stable oscillation	(3.6)
I_D	Drain current	Fig. 3.10
I_{D0}	DC component of drain current	(5.1.2)
$I_{D(1)}^{D0}$	Fundamental component of I_D	Fig. 4.13
I_F	Forward component of drain current	(3.40)
I_m	Motional current	Fig. 2.2
Ims	Value of I_m at stable oscillation	(3.6)
I_R	Reverse component of drain current	(3.40)
Ispec	Specific current of a transistor	(3.41)
I_0	Bias current of the oscillator	Fig. 4.13
I	Start-up value of bias current	(5.45)
I	Critical value of bias current I_0	Fig. 4.14
I	Critical current in weak inversion	(4.64)
I_1	Complex value of the sinusoidal drain current	6.3.2.3
IC	Inversion coefficient of a transistor	(3.45)
IC_0	Inversion coefficient at $I_0 = I_{0crit}$	(4.72)
k_c	Capacitive attenuation factor	(4.69)
K_{f}	Flicker noise voltage constant of a transistor	(3.62)
K_{fi}	Flicker noise current function	(3.36)
K_{fv}	Flicker noise voltage function	(3.35)
K_g	Transconductance ratio	Fig. 6.37
K_i	Mirror ratio in the regulator	Fig. 5.9
K_{iv}	Gain parameter of $ V_1 (I_{D0})$	(5.24)
K_l	Level of specific current	(6.92)
K_m	Margin factor	(4.17)
Kr	Ratio of transfer parameters	Fig. 5.4

continued from previous page

Symbol	Description	Reference
K_s	Ratio of specific currents	(6.82)
K_t	Transconductance ratio	(6.175)
K_w	Width ratio in the regulator	(5.43)
$L_m(L_{m,i})$	Motional inductance (of mode <i>i</i>)	Fig. 2.2
m _i	Index of current modulation	(6.133)
m_v	Index of voltage modulation	(4.122)
m_{vd}	Index of voltage modulation for a differential pair	(6.35)
M	Figure of merit	(2.9)
M_D	Figure of merit of the resonator used as a dipole	(2.22)
M_L	Figure of merit of the resonator used as a loaded dipole	(6.7)
M_0	Intrinsic figure of merit of the resonator	(2.10)
n	Slope factor of a transistor	(3.40)
р	Frequency pulling	(2.7)
p_c	Frequency pulling at critical condition for oscillation	(3.10)
p_{pa}	Frequency pulling at parallel resonance	(2.15)
p_s	Frequency pulling at stable oscillation	(3.7)
p_{se}	Frequency pulling at series resonance	(2.14)
P_m	Power dissipated in the resonator	(2.24)
$Q(Q_i)$	Quality factor (of mode <i>i</i>)	(2.3)
Q_b	Quality factor of the bias circuit	(5.12)
R_{iv}	Slope of the amplitude $ V_1 (I_0)$	Fig. 5.3
R_L	Load resistance	Fig. 6.16
$R_m(R_{m,i})$	Motional resistance (of mode <i>i</i>)	Fig. 2.2
R_n	Negative resistance of the circuit	(3.2)
R_{n0}	Value of R_n for the linear circuit	(3.12)
s _{vi}	Normalized slope of the regulator	Fig. 5.10
s _{iv}	Normalized slope of the amplitude	Fig. 4.17
$S_{I_n^2}$	Current noise spectrum	(4.107)
$S_{I_{nD}^2}^{''}$	Drain current channel noise spectrum	(3.59)
$S_{I_{nI}^2}$	Loop Current noise spectrum	(3.27)
$S_{V_n^2}^{nL}$	Voltage noise spectrum	(4.107)
$S_{V_{rC}^2}$	Gate voltage flicker noise spectrum	(3.62)
$S_{\phi_n^2}$	Phase noise power spectrum	(3.29)
t	Time	
U_T	Thermodynamic voltage	(3.40)
V	Voltage across the resonator	Fig. 2.2
V_B	Supply voltage (battery voltage)	Fig. 5.1
Vc	Value of $ V_c $ normalized to nU_T	(6.130)
V_c	Control voltage of a transistor	(6.129)

	C		
confinited	trom	previous	nage
commuca	mom	previous	puse

Symbol	Description	Reference
V_D	Drain voltage	Fig. 3.10
V_{Dsat}	Saturation value of drain voltage	(3.46)
Ve	Normalized effective DC gate voltage	(4.57)
V_{G}	Gate voltage	Fig. 3.10
V_{G0}	DC component of gate voltage	(4.52)
v _{in}	Value of $ V_{in} $ normalized to nU_T	(6.31)
V_{in}	Differential input voltage	Fig. 6.5
V_M	Channel length modulation voltage	(3.57)
V_n	Open-loop noise voltage of the circuit	3.7.1
V_S	Source voltage	Fig. 3.10
V_{T0}	Threshold voltage of a transistor	(3.40)
$V_{(1)}$	Complex value of fundamental component of V	(3.1)
v_1	value of $ V_1 $ normalized to nU_T	(4.57)
V_1	Complex value of gate-to-source voltage	Fig. 4.8
V_2	Complex value of drain-to-source voltage	Fig. 4.8
V_{3}	Complex value of drain-to-gate voltage	Fig. 4.8
Z_c	Impedance of the linear circuit	(3.8)
$Z_{c(1)}$	Circuit impedance for fundamental frequency	(3.1)
Z_{c0}	Circuit impedance without parallel capacitance	(6.3)
Z_D	Impedance between drains	Fig. 6.3
Z_L	Load impedance	Fig. 6.16
$Z_m(Z_{m,i})$	Motional impedance (of mode <i>i</i>)	Fig. 2.2
Z_p	Total parallel impedance	(2.12)
Z_S	Impedance between sources	Fig. 6.3
Z_1	Total gate-to-source impedance	Fig. 4.3
Z_2	Total drain-to-source impedance	Fig. 4.3
Z_3	Total drain-to-gate impedance	Fig. 4.3
α	Ratio of critical transconductance	(4.98)
α_i	Noise current modulation function	Fig. 3.9
α_{v}	Noise voltage modulation function	Fig. 3.9
α_0	Value of α for the lossless case	(4.99)
β	Transfer parameter of a transistor	(3.44)
$\Delta \omega$	Noise frequency offset	(3.28)
\mathcal{E}_{max}	Maximum relative mismatch	(6.15)
ϵ_0	Permittivity of free space	(2.27)
γ	Noise excess factor of the oscillator	Fig. 3.7
γ_t	Channel noise excess factor of a transistor	(3.60)
Γ_i	Effective impulse sensitivity function for noise current	(3.34)
Γ_{v}	Effective impulse sensitivity function for noise voltage	(3.32)

continued from previous page

Symbol	Description	Reference
τ	Time constant of oscillation growth	(3.16)
$ au_0$	Start-up value of τ	(3.15)
ω	Approximate angular frequency of oscillation	
$\omega_m (\omega_{m,i})$) angular frequency of resonance (of mode <i>i</i>)	(2.2)
ω_n	Angular frequency at which noise is considered	(4.106)
ω_s	Angular frequency at stable oscillation	(3.24)
Ω_{civ}	Cut-off angular frequency of $ V_1 (I_{D0})$	(5.26)
Ω_0	Resonant angular frequency of bias circuit	(5.10)
Ω_1	Unity gain frequency of the regulation loop	(5.71)

Chapter 1 Introduction

1.1 Applications of Quartz Crystal Oscillators

Relevant time durations for modern science range from the femtosecond of very fast electronics to the age of the universe, 15 billion years. This corresponds to a range of about 32 orders of magnitude. Moreover, this variable can be controlled and measured with an accuracy better than 10^{-14} by modern atomic clocks. However, the accuracy that can be obtained by purely electronic circuits, such as integrated circuits, is only of the order of 10^{-3} . This is because there is no combination of available electronic components (like a RC time constant for example) that is more precise and constant with time and temperature. Now, 10^{-3} corresponds to an error of about 1.5 minute per day, which is totally unacceptable for timekeeping applications. The same is true for applications to modern telecommunications, which exploits the frequency spectrum up to 300 Ghz.

Quartz crystal oscillators offer the range of accuracy required by these applications by combining the electronic circuit with a simple electromechanical resonator that essentially controls the frequency.

Timekeeping devices like wristwatches need a long-term precision better than 10^{-5} , possibly 10^{-6} that corresponds to 30 s/year. Additional requirements for watches include a very low power consumption, of the order of 0.1 μ W in the range of indoor and outdoor temperatures. The frequency should be as low as possible, to minimize the additional power consumed by the frequency divider (period counter).

1

The same level of long-term precision is needed for telecommunications, with less demanding requirements on power consumption. However, higher or much higher frequencies are needed, and there is an additional important requirement on phase noise (or short-time stability).

Crystal oscillators are also often used for generating the clock of digital systems or analog circuits. The precision needed is then of the order of 10^{-4} , which makes the quartz oscillator very uncritical, but problems may arise if is not properly designed, the worst one being oscillation on an parasitic resonance of the resonator.

1.2 Historical Notes

The first quartz crystal oscillator was invented by Walter Guyton Cady in 1921 [1], as a way to produce an electrical signal of very constant frequency. Soon after, George Washington Pierce developed a very elegant oscillator circuit using a single vacuum tube [2, 3], that has been easily adapted to integrated circuits, some 40 years later. Quartz oscillators have since been used extensively to produce the accurate and stable frequency needed for the carrier of telecommunication circuits.

Artificial quartz, first produced in 1958, progressively replaced natural quartz crystal. Quartz production was boosted in the seventies by a surge of demand for the 40-channel of citizen band transceivers. It was alleviated by the introduction of frequency synthesizers made possible by the evolution of VLSI circuits.

The application of quartz oscillators to timekeeping devices started in 1927 with the first quartz clock developed by Marrison and Horton [4]. Portable clocks became possible with the invention of the transistor, but integrated circuits were needed to develop the first quartz wristwatch presented in 1967 [5].

1.3 The Book Structure

After this short introductory chapter, Chapter 2 is essentially dedicated to the quartz crystal resonator and to its electrical equivalent circuit. By exploiting the very large value of quality factor Q, the electrical impedance of the resonator is described by a bilinear function of the relative amount p of frequency difference with the mechanical resonant frequency, called frequency

pulling. After a brief description of the various types of quartz resonators, a last section shows how the equivalent circuit of a MEM resonator using an electrostatic transducer can be reduced qualitatively to that of the quartz resonator.

Chapter 3 describes a general theory that applies to all oscillators based on a high-Q series resonant circuit (or parallel resonant circuit by swapping currents for voltages). By adequately splitting conceptually the oscillator into a frequency-independent nonlinear part and a frequency-dependent linear series resonator, this approach allows to predict the amplitude and the precise value of frequency pulling by including nonlinear effects. This chapter also introduces some basic considerations on phase noise. An analysis of the effect of cyclostationary noise sources is proposed, based on the effective impulse sensitivity function (ISF) [6], with the approximation of sinusoidal waveforms made possible by the high value of Q. The chapter ends with a short introduction to the EKV analytical model of the MOS transistor that is used in all subsequent circuit analyses.

Chapter 4 concentrates on the theory of the Pierce oscillator [3], which is the only possible architecture with a single active transistor. The linear analysis (valid at the critical condition for oscillation or for sufficiently small amplitudes) capitalizes on the circular locus resulting from the bilinear dependency of the circuit impedance on the transconductance of the transistor. The amplitude of oscillation is obtained analytically from the DC transfer function of the transistor, using the fact that the gate voltage remains almost sinusoidal. The important problem of frequency stability and that of avoiding oscillation on a parasitic resonant mode of the resonator are also discussed. Phase noise is then approached analytically, using the concept of effective impulse sensitivity function (ISF) to treat the effect of the cyclostationary white and flicker noise produced by the active transistor. A design process is presented and illustrated by two numerical examples.

Chapter 5 deals with the practical realization of the Pierce oscillator. The dynamic behavior of the grounded source implementation with respect to variations of its bias current is analyzed. The oscillator is then embedded in an amplitude regulating loop based on a particular amplitude regulator scheme. The results are then applied to the two numerical examples presented in Chapter 4. The Pierce oscillator is frequently realized by means of a simple CMOS inverter. A qualitative analysis supported by circuit simulations demonstrates the many drawbacks of this solution. A better way to reduce the power consumption by means of complementary transistors is presented. The chapter ends with the grounded-drain implementation, which has the advantage of requiring only one pin to connect the external reson-

ator. Its performance is shown to be lower than that of the grounded-source solution, especially if the active transistor is not put in a separate well.

Many architectures become possible when two or more active transistors are considered. Chapter 6 describes and analyzes three of them. The first one is a symmetrical circuit that exploits the parallel resonance of the resonator, and delivers symmetrical output voltages [25]. The power consumption of this circuit can be made very low, at the cost of an increased sensitivity of the frequency to electrical parameters. The second circuit is also symmetrical and based on two active transistors. It produces a current stable DC negative resistance compatible with a series resonator. Compared to other solutions, the power consumption of this circuit is lower for low-Q resonators and/or for very low values of frequency pulling. In the third architecture [27], one side of the resonator is grounded (one-pin oscillator). This more complex circuit uses a full operational transconductance amplifier (OTA) combined with two grounded capacitors. The chapter ends with a comparison of the four types of oscillators analyzed in the book.

An analytical approach is favored all along the chapters, with a list of all the variables at the beginning of the book. Results are simple equations illustrated by normalized graphs. The advantage is to explicit clearly the effect of each design parameter on the circuit performance. The drawback is that some approximations are sometimes necessary, leading to approximative results. Computer simulations can then be used to obtain more precision. Most of the analytical results have been cross-checked by circuit simulations, with the notable exception of phase noise. Theses simulations have been carried out with the LTspice circuit simulator of Linear Technology and the EKV model of the MOS transistor.

1.4 Basics on Oscillators

As depicted in Fig. 1.1, the most general way of describing an oscillator is by a frequency-dependent nonlinear circuit block connected in closed loop. The transfer function of the block is $G(\omega, A)$, where ω is the angular frequency and *A* is the input amplitude.

If the circuit is strongly nonlinear with a large bandwidth, it results in a relaxation oscillator, the waveform of which is far from being sinusoidal.

On the contrary, if the circuit has a narrow bandwidth, the system becomes a harmonic oscillator and the oscillatory signal is approximately sinusoidal. Stable oscillation may take place at frequency ω_s with an amplitude A_s for

Figure 1.1 General representation of an oscillator.

$$G(\omega_s, A_s) = 1. \tag{1.1}$$

However, this is only possible if two fundamental conditions are fulfilled. The first condition is that for *phase stability* [7]

$$\frac{\mathrm{d}(\arg G)}{\mathrm{d}\omega}|_{\omega_s,A_s} < 0. \tag{1.2}$$

No periodic solution can be maintained if this condition is not fulfilled. The second condition is that of *amplitude stability*

$$\frac{\mathrm{d}|G|}{\mathrm{d}A}|_{\omega_s,A_s} < 0. \tag{1.3}$$

This condition requires that the circuit block contains some *nonlinearity* to fix the amplitude of oscillation.

Although this approach of a closed loop is applicable to all kinds of oscillators, we will show in Chapter 3 that, for the case of oscillators including a resonator with very high quality factor, more insight can be obtained by separating this resonator from the rest of the circuit.

Chapter 2 Quartz and MEM Resonators

2.1 The Quartz Resonator

As illustrated by Fig. 2.1(a), a quartz resonator is essentially a capacitor, the dielectric of which is silicon dioxide (SiO_2) , the same chemical compound as used in integrated circuits. However, instead of being a glass, it is a monocrystal, a quartz crystal, which exhibits piezoelectric properties. Therefore, a part of the electrical energy stored in the capacitor is converted into mechanical energy.

Figure 2.1 Quartz crystal resonator: (a) Schematic structure; (b) symbol.

Whatever the shape of the piece of quartz, it has some mass and some elasticity; it can therefore oscillate mechanically. Unlike simple *LC* electrical resonators, mechanical resonators always possess several resonance frequencies, corresponding to different possible modes of oscillation (eigenmodes).

7

Now, if an AC voltage is applied to the capacitor at a frequency close to that of a possible mode, it can possibly excite this mode and drive the quartz resonator into mechanical oscillation.

In addition to its piezoelectric properties, quartz has the advantage of being an excellent mechanical material, with very small internal friction. It has therefore a very high intrinsic quality factor, of the order of 10^6 .

The resonant frequency depends essentially on the shape and the dimensions of the piece of quartz. Possible frequencies range from 1 kHz for large cantilever resonators to hundreds of MHz for very thin thickness-mode resonators.

The exact frequency and its variation with temperature depend on the orientation with respect to the 3 crystal axes. By choosing the optimum mode with an optimum orientation, the linear and quadratic components of the variation of the frequency with temperature can be cancelled, leaving at best a residual dependency of about 10^{-6} from -20 to +80°C.

2.2 Equivalent Circuit

The equivalent circuit of a quartz resonator is shown in Fig. 2.2(a). Although the intrinsic device is a dipole, it is very important in some circuits to model it as a 3-point component, in order to separate the electrical capacitor C_{12} from the parasitic capacitances to the packaging case C_{10} and C_{20} .

If the device is only considered as a dipole, with node 0 floating, then the lumped electrical capacitance is

$$C_0 \triangleq C_{12} + \frac{C_{10}C_{20}}{C_{10} + C_{20}}.$$
(2.1)

Each possible mode of oscillation *i* of the resonator corresponds to a *motional impedance* $Z_{m,i}$ formed by the series resonant circuit $R_{m,i}L_{m,i}C_{m,i}$. The motional inductance L_m is proportional to the mass of the mechanical resonator. The motional capacitance C_m is proportional to the inverse of its stiffness. The motional resistance R_m represents the mechanical losses.

The resonant angular frequency of mode *i* is given by

$$\omega_{m,i} = 1/\sqrt{L_{m,i}C_{m,i}},\tag{2.2}$$

and its quality factor by

$$Q_{i} = \frac{1}{\omega_{m,i}R_{m,i}C_{m,i}} = \frac{\omega_{m,i}L_{m,i}}{R_{m,i}} = \frac{1}{R_{m,i}}\sqrt{\frac{L_{m,i}}{C_{m,i}}}.$$
 (2.3)

Figure 2.2 Equivalent circuit: (a) of the resonator alone with all possible modes; (b) of a single mode with C_{12} increased to C_3 by external capacitors.

This factor is very large, typically ranging from 10^4 to 10^6 . Whenever needed, this relation between Q, ω_m , R_m and C_m will be used implicitly throughout this book.

The motional current $I_{m,i}$ flowing through the motional impedance $Z_{m,i}$ is proportional to the velocity of mode *i*. Thus its peak value $|I_{m,i}|$ is proportional to the peak velocity and $|I_{m,i}|/\omega_i$ to the amplitude of oscillation of mode *i*.

The voltage V across the motional impedances is proportional to the force produced by the piezoelectric effect.

The ratio $C_{m,i}/C_{12} \ll 1$ represents the electromechanical coupling to the mode *i*. It is always much lower than unity, since it never exceeds the intrinsic coupling coefficient of quartz, which is about 1%. If a mode *i* is not coupled at all, then $C_{m,i} = 0$ and the corresponding branch disappears from the equivalent circuit.

At this point, two very important remarks must be introduced, since they will greatly simplify the nonlinear analysis of quartz oscillators:

1. Since $Q_i \gg 1$, the bandwidth of Z_m is very narrow. Hence, for frequencies close to the resonance of mode *i*, the harmonic content of the motional current $I_{m,i}$ is always negligible. Thus, this *current* can be considered *perfectly sinusoidal, even if the voltage V is strongly distorted*:

$$I_{m,i}(t) = |I_{m,i}|\sin\left(\omega t\right) \tag{2.4}$$

2 Quartz and MEM Resonators

or, expressed as a complex value

$$I_{m,i} = |I_{m,i}| \exp\left(j\omega t\right). \tag{2.5}$$

2. Among the various possible modes of oscillation, we may have the "overtones", the frequencies of which are close to multiples of that of the fundamental mode. However, because of end effects, these frequencies are not exact multiples of the fundamental. Hence, once a mode is excited, the harmonics that can be produced by the distortion of V cannot excite these overtones. Once oscillation has taken place at one mode, the *other modes* (and thus the other branches in the equivalent circuit) *can be ignored*.

From now on, let us consider only this particular "wanted" mode, and drop the index *i* in the notations. The equivalent circuit is then reduced to that of Fig. 2.2(b), where C_3 now includes external capacitances possibly added to C_{12} of the resonator itself.

The complex motional impedance is given by

$$Z_m = R_m + j\omega L_m + \frac{1}{j\omega C_m} = R_m + \frac{j}{\omega C_m} \cdot \frac{\omega + \omega_m}{\omega_m} \cdot \frac{\omega - \omega_m}{\omega_m}, \qquad (2.6)$$

where the last term has be obtained by introducing (2.2).

Now, because of the very large value of Q, the frequency of oscillation will always be very close to ω_m . It is thus very useful to replace ω by the relative amount of *frequency pulling* (by the circuit)

$$p \triangleq \frac{\omega - \omega_m}{\omega_m} \quad \text{with } |p| \ll 1,$$
 (2.7)

which, introduced in (2.6), gives almost exactly

$$Z_m = R_m + j \frac{2p}{\omega C_m},\tag{2.8}$$

where ω can be considered constant with respect to its effect on Z_m . Hence, Z_m is a linear impedance that is *strongly dependent on p*. Indeed, its real part is constant (as long as the quality factor remains constant) but its imaginary part is proportional to *p*.

2.3 Figure of Merit

An important parameter of quartz resonators (and of all electrostatically driven resonators) is its figure of merit

Low-Power Crystal and MEMS Oscillators

$$M \triangleq \frac{1}{\omega C_3 R_m} = \frac{Q C_m}{C_3},\tag{2.9}$$

which has a maximum intrinsic value when C_3 is reduced to its minimum value C_{12} , defined as

$$M_0 \triangleq \frac{1}{\omega C_{12} R_m} = \frac{Q C_m}{C_{12}}.$$
(2.10)

Indeed, *M* is the maximum possible ratio of currents through Z_m and C_3 . By introducing this definition in (2.8), we can express Z_m normalized to $1/\omega C_3$ as

$$\omega C_3 Z_m = \frac{1}{M} (1 + 2Qpj). \tag{2.11}$$

We can now calculate Z_p , the impedance of the parallel connection of Z_m and C_3 . Assuming ω constant (since $p \ll 1$), it gives, in normalized form:

$$\omega C_3 Z_p = \frac{1 + 2Qpj}{(M - 2Qp) + j} = \frac{M - \left[4(Qp)^2 - 2MQp + 1\right]j}{(M - 2Qp)^2 + 1}.$$
 (2.12)

This impedance becomes real for

$$Qp = \frac{M \pm \sqrt{M^2 - 4}}{4}.$$
 (2.13)

The negative sign correspond to the *series resonance* frequency, at a value of pulling

$$p_{se} = \frac{C_m}{4C_3} \left[1 - \sqrt{1 - 4/M^2} \right], \qquad (2.14)$$

whereas the positive sign corresponds to the *parallel resonance* frequency, at a value of pulling

$$p_{pa} = \frac{C_m}{4C_3} \left[1 + \sqrt{1 - 4/M^2} \right], \qquad (2.15)$$

For $M \gg 1$, $p_{se} = 0$; the series resonance frequency is the mechanical frequency of the resonator. But $p_{pa} = C_m/2C_3$; the parallel resonance frequency depends on the electrical capacitance C_3 .

Notice that for M < 2, (2.13) has no real solution. The impedance Z_p itself is never real but remains capacitive for all frequencies.

As shown by (2.12), Z_p is a bilinear function of Qp. Now, a property of bilinear functions is to transform circles into circles in the complex plane [8]. Therefore, the locus of $Z_p(Qp)$ for p changing from $-\infty$ to $+\infty$ (circle of infinite radius) is a circle, as illustrated by Fig. 2.3 for the particular case M = 3.

Figure 2.3 Complex plane of $\omega C_3 Z_p(Qp)$. Notice that this representation is no longer valid for $Qp \to \pm \infty$, since it assumes that $|p| \ll 1$.

This circle of radius M/2 is centered at (M/2; -j). Since M > 2 in this example, the circle crosses the real axis at points S and P corresponding to the series and parallel resonance frequencies given by (2.13). The maximum inductive (normalized) impedance (positive imaginary value) is M/2 - 1 and occurs at Qp = (M - 1)/2. The maximum resistive component of the (normalized) impedance is M and occurs at Qp = M/2. Notice that the circular locus is no longer valid for $p \to \pm \infty$, since ω is no longer constant. The minimum module of the impedance (min) occurs for a slightly negative value of Qp. The maximum module (max) is larger by M (diameter of the circle).

A small value of M was chosen in Fig. 2.3 in order to make the various points on the circle visible. For larger (and more realistic) values of M, this circle becomes much larger and almost centered on the real axis. The evolution of the module and phase of $Z_p(p)$ for increasing values of M is shown in Fig. 2.4.

As can be seen, for $M \gg 2$ the values of p at series and parallel resonance tend to 0, respectively $M/2Q = C_m/2C_3$, in accordance with (2.13). The corresponding values of Z_p tend to

$$Z_p = \frac{1}{\omega C_3 M} = R_m$$
 at series resonance (2.16)

$$Z_p = \frac{M}{\omega C_3} = M^2 R_m \quad \text{at parallel resonance.}$$
(2.17)

Figure 2.4 Module and phase of Z_p vs. normalized frequency pulling pC_3/C_m .

According to (2.14), (2.15) and (2.9), the exact series and parallel resonance frequencies depend on the electrical capacitance C_3 and the quality factor Q. The calculation of these sensitivities yields:

$$\frac{\mathrm{d}p_{se}}{\mathrm{d}C_3/C_3} = \frac{C_m}{4C_3} \left[\frac{M}{\sqrt{M^2 - 4}} - 1 \right] \to \frac{C_m}{2M^2C_3} \text{ for } M \gg 1, \qquad (2.18)$$

$$\frac{\mathrm{d}p_{pa}}{\mathrm{d}C_3/C_3} = -\frac{C_m}{4C_3} \left[\frac{M}{\sqrt{M^2 - 4}} + 1\right] \to -\frac{C_m}{2C_3} \text{ for } M \gg 1, \qquad (2.19)$$

$$\frac{\mathrm{d}p_{pa}}{\mathrm{d}Q/Q} = -\frac{\mathrm{d}p_{se}}{\mathrm{d}Q/Q} = \frac{C_m}{C_3} \frac{1}{M\sqrt{M^2 - 4}} \to \frac{C_m}{M^2 C_3} \text{ for } M \gg 1.$$
(2.20)

These sensitivities are plotted in Fig. 2.5 as functions of the figure of merit M. As can be seen, they become rapidly negligible for $M \gg 1$, except that of p_{pa} which tend to $C_m/2C_3$. Indeed, the parallel resonance frequency depends on the series connection of C_m and C_3 .

If *M* is sufficiently larger than 2, the series resonance frequency becomes independent of the electrical capacitance and of the factor of quality *Q*. The latter point is important, since some quartz resonators may have a mechanical frequency ω_m very constant with temperature variations, but large variations of their quality factor.

Figure 2.5 Sensitivities of p_{se} and p_{pa} to C_3 and Q.

In order to have a high value of M, the coupling factor C_m/C_3 of the resonator should be sufficiently large according to (2.9). Hence, its intrinsic value itself C_m/C_{12} should already be sufficiently large, since $C_3 > C_{12}$ due to additional parasitic capacitances in the circuit. The figure of merit is further degraded if one of the two "hot" terminals of the resonator is grounded, as in "1-pin" oscillators: indeed, either C_{10} or C_{20} is then connected in parallel with C_3 .

As will be explained later in Chapter 4, the minimization of C_3 is also useful to prevent harmonic currents to flow between nodes 1 and 2, in order to minimize the effect of nonlinearities on the frequency of oscillation.

If the resonator is used as just a dipole, then capacitors C_{10} , C_{20} and C_{12} of Fig. 2.2(a) merge into the single parallel capacitance C_0 defined by (2.1). The corresponding figure of merit is then

$$M_{D0} = \frac{1}{\omega C_0 R_m} = \frac{Q C_m}{C_0}.$$
 (2.21)

In practice, some additional parasitic capacitors will be added to the intrinsic capacitors of the resonators, and the total parallel capacitance C_P is somewhat larger than C_0 , resulting in a figure of merit

$$M_D \stackrel{\triangle}{=} \frac{1}{\omega C_P R_m} = \frac{Q C_m}{C_P}.$$
 (2.22)

2.4 Mechanical Energy and Power Dissipation

Since the quality factor is very large, the energy E_m of mechanic oscillation is almost constant along each period. It is simply exchanged from kinetic energy to potential energy. It is all kinetic energy at the peaks of velocity, and all potential energy at the peaks of amplitude.

Since the motional current I_m represents the mechanical velocity and L_m represent the equivalent mass moving at this velocity, E_m is equal to the peak value of the kinetic energy

$$E_m = \frac{L_m |I_m|^2}{2} = \frac{|I_m|^2}{2\omega^2 C_m} = \frac{QR_m |I_m|^2}{2\omega},$$
 (2.23)

where the second form is obtained by introducing (2.2) and the third form by means of (2.3).

Since this energy is proportional to the square of the amplitude, it should be limited to avoid destruction and limit nonlinear effects and aging. But it should be much larger than the noise energy, in order to limit the phase noise, as will be discussed in Section 3.7.

The motional current is sinusoidal, with an RMS value $|I_m|/\sqrt{2}$. The power dissipated in the resonator is thus given by

$$P_m = \frac{R_m |I_m|^2}{2} = \frac{|I_m|^2}{2\omega QC_m}.$$
(2.24)

This power must be provided by the sustaining circuit in order to maintain the amplitude of oscillation. Otherwise, at each period of oscillation $2\pi/\omega$, the energy would be reduced by

$$\Delta E_m = \frac{2\pi P_m}{\omega} = \frac{|I_m|^2}{2\omega^2 C_m} \cdot \frac{2\pi}{Q} = \frac{2\pi}{Q} E_m. \tag{2.25}$$

According to (2.23) and (2.24), E_m and P_m can be calculated as soon as $|I_m|$ is known.

2.5 Various Types of Quartz Resonators

Quartz is monocrystal of SiO_2 that has an hexagonal structure with 3 main axes, as illustrated in Fig. 2.6 [9]. The optical axis Z passes through the apex of the crystal. The electrical axis X is a set of three axes perpendicular to Z

that pass through the corners of the crystal. The mechanical axis Y is a set of three axes that are perpendicular to Z and to the faces of the crystal. The electromechanical transducing property comes from the fact that an electrical field applied along one of the X axes produces a mechanical stress in the direction of the perpendicular Y axis.

Figure 2.6 Schematic view of a quartz crystal.

Many types of quartz resonators have been developed along the years. They are essentially differentiated by their mode of oscillation, and by the orientation of their cut with respect to the axes. A precise choice of orientation for a given mode is essential to control the variation of the resonant frequency ω_m with that of the temperature.

The variety of possible modes of oscillation is depicted in Fig. 2.7. Each of them corresponds to a practical range of frequency.

Figure 2.7 Possible modes of oscillation of a quartz resonator.

The flexural mode of Fig. 2.7(a) provides the lowest possible frequencies (down to a few kHz). To minimize losses, it is suspended at its two nodes of

oscillation. The electric field is applied by deposited metallic electrodes. The pattern of these electrodes is optimized to maximize the coupling C_m/C_{12} for the expected fundamental mode. The temperature dependency is a square law of about -35.10⁻⁹/°C² that can be centered at the middle of the temperature range. A vacuum package is needed to obtain a large value of quality factor. This is the type of quartz used for the very first quartz wristwatch in the 60's, with a frequency of 8 kHz [5]. To further reduce its size, the flexural mode resonator can be split into two parallel bars supported by a foot. It becomes a tuning fork resonator [10]. Modern tuning fork resonators are fabricated in a batch process by using the patterning and etching techniques developed for integrated circuits. Their tiny 32 kHz version has become a standard for most electronic watches.

For the same dimensions, the torsional mode depicted in Fig. 2.7(b) resonates at a higher frequency. It can be applied to a tuning fork as well.

Contour modes are obtained by a plate that oscillates within its own plane, as shown by Fig. 2.7(c) (generically, they include the length-mode oscillation of a bar). Resonant frequencies are higher than for the flexural and torsional modes. Best among a large variety of known cuts, the GT-cut [11] eliminates the first, second and third order terms in the variation of ω_m with temperature. The residual variation is of the order of 2 ppm in a 100 °C range. But this cut requires a very precise control of the dimensions of the plate, and is therefore very expensive. A less critical solution called the ZT-cut that can be produced in batch was developed more recently [12]. It cancels the first and second order terms, leaving a third order term of only 55.10⁻¹²/°C³.

High frequencies are obtained by plates resonating in thickness modes as illustrated in Fig. 2.7(d). The most frequent is the AT-cut, that resonates in the thickness shear mode, with a frequency variation of 20 to 100 ppm in a 100 °C temperature range. Since the frequency is inversely proportional to the thickness of the plate, very high frequencies are obtained by thinning the vibrating center area of the plate in an "inverted mesa" structure. Fundamental frequencies as high as 250 MHz can then be reached. Harmonic frequencies (overtones) may be used, but their coupling C_m/C_{12} is always smaller than that for the fundamental.

2.6 MEM Resonators

2.6.1 Basic Generic Structure

Very small resonators can be fabricated by be using the modern etching techniques that have been developed by the microelectronics industry. For compatibility with integrated circuits, these micro-electro-mechanical (MEM) resonators can be made of polysilicon glass, of aluminum or of silicon itself. The latter exhibits excellent mechanical characteristics, in particular a very high intrinsic quality factor.

However, these material are not piezoelectric, hence the resonator must be combined with an electromechanical transducer.

The transducer may be a layer of piezoelectric material deposited on the resonator, together with electrodes. The equivalent circuit is then qualitatively the same as that of the quartz resonator illustrated in Fig. 2.2. The coupling factor C_m/C_{12} is reduced by the fact that the transducer only represents a small volume of the resonator, but this may be compensated by using a piezoelectric material with a higher coupling coefficient than that of the quartz. It is thus possible to obtain a sufficiently high value of the intrinsic figure of merit defined by (2.10). The capacitance C_{12} of the transducer should be large enough to limit the reduction of the figure of merit *M* defined by (2.9) by parasitic capacitors.

Another interesting solution that avoids the need for piezoelectric material is to use an electrostatic transducer. Consider the lumped spring-mass equivalent of such a MEM resonator shown in Fig. 2.8 with its capacitive transducer.

Figure 2.8 Spring-mass equivalent of a MEM resonator with electrostatic transduction.

The equivalent mass of the resonator is m and k is the stiffness of the spring. The angular frequency of mechanical resonance is then given by

$$\omega_m = \sqrt{k/m},\tag{2.26}$$

whereas the electrical capacitance of the transducer is

$$C_{12} = A\varepsilon_0/g, \tag{2.27}$$

where A is the area, g is the gap and ε_0 the permittivity of free space.

Statically, the force F due to the electrical field should compensate the force kx of the spring for any value of x, hence:

$$F = QE = C_{12}V^2/g = A\varepsilon_0 V^2/g^2, \qquad (2.28)$$

For a small variation δV of the voltage V around its DC value V_0 , the variation of the force is

$$\delta F = 2A\varepsilon_0 V_0 \delta V/g^2, \qquad (2.29)$$

which moves the mass by

$$\delta x = \eta_d \delta F/k, \tag{2.30}$$

where $\eta_d \leq 1$ is a measure of the efficiency of the force to displace the mass, that depends on the mode of oscillation considered ($\eta_d = 1$ in the schematic case of Fig. 2.8). The corresponding variation of the stored mechanical energy E_m is then

$$\delta E_m = \frac{1}{2} \delta F \cdot \delta x = \frac{\eta_d \delta F^2}{2k} = \underbrace{\frac{2\eta_d A^2 \varepsilon_0^2 V_0^2}{kg^4}}_{C_m/2} \delta V^2. \tag{2.31}$$

The value of the motional capacitor is then given by

$$C_m = \frac{4\eta_d A^2 \varepsilon_0^2 V_0^2}{kg^4}.$$
 (2.32)

The intrinsic figure of merit of the resonator is then obtained by combining (2.32) and (2.27):

$$M_0 = \frac{QC_m}{C_{12}} = \frac{4\eta_d QA\varepsilon_0 V_0^2}{kg^3},$$
 (2.33)

or, by replacing the elastic constant by the mass according to (2.26)

$$M_0 = \frac{4\eta_d Q A \varepsilon_0 V_0^2}{m \omega_m^2 g^3}.$$
 (2.34)

It can be increased by decreasing the gap or by increasing the bias voltage V_0 . However, the latter is limited by the effect of electrostatic pulling. Indeed,

since V creates a force F that moves the mass by a distance x, the gap g is reduced with respect to its unbiased value g_0 and (2.28) can be rewritten as

$$F = \frac{A\varepsilon_0 V^2}{(g_0 - x)^2} = kx/\eta_s,$$
 (2.35)

where η_s is a measure the efficiency of the force to statically displace the mass ($\eta_s = 1$ in the schematic case of Fig. 2.8). By introducing the normalized position $\xi = x/g_0$, this equation becomes

$$\xi (1-\xi)^2 = \frac{\eta_s A \varepsilon_0}{k g_0^3} V^2 \quad \text{or} \quad V = \sqrt{\frac{k g_0^3}{\eta_s A \varepsilon_0}} (1-\xi) \sqrt{\xi}.$$
(2.36)

The system becomes unstable when ξ reaches the limit value ξ_l for which $dV/d\xi = 0$; indeed, for $\xi > \xi_l$, the electrostatic force increases faster than the force of the spring and the mass moves to $x = g_0$. This critical value is reached for

$$\frac{\mathrm{d}V}{\mathrm{d}\xi}|_{\xi=\xi_l} = 0 \quad \text{giving} \quad \xi_l = 1/3. \tag{2.37}$$

Introducing this value in (2.36) gives the limit value V_l of V

$$V_l = \sqrt{\frac{4kg_0^3}{27\eta_s A\varepsilon_0}},\tag{2.38}$$

or, by replacing k by m according to (2.26)

$$V_l = \omega_m \sqrt{\frac{4mg_0^3}{27\eta_s A\varepsilon_0}}.$$
 (2.39)

The bias voltage V_0 can only be some fraction of this limit voltage:

$$V_0 = \alpha V_1$$
 with $\alpha < 1.$ (2.40)

By introducing (2.40) and (2.38) in (2.33), we obtain an interesting expression for the all-important figure of merit:

$$M_{0} = \frac{QC_{m}}{C_{12}} = \frac{16}{27} \cdot \frac{\eta_{d}}{\eta_{s}} \alpha^{2} Q \frac{g_{0}^{3}}{g^{3}} \cong \frac{16}{27} \cdot \frac{\eta_{d}}{\eta_{s}} \alpha^{2} Q$$
(2.41)

where the second expression is a good approximation if $\alpha \ll 1$. Thus, for a given ratio η_d/η_s (which depends on the structure of the resonator), the

intrinsic figure of merit *only depends* on the quality factor and on the fraction α of the limit voltage at which the device is biased. The square of this fraction is the equivalent of the coupling factor of piezoelectric resonators.

According to (2.39), the limit voltage is proportional to the frequency and increases with $g_0^{3/2}$ and $m^{1/2}$. It can be decreased by increasing the area A of the transducer.

For a given frequency, the impedance level (and the value of motional resistor R_m for a given value of Q) is inversely proportional to C_{12} given by (2.27). Hence, it decreases as g/A. Because of the small value of area A possible with a thin resonator and of the difficulty to reduce the gap g much below 1 μ m, the value of C_{12} is expected to be at least one order of magnitude smaller than for quartz resonators.

2.6.2 Symmetrical Transducers

In many practical cases, the metallic MEM resonator is grounded and is driven by two electrostatic transducers operating in opposite phase according to the spring-mass equivalent depicted in Fig. 2.9. The spring of stiffness k is here represented by a massless flexible blade.

Figure 2.9 Spring-mass equivalent with symmetrical electrostatic transduction.

Using (2.28), the forces produced the two transducers are given by

$$F_1 = A_1 \varepsilon_0 V_1^2 / g_1^2$$
 and $F_2 = A_2 \varepsilon_0 V_2^2 / g_2^2$. (2.42)

The variation of net force $F_1 - F_2$ produced by small variations of V_1 and V_2 around their bias values V_{10} and V_{20} is thus

$$\delta F = \delta F_1 - \delta F_2 = 2\varepsilon_0 \left(\frac{A_1 V_{01}}{g_1^2} \delta V_1 - \frac{A_2 V_{02}}{g_2^2} \delta V_2 \right).$$
(2.43)

Let us assume that the bias situation is adjusted for no net force by imposing

$$\frac{A_1V_{01}}{g_1^2} = \frac{A_2V_{02}}{g_2^2} = \frac{AV_0}{g^2}.$$
(2.44)

Then

$$\delta F = 2A\varepsilon_0 V_0 (\delta V_1 - \delta V_2)/g^2, \qquad (2.45)$$

This result is identical to (2.29), since $\delta V_1 - \delta V_2 = \delta V$. Therefore, (2.31) also applies to this symmetrical transducer, for which the motional capacitor is also given by (2.32).

However, there is a major important difference with respect to the non symmetrical case. Indeed, since the body of the resonator is grounded, no capacitive coupling exists between nodes 1 and 2 in Fig. 2.2(a), hence $C_{12} = 0$. The intrinsic figure of merit M_0 is therefore infinite and the overall figure of merit M defined by (2.9) is only limited by all parasitic capacitors contributing to C_3 .
Chapter 3 General Theory of High-Q Oscillators

3.1 General Form of the Oscillator

In order to sustain the oscillation of the resonator, it must be combined with a circuit to form a full oscillator, as illustrated in Fig. 3.1(a).

Figure 3.1 General form of an oscillator: (a) combination of the resonator with a nonlinear circuit ; (b) splitting into motional impedance Z_m and circuit impedance $Z_{c(1)}$.

It is important to point-out that the *circuit must be nonlinear*, in order to impose the level of oscillation. Indeed, a linear circuit would be independ-

ent of the amplitude and would therefore not be capable of controlling this amplitude.

Now, as discussed in Chapter 2, the current I_m flowing through the motional impedance Z_m is always sinusoidal, thanks to the high value of quality factor Q. Therefore the best way to analyze the behavior of the oscillator, while including the necessary nonlinearity of the circuit, is to split it conceptually into the motional impedance Z_m and a circuit impedance containing all electronic components, including capacitors C_{12} , C_{10} and C_{20} of the resonator, as depicted in Fig. 3.1(b) [13, 14]. The current flowing through the electronic part $I_c = -I_m$ is then also sinusoidal.

Since I_c is sinusoidal, no energy can be exchanged with the circuit at multiples of the oscillating frequency (harmonics). The nonlinear circuit can therefore be characterized by its impedance $Z_{c(1)}$ for the fundamental frequency defined by

$$Z_{c(1)} = \frac{V_{(1)}}{I_c},\tag{3.1}$$

where I_c is the complex value of the sinusoidal current, and $V_{(1)}$ the corresponding complex value of the *fundamental component* of voltage V. Since the circuit is nonlinear $Z_{c(1)} = Z_{c(1)}(|I_c|)$: it is a *function of the amplitude* oscillation $|I_c|$. But it is practically *independent of* $p \ll 1$. It should be mentioned that this approach is a particular case of the general approach of oscillators proposed by H.J. Reich (see Section 75 of [15]).

In general, the locus of $Z_{c(1)}(|I_c|)$ cannot be calculated analytically. But it can be obtained by means of a circuit simulator according to the following procedure:

(a) The circuit is first fully described including its bias.

(b) A source of sinusoidal current of amplitude $|I_{c1}|$ is connected across terminals 1 and 2.

(c) The resulting stationary voltage V(t) is calculated by the simulator.

(d) The fundamental component $V_{(1)}$ of V(t) is calculated by Fourier analysis and $Z_{c(1)}(|I_{c1}|)$ is calculated according to (3.1).

(e) A new value $|I_{c2}|$ of the current source is selected and the process is iterated from step (c).

The result is the locus of $Z_{c(1)}(|I_c|)$ in the complex plane as illustrated by the qualitative example of Fig. 3.2. In this putative example, $Z_{c(1)}$ has been calculated (according to the above procedure) for 6 increasing values of $|I_c|$ corresponding to points 0 to 5.

As long as the sinusoidal current is small enough, the circuit remains linear and the voltage V(t) remains sinusoidal with a complex value $V_{(1)} = V$.

Figure 3.2 Qualitative example of the locus of $Z_{c(1)}(|I_c|)$.

This corresponds to point 0, where $Z_{c(1)}$ is identical to the small-signal impedance Z_c of the circuit. The real part of Z_c should be negative (as is the case in this example) to be able to compensate the losses of the resonator.

When the current is large enough to produce harmonic components of V(t), the amplitude $|V_{(1)}|$ of its fundamental component is normally progressively reduced, thereby reducing the negative real part of $Z_{c(1)}$, as is the case for points 1 to 4.

Too much current may produce so much nonlinearities that the real part of $Z_{c(1)}$ becomes positive, as shown by point 5.

In this example, the imaginary part of $Z_{c(1)}$ is negative, and corresponds to a circuit that contains only capacitors (functional or parasitic). Notice that, as shown in this example, this imaginary value is usually also affected by nonlinear effects.

3.2 Stable Oscillation

With the definition of $Z_{c(1)}$ introduced in the previous section, the equivalent circuit of the full oscillator can be represented by the resonant circuit shown in Fig. 3.3(a).

Let us define the negative resistance provided by the circuit

$$R_n \triangleq \operatorname{Re}(Z_{c(1)}). \tag{3.2}$$

The total resistance is thus $R_m + R_n$. It can easily be shown that any existing oscillation with therefore decay exponentially with a time constant

$$\tau \triangleq \frac{-2L_m}{R_m + R_n}.$$
(3.3)

But if this this net resistance is negative, the value of τ is positive and the amplitude grows exponentially. Thus, stable oscillation is obtained for

Figure 3.3 Oscillation: (a) equivalent circuit ; (b) intersection of the locus of $Z_{c(1)}(|I_c|)$ with that of $-Z_m(p)$.

$$R_n = \operatorname{Re}(Z_{c(1)}) = -R_m$$
 corresponding to $\tau = \infty$. (3.4)

At that point, the imaginary parts must also balance each other, thus the general condition for stable oscillation is simply given by

$$Z_{c(1)}(|I_c|) = -Z_m(p), \tag{3.5}$$

that is at the intersection point S of the locus of $Z_{c(1)}(|I_c|)$ with that of $-Z_m(p)$, as illustrated in Fig. 3.3(b). According to (2.8), the locus of $-Z_m(p)$ is a vertical line at the distance $-R_m$ from the imaginary axis.

At point S, the stable amplitude of motional current has the value

$$|I_{ms}| = |I_{cs}| = |I_c|_S \tag{3.6}$$

Equating the imaginary part of $Z_{c(1)}$ at point S with that of $-Z_m$ expressed by (2.8) gives the amount of frequency pulling at stable oscillation

$$p_s = -\frac{\omega C_m}{2} \operatorname{Im}(Z_{c(1)}|_S).$$
(3.7)

This relation provides the exact relative difference between the frequency of oscillation and the mechanical resonant frequency of the resonator. The effect of nonlinearities on the amount of frequency pulling is shown in Fig. 3.3(b) as the difference between the imaginary parts of $Z_{c(1)}$ at point S and at point 0 (linear case). It would be zero if the locus of $Z_{c(1)}(|I_c|)$ would be an horizontal line.

3.3 Critical Condition for Oscillation and Linear Approximation

The *critical condition for oscillation* occurs when points S and 0 coincide in Fig. 3.3(b), corresponding to $Z_{c(1)} \equiv Z_c$. It is thus simply expressed as

$$Z_c = -Z_m(p), \tag{3.8}$$

or, by separating the real and imaginary parts and according to (2.8)

$$\operatorname{Re}(Z_c) = -\operatorname{Re}(Z_m) = -R_m, \qquad (3.9)$$

and

$$\operatorname{Im}(Z_c) = -\operatorname{Im}(Z_m) = -\frac{2p_c}{\omega C_m},$$
(3.10)

where p_c is the amount of frequency pulling at the critical condition for oscillation.

Although these equations are only strictly valid at the verge of oscillation, when the amplitude is so small that the circuit remains linear, equations (3.8) to (3.10) can be used for a *linear approximation* of the real nonlinear case. In particular, equation 3.10 can be used to obtain an approximative value of frequency pulling p_s for larger amplitudes. This approximation gives a negligible error if the circuit is designed to eliminate the effect of nonlinearities on the frequency pulling p (see Fig. 3.3(b)).

3.4 Amplitude Limitation

As already pointed out, any oscillator must be nonlinear, in order to define the amplitude of oscillation. The resonator itself should be kept in its linear range of operation, in order to avoid aging or even destruction. Hence, the nonlinearity must be provided by the circuit. This nonlinearity must cause a progressive reduction of the negative resistance with the increase of oscillation current, which can be expressed as

$$R_n = R_{n0} \mathbf{F}(|I_c|) \tag{3.11}$$

where $F(|I_c|)$ is a monotonously decreasing function with F(0) = 1, and

$$R_{n0} = \operatorname{Re}(Z_c) \tag{3.12}$$

is the real part of the impedance of the linear circuit.

If the circuit is designed with a fixed amount of bias current, the amplitude limitation will be caused by instantaneous nonlinearities. These nonlinearities will reduce the amount of negative resistance by increasing the losses, while creating harmonic components of voltages. Intermodulation of these components will eventually create a new fundamental component of I_c with a different phase, which will affect the imaginary part of $Z_{c(1)}$ and therefore p_s .

This problem can be solved by using a bias regulator as illustrated by Fig. 3.4. Instead of maintaining a fixed value of bias current I_0 , the bias regulator reduces this current as the amplitude increases, as shown by the curve $I_0(|I_c|)$ in Fig. 3.4(a).

Figure 3.4 Amplitude limitation by bias regulator; (a) qualitative transfer function; (b) closed loop system.

For the oscillator itself, the critical condition is reached for a value I_{0crit} of I_0 . For any slight increase of I_0 above this value the oscillation grows, until it is limited by nonlinear effects. A further growth of the oscillation requires more bias current, as illustrated by the curve $|I_c|(I_0)$.

When the two blocks are connected in a closed loop as shown by Fig. 3.4(b), stable oscillation is given by the intersection point P of the two transfer functions. The amplitude $|I_{cs}|$ can be controlled to impose I_0 just above I_{0crit} , thereby producing a negligible amount of voltage distortion across the resonator.

Without regulator, and with the same start-up bias current, the amplitude would be stabilized at point P' by instantaneous nonlinearities (voltage distortion).

3.5 Start-up of Oscillation

As already established from Fig. 3.3(a), any existing motional current of amplitude $|I_{ca}|$ will grow exponentially according to

$$|I_c| = |I_{ca}| \exp \frac{t}{\tau} \tag{3.13}$$

where τ is the time constant given by (3.3). By differentiation

$$dt = \frac{\tau(|I_c|)}{|I_c|} d|I_c|$$
(3.14)

The value of $2L_m/\tau$ can be obtained graphically as illustrated in Fig. 3.5(a). As long as the current is small enough, the circuit remains linear with an

Figure 3.5 Start-up of oscillation: (a) variation of time constant τ ; (b) evaluation of the start-up time.

impedance Z_c (point 0) and this value is maximum, corresponding to a minimum value τ_0 of the time constant given by

$$\tau_0 = \frac{-2L_m}{R_m + R_{n0}} = \frac{2}{\omega^2 C_m} \cdot \frac{1}{-R_{n0} - R_m}.$$
(3.15)

When nonlinearities start to appear, the margin of negative resistance decreases, thereby increasing the time constant as shown in Fig. 3.5(b). This time constant become infinite at stable oscillation.

By introducing the expression (3.11) of $R_n(|I_c|)$ in (3.3), we obtain

$$\tau = \frac{-2L_m}{R_m + R_{n0} F(|I_c|)]},$$
(3.16)

which should be infinite for $|I_c| = |I_{cs}|$ (stable oscillation). Hence, by using (3.15)

$$\tau = \tau_0 \frac{1 - F(|I_{cs}|)}{F(|I_c|) - F(|I_{cs}|)}.$$
(3.17)

Introducing this result in (3.14) and integrating gives the time T_{ab} needed for the oscillation to grow from $|I_{ca}|$ to $|I_{cb}|$:

$$T_{ab} = \tau_0 \int_{|I_{ca}|}^{|I_{cb}|} \frac{1}{|I_c|} \frac{1 - \mathcal{F}(|I_{cs}|)}{\mathcal{F}(|I_c|) - \mathcal{F}(|I_{cs}|)} \mathbf{d}|I_c|, \qquad (3.18)$$

represented by the hatched area in Fig. 3.5(b). This time tends to infinity for $|I_{cb}| = |I_{cs}|$ (fully stable oscillation).

In absence of oscillation, some energy is provided by the thermal energy kT, corresponding to a total noise current of variance kT/L_m ; therefore the lower limit of $|I_{ca}|$ is

$$|I_{ca}| > \sqrt{kT/L_m} = \omega\sqrt{kTC_m}.$$
(3.19)

In practice, for quartz resonators, the start-up time to reach 90% of the stable amplitude ranges from 7 to 15 τ_0 .

3.6 Duality

The general analysis developed in the previous sections can be applied to all oscillators based on a series resonant circuit. It is applicable to high-Q parallel resonant circuits as well, by using the duality principle, as shown by Fig. 3.6.

Figure 3.6 Oscillator using a high-Q parallel resonant circuit.

The motional impedance Z_m becomes a parallel admittance

$$Y_p = G_p + j \frac{2p}{\omega L_p} = G_p + 2jp\omega C_p \tag{3.20}$$

The circuit impedance for the fundamental frequency $Z_{c(1)}$ becomes a circuit admittance for the fundamental frequency

$$Y_{c(1)} = \frac{I_{(1)}}{V_c},\tag{3.21}$$

where V_c is the complex value of the *sinusoidal* voltage across the parallel resonant circuit and $I_{(1)}$ is the corresponding complex value of the fundamental component of the distorted circuit current *I*. The condition for stable oscillation (3.5) becomes

$$Y_{c(1)}(|V_c|) = -Y_p(p), (3.22)$$

provided the amplitude and phase stability conditions (1.2) and (1.3) are fulfilled.

High-Q parallel resonant circuits are difficult to obtain by electrical components only, especially with small physical dimensions. But they can be part of the equivalent circuit of high-Q mechanical resonators associated with an electromagnetic transducer. The other parts of this equivalent circuit are then embedded in the circuit admittance $Y_{c(1)}$.

3.7 Basic Considerations on Phase Noise

3.7.1 Linear Circuit

For a linear circuit with time invariant noise sources, the phase noise of the oscillator may be analyzed by using the classical approach proposed by Leeson [16]. The equivalent circuit of the oscillator at stable oscillation is shown in Fig. 3.7.

A noise voltage of spectral density $4kTR_m$ is associated with the motional resistance R_m of the resonator. At stable oscillation, the real part of the circuit impedance is equal to $-R_m$ and can therefore be associated with an open-loop noise voltage V_n of spectral density S_{V^2} that can be expressed as

$$S_{V_{x}^{2}} = 4kT\gamma R_{m}, \qquad (3.23)$$

where γ is the noise excess factor that depends on the detailed noise contributions of the circuit.

At stable oscillation, the impedance Z_L that loads the total noise voltage source of spectral density $4kTR_m(1+\gamma)$ is that of the lossless series resonator

Figure 3.7 Equivalent circuit at stable oscillation for noise calculation. Z_L is the impedance loading the total noise voltage source of spectral density $4kTR_m(1 + \gamma)$.

formed by the motional components L_m and C_m of the resonator and by the capacitance C_c of the circuit.

The frequency of stable oscillation is given by

$$\omega_s = 2\pi f_s = \frac{1}{\sqrt{L_m C_t}},\tag{3.24}$$

where C_t is the series connection of C_m and C_c .

The loading impedance for noise sources may then be expressed as

$$Z_{L} = j\omega_{n}L_{m} + \frac{1}{j\omega_{n}C_{t}} = j\omega_{n}L_{m}\frac{(\omega_{n} + \omega_{s})(\omega_{n} - \omega_{s})}{\omega_{n}^{2}},$$
(3.25)

where ω_n is the frequency at which noise is considered.

For $(\omega_n - \omega_s)/\omega_s \ll 1$, this impedance is almost exactly given by

$$Z_L = 2j\omega L_m \frac{\omega_n - \omega_s}{\omega} = 2jQR_m \frac{\omega_n - \omega_s}{\omega}, \qquad (3.26)$$

where the second form is obtained by applying (2.3).

The power spectral density of the noise current I_{nL} circulating in the loop is then

$$S_{I_{nL}^2} = \frac{4kT(1+\gamma)R_m}{|Z_L|^2} = \frac{(1+\gamma)kT}{Q^2R_m} \left(\frac{\omega}{\Delta\omega}\right)^2,$$
(3.27)

where $\Delta \omega$ is the offset of the noise frequency ω_n with respect to the stable frequency of oscillation ω_s :

$$\Delta \omega = |\omega_n - \omega_s|. \tag{3.28}$$

This noise current is added to the oscillation (motional) current I_m . For an elementary bandwidth df at angular frequency ω , the corresponding complex phasors are illustrated in Fig. 3.8 at a given instant. Notice that the length of the noise phasor dI_n is a random value of variance S_{I_2} , df.

Figure 3.8 Complex phasors of oscillation current I_m and elementary noise currents dI_{nL} at a given instant.

Now, since the noise current is small compared to the oscillation current, the power spectrum of the phase noise ϕ_n can be expressed as

$$S_{\phi_n^2} = \frac{1}{2} \frac{S_{I_{nL}^2}}{(|I_m|/\sqrt{2})^2} = \frac{(1+\gamma)kT\omega^2}{Q^2 R_m |I_m|^2 \Delta \omega^2},$$
(3.29)

where $|I_m|/\sqrt{2}$ is the RMS value of the oscillation current. The factor 1/2 introduced in the first form is due to the fact that only half of the noise power is translated into phase noise, whereas the other half becomes amplitude noise.

Using expressions (2.24) and (2.23) of the power P_m dissipated in the resonator and of the energy E_m of oscillation, (3.29) becomes

$$S_{\phi_n^2} = \frac{(1+\gamma)kT\omega^2}{2Q^2 P_m \Delta \omega^2} = \frac{(1+\gamma)kT\omega}{2QE_m \Delta \omega^2}.$$
(3.30)

The power spectrum of phase noise is thus proportional to $1/\Delta\omega^2$. However, this law is no longer valid when $\Delta\omega$ tends to zero, because of the unavoidable mechanism of amplitude limitation.

For a given oscillation frequency ω , $S_{\phi_n^2}$ is inversely proportional to the energy of oscillation E_m and to the quality factor Q.

3.7.2 Nonlinear Time Variant Circuit

The results derived in the previous section are only valid if the amplitude of oscillation is so small that the circuit remains linear and the noise sources are time invariant. But to reduce the phase noise, the amplitude must be increased to increase the motional current I_m and the energy of oscillation E_m . As a result, the circuit becomes nonlinear and the noise produced by the active devices becomes cyclostationary (even when it remains white). Phase noise can then be analyzed by using the impulse sensitivity function (ISF) introduced by Hadjimiri and Lee [6].

Consider the equivalent circuit of a quartz oscillator at stable oscillation illustrated in Fig. 3.9 It is a second order system with two state variables.

Figure 3.9 Equivalent circuit of the oscillator for nonlinear analysis of phase noise.

One is the current flowing through the single inductance L_m . The second is the total voltage across the capacitances that exchange their energy with the inductance at every cycle of oscillation. The loss resistance R_m and the active device that compensates for it are ignored in a first approximation. Indeed, the energy dissipation in R_m during each cycle is $2\pi/Q$ the total energy of oscillation, thus a very small percentage for large values of the quality factor Q. Therefore, we will simplify the analysis by assuming that the voltage across all the capacitors of the loop is *perfectly sinusoidal*.

Two separate noise sources are shown, both of them possibly cyclostationary. A voltage noise source in series with the inductance and composed of a stationary noise $V_n(t)$ multiplied by a modulation function α_v synchronous with the current. A current noise source in parallel with a capacitor $C_i \gg C_m$ and composed of a stationary noise $I_n(t)$ multiplied by a modulation function α_i synchronous with the voltage.

According to [6], the phase noise spectrum density resulting from the white noise voltage $V_n(t)$ of spectral density S_{V^2} can be expressed as

$$S_{\phi_n^2} = \frac{\overline{\Gamma_v^2} \cdot S_{V_n^2}}{2(L_m |I_m|)^2 \Delta \omega^2},$$
(3.31)

where Γ_v is the effective *impulse sensitivity function* (ISF) given, for the *sinusoidal* current $|I_m|\cos\phi$, by

$$\Gamma_{v} = -\sin\phi \cdot \alpha_{v}(\phi). \tag{3.32}$$

The product $L_m|I_m|$ is the maximum magnetic flux in the inductor and $\Delta \omega$ is given by (3.28).

With a white noise current $I_n(t)$ source of spectral density $S_{I_n^2}$, the phase noise spectrum is

$$S_{\phi_n^2} = \frac{\overline{\Gamma_i^2} \cdot S_{I_n^2}}{2(C_i |V_i|)^2 \Delta \omega^2} \cdot \left(\frac{C_m}{C_i}\right)^2, \qquad (3.33)$$

where Γ_i is the effective impulse sensitivity function given, for the *sinusoidal* voltage $|V_i| \sin \phi$, by

$$\Gamma_i = \cos\phi \cdot \alpha_i(\phi). \tag{3.34}$$

The product $C_i|V_i|$ is the maximum charge in capacitors C_i and C_m . The factor (C_m/C_i) corresponds to the fraction of the total voltage (state variable) that appears across $C_i \gg C_m$.

According to [6], the phase noise spectrum density due to a 1/f flicker noise voltage source of spectral density K_{fv}/ω_n is

$$S_{\phi_n^2} = \frac{\overline{\Gamma_v}^2 \cdot K_{fv}}{(L_m |I_m|)^2 \Delta \omega^3}.$$
(3.35)

The effective ISF Γ_{v} is still defined by (3.32), but may be *different* from that for white noise.

With a flicker noise current source of spectral density K_{fi}/ω_n , the phase noise spectral density is

$$S_{\phi_n^2} = \frac{\overline{\Gamma_i}^2 \cdot K_{fi}}{(C_i |V_i|)^2 \Delta \omega^3} \cdot \left(\frac{C_m}{C_i}\right)^2.$$
(3.36)

The effective ISF Γ_i is still defined by (3.34), but may be *different* from that for white noise.

The phase noise spectrum density due to white noise sources is proportional to $1/\Delta\omega^2$ and to the mean square value of the corresponding ISF. For 1/f flicker noise sources, this density is proportional $1/\Delta\omega^3$ and to the square of the mean value of the effective ISF.

The phase noise due to the motional resistance R_m alone can be obtained by introducing the corresponding thermal noise density $S_{V_n^2} = 4kTR_m$ in (3.31), with $\alpha_v = 1$ in the expression (3.32) of the effective ISF. Replacing L_m by QR_m/ω gives

$$S_{\phi_n^2} = \frac{kT\omega^2}{Q^2 R_m |I_m|^2 \Delta \omega^2},$$
(3.37)

which is identical to (3.29) for $\gamma = 0$ (no contribution of the circuit).

If the noise current across capacitor C_i comes from the active device that compensates for losses, the current delivered by this active device produces a change in voltage V_i . During each period of oscillation, the relative change of energy in C_i to compensate the loss in R_m must be

$$\frac{\Delta E_c}{E_c} = \frac{2\pi C_i}{QC_m},\tag{3.38}$$

which is C_i/C_m larger than the relative loss in the resonator itself. Thus, even with a large value of Q, the assumption of a sinusoidal voltage V_i across C_1 becomes a *crude approximation* when the current is strongly distorted. Without this approximation, the ISF is much more complicated and a precise calculation of the phase noise can only be obtained by numerical computation.

3.8 Model of the MOS Transistor

The most important nonlinear devices in the circuit are the transistors. Hence their proper modelling is essential for nonlinear analyses. Fig. 3.10 shows the symbols used for N-channel and P-channel MOS transistors. Unlike bipolar transistors, MOS transistors are *4-terminal devices*. They have an intrinsic symmetry that can be preserved in the model by using the local substrate B as the reference for voltages. This local substrate is normally common to all transistors of the same type, and is connected to one rail of the power supply (negative rail for the N-channel p-substrate, positive rail for the P-channel n-substate). Hence, the corresponding electrode is usually not represented in schematics, except when it is connected differently.

The static drain current I_D of a MOS transistor depends on the values of the gate voltage V_G , the source voltage V_S and the drain voltage V_D , all of them being defined with respect to the substrate B of the transistor, as defined in Fig. 3.10. According to the EKV model [17, 18], it can be expressed as the difference of two values of a function $I(V, V_G)$, for $V = V_S$ and $V = V_D$:

$$I_D = I(V_S, V_G) - I(V_D, V_G) = I_F - I_R,$$
(3.39)

where the first term is called the forward (component of) current I_F and the second the reverse (component of) current I_R . A simple but sufficiently accurate expression of these symmetrical currents valid in a wide range of current is [19]

Figure 3.10 Definitions of currents and voltages; (a) for a N-channel transistor; (b) for a P-channel transistor.

$$I_{F(R)} = I_{spec} \left[\ln \left(1 + \exp \frac{V_G - V_{T0} - nV_{S(D)}}{2nU_T} \right) \right]^2, \quad (3.40)$$

where V_{T0} is the threshold voltage (its value for $V_S = 0$), *n* the slope factor (value ranging from 1.1 to 1.6) and $U_T = kT/q$ the thermodynamic voltage (26 mV at 27°C). I_{spec} is the specific current of the transistor given by

$$I_{spec} \triangleq 2n\mu C_{ox} \frac{W}{L} U_T^2, \qquad (3.41)$$

which depends on the mobility μ of carriers in the channel, on the gate oxide capacitance per unit area C_{ox} , and on the width-to-length ratio of the channel W/L.

In normal situations $(V_D > V_S \text{ for a N-channel transistor})$, the forward current $I_F = I(V_S, V_G)$ is larger than the reverse current $I_R = I(V_D, V_G)$.

If $I_R \ll I_F$ the transistor is in *saturation*. The drain current becomes independent on the drain voltage since I_F only depends on V_G and V_S .

If $I_{F(R)} \ll I_{spec}$, this component is in *weak inversion* and can be simplified to

$$I_{F(R)} = I_{spec} \exp \frac{V_G - V_{T0} - nV_{S(D)}}{nU_T}$$
(3.42)

If $I_{F(R)} \gg I_{spec}$, it is in *strong inversion* and can be simplified to

$$I_{F(R)} = I_{spec} \left(\frac{V_G - V_{T0} - nV_{S(D)}}{2nU_T}\right)^2 = \frac{\beta}{2n} (V_G - V_{T0} - nV_{S(D)})^2, \quad (3.43)$$

where

$$\beta \triangleq \mu C_{ox} W / L \tag{3.44}$$

is the transfer parameter that can be used instead of I_{spec} .

The amount of inversion in the transistor can be characterized by the inversion coefficient IC defined as

3 General Theory of High-Q Oscillators

$$IC \triangleq \max\left(\frac{I_F}{I_{spec}}, \frac{I_R}{I_{spec}}\right). \tag{3.45}$$

If I_F and I_R are both in weak inversion, the transistor itself operates in weak inversion. Saturation $(I_R \ll I_F)$ is then obtained for

$$V_D > V_{Dsat} = V_S + 4U_T$$
 to $6U_T$ (saturation in weak inversion). (3.46)

The transistor operates in strong inversion as soon of one of components is in strong inversion. Saturation $(I_R \ll I_F)$ is then approximately obtained for

$$V_D > V_{Dsat} = \frac{V_G - V_{T0}}{n} = V_S + 2U_T \sqrt{IC} \text{ (satur. in strong inversion). (3.47)}$$

For small variations of the control voltages around a bias point, the device remains linear and the variation of drain current can be expressed as

$$\delta I_D = -G_{ms} \delta V_S + G_{md} \delta V_D + G_m \delta V_G, \qquad (3.48)$$

where G_m is the usual small-signal gate transconductance, and $G_{ms(d)}$ is the small-signal source (drain) transconductance given by

$$G_{ms(d)} \triangleq -\frac{\mathrm{d}I_{F(R)}}{\mathrm{d}V_{S(D)}}.$$
(3.49)

It can be obtained by differentiation of (3.40):

$$G_{ms(d)} = \frac{\sqrt{I_{F(R)}I_{spec}}}{U_T} \left(1 - e^{-\sqrt{I_{F(R)}/I_{spec}}}\right).$$
(3.50)

For strong inversion, it can be expressed as a function of the voltages by differentiation of (3.43), or as a function of currents from (3.50) with $I_{F(R)} \gg 1$:

$$G_{ms(d)} = \beta (V_G - V_{T0} - nV_{S(D)}) = \frac{\sqrt{I_{F(R)}I_{spec}}}{U_T}.$$
 (3.51)

In weak inversion, (3.50) becomes simply

$$G_{ms(d)} = I_{F(R)} / U_T \tag{3.52}$$

It can easily be shown that the more usual gate transconductance is related to G_{ms} and G_{md} by

Low-Power Crystal and MEMS Oscillators

$$G_m \triangleq \frac{\mathrm{d}I_D}{\mathrm{d}V_G} = \frac{G_{ms} - G_{md}}{n}.$$
(3.53)

Hence in weak inversion:

$$G_m = \frac{1}{n} \left[\frac{I_F}{U_T} - \frac{I_R}{U_T} \right] = \frac{I_D}{nU_T} \quad \text{(weak inversion)}. \tag{3.54}$$

In forward saturation, $I_R \ll I_F$ and $G_{md} \ll G_{ms}$. The general expression of the gate transconductance is then:

$$G_m = \frac{G_{ms}}{n} = \frac{\sqrt{I_D I_{spec}}}{nU_T} \left(1 - e^{-\sqrt{I_D/I_{spec}}} \right) = \frac{I_D}{nU_T} \cdot \frac{1 - e^{-\sqrt{IC}}}{\sqrt{IC}}, \quad (3.55)$$

In strong inversion, it is reduced to

$$G_m = \frac{G_{ms}}{n} = \frac{\sqrt{I_D I_{spec}}}{nU_T} = \frac{I_D}{nU_T \sqrt{IC}} = \sqrt{\frac{2\beta I_D}{n}} = \frac{\beta}{n} (V_G - V_{T0} - nV_S).$$
(3.56)

It should be mentioned that even in saturation (i.e. for $I_D = I_F$), the drain current I_D remains slightly dependent on the drain voltage, due to the phenomenon of channel length modulation. This effect can be modelled by a source-to-drain conductance G_{ds} that can be approximated by

$$G_{ds} = I_D / V_M, \tag{3.57}$$

where V_M is the channel length modulation voltage, proportional to the length L of the channel. If the channel is not too short (sufficiently longer than the minimum length allowed by the process), the intrinsic voltage gain of the transistor in saturation

$$A_{V0} \triangleq G_m / G_{ds} = \frac{V_M}{nU_T} \cdot \frac{1 - e^{-\sqrt{IC}}}{\sqrt{IC}}$$
(3.58)

is much larger than unity but is reduced for large values of IC.

The most fundamental source of noise of the transistor is its channel noise. It can be modelled by a noise current of spectral density $S_{I_{nD}^2}$ independent of the frequency, which is added to the drain current. For $V_D = V_S$ (thus for $I_D = I_F - I_R = 0$), this noise is the thermal noise of the channel conductance equal to G_{ms} and G_{md} :

$$S_{I_{nD}^2} = 4kTG_{ms} \quad \text{for} \quad V_D = V_S \tag{3.59}$$

As shown by Fig. 3.11, when the transistor is saturated this spectral density is reduced to

$$S_{I_{nD}^2} = 4kT\gamma_t G_{ms} = 4kT\gamma_t nG_m \quad \text{in saturation}, \qquad (3.60)$$

where γ_t is the channel noise excess factor of the transistor, of value 1/2 in weak inversion and 2/3 in strong inversion. These values can be higher in short-channel devices. Notice that in saturation, the noise of the transistor

Figure 3.11 Variation of the channel noise spectral density with increasing $V_{DS} = V_D - V_S$.

in weak inversion is the shot noise associated with the forward current $I_F = I_D \gg I_R$:

$$S_{I_{nD}^2} = 2qI_D$$
 (saturated weak inversion). (3.61)

In strong inversion, the noise for a given value of drain current is reduced, since G_{ms}/I_D is reduced.

Flicker noise due to carrier trapping and mobility fluctuations is also important in MOS transistors. Since its spectral density is inversely proportional to the frequency, it dominates at low frequencies. It can be approximated by a noise voltage V_{nG} added to the gate voltage, with a spectral density $S_{V_{nG}^2}$ given by

$$S_{V_{nG}^2} = \frac{K_f}{\omega_n}$$
 where $K_f \propto \frac{1}{WL}$. (3.62)

This noise voltage is minimum in moderate inversion and increases only slowly in weak and in strong inversion. Hence, in a first approximation, K_f can be considered *constant*. In a given process, it can be reduced by increasing the gate area *WL*.

Chapter 4 Theory of the Pierce Oscillator

4.1 Basic Circuit

The simplest possible oscillator uses a single active device to generate the required negative resistance. If no inductance is available, the only possibility is the 3-point oscillator developed in 1923 by G. W. Pierce [2, 3]. The principle of this oscillator is depicted in Fig. 4.1. The active device is assumed to

Figure 4.1 Basic 3-point Pierce oscillator (biasing omitted).

be a MOS transistor, but it could be a bipolar transistor as well. The source of the MOS transistor is connected to its substrate, to make it a 3-terminal device. The bias circuitry needed to activate the transistor is omitted here. Capacitors C_1 and C_2 connected between gate and source, respectively drain and source, are functional: they must have finite values in order to obtain a negative resistance across the motional impedance of the resonator.

This oscillator is very similar to the Clapp circuit [20], except for the presence of the unavoidable capacitance in parallel with the series motional

resonator. The presence of this capacitance has important implications on the behavior of the circuit.

Assuming that the transistor is saturated, the equivalent circuit of this structure is that of Fig. 4.2.

Figure 4.2 General equivalent circuit of the Pierce oscillator.

The active part of the saturated transistor is represented by the voltagecontrolled current source $I_D(V_G)$. The three passive dipoles D_1 , D_2 and D_3 include all remaining parts of the equivalent circuit of the transistor itself, as well as the functional and parasitic components of the biasing circuitry. Moreover, in accordance with Fig. 3.1(a), D_3 includes the capacitance C_{12} of the quartz resonator, whereas C_{10} and C_{20} are included in D_1 and D_2 respectively. Notice that each of these three dipole may be nonlinear, as for example D_1 if the active device is a bipolar transistor. The rest of the circuit is the motional impedance Z_m of the resonator.

4.2 Linear Analysis

4.2.1 Linearized Circuit

Linearizing the general equivalent circuit of Fig. 4.2 around a biasing point of the active device results in the equivalent circuit of impedance Z_c depicted in Fig. 4.3(a). Assuming no inductance dominates, the three passive dipoles D_i becomes linear complex impedance given by

$$Z_i = \frac{1}{G_i + j\omega C_i},\tag{4.1}$$

Figure 4.3 Linearized equivalent circuit of the oscillator.

that are practically independent of slight amount of frequency pulling $p \ll 1$. The voltage-controlled current source becomes $G_m V_1$, where G_m is the gate transconductance of the transistor and V_1 the complex voltage across Z_1 .

The linear circuit impedance Z_c can easily be expressed as

$$Z_c = \frac{Z_1 Z_3 + Z_2 Z_3 + G_m Z_1 Z_2 Z_3}{Z_1 + Z_2 + Z_3 + G_m Z_1 Z_2},$$
(4.2)

which corresponds to the compact small-signal model of Fig. 4.3(b). The circuit impedance Z_c is thus a *bilinear function of* G_m . Bilinear functions transform circles into circles in the complex plane [8], therefore the locus of $Z_c(G_m)$ for G_m changing from $-\infty$ to $+\infty$ (circle of infinite radius) is a circle, as illustrated in Fig. 4.4. It should not be confused with the locus of $Z_{c(1)}(|I_c|)$ represented in Fig. 3.3.

Since the reactive components of Z_i are all capacitive, this circle is located in the lower half of the complex plane (negative imaginary part). The real part of Z_c can only be negative (providing a negative resistance) when the circuit is made active by a positive value of G_m . However, the circuit remains passive if G_m is too small to compensate the losses due to the reals part of Z_i . Moreover, as can be seen in the figure, is also remains passive if G_m is too large.

The real value of Z_c is minimum for a particular value G_{mopt} of transconductance. It is the maximum absolute value of negative resistance $|R_{n0}|_{max}$ that can be obtained.

The locus of $-Z_m(p)$ given by (2.8) is plotted in dotted line in the same figure. It is a vertical strait line at distance $-R_m$ of the imaginary axis.

According to (3.8), the critical condition for oscillation is reached at the intersection of the two loci. For the particular case depicted in Fig. 4.4, there are two solutions labelled A and B. We will show later that solution B is unstable, because it does not fulfill the condition (1.2) for phase stability.

Figure 4.4 Loci of $Z_c(G_m)$ and $-Z_m(p)$ in the complex plane.

The only stable solution is at intersection A, for the particular value G_{mcrit} of G_m called *critical transconductance* for oscillation.

If G_m is increased beyond G_{mcrit} , the oscillation will start up and grow exponentially with time constant τ_0 given by (3.15) (as long as the circuit remains linear). A maximum amount of net negative resistance $R_{n0} + R_m$ is obtained for $G_m = G_{mopt}$, corresponding to a minimum value of time constant τ_0 . If G_m is increased beyond G_{mcrit} , τ_0 starts increasing again, until it becomes infinite at point B, for $G_m = G_{mmax}$.

If the quality factor Q given by (2.3) decreases, then R_m increases and the intersection points A and B move to the left. They approach each other, until they merge into a single point, when $-Z_m(p)$ becomes tangent to $Z_c(G_m)$. No solution exists for $R_m > |R_{n0}|_{max}$; no oscillation is then possible, whatever the value of transconductance G_m .

For the critical condition, the frequency pulling p takes the value p_c obtained by equating the imaginary part of Z_c at point A with that of $-Z_m$ given by (2.8). This yields

$$p_c = -\frac{\omega C_m}{2} \mathrm{Im}(Z_c|_A). \tag{4.3}$$

Now, it is important to notice that the variation of R_m due to a variation of quality factor Q moves the point A not only horizontally, but also *vertically*, proportionally to the slope $dIm(Z_c)/dRe(Z_c)$ at point A. Hence, according to (4.3):

Low-Power Crystal and MEMS Oscillators

$$\frac{\mathrm{d}p_c}{\mathrm{d}Q/Q} = -\frac{\mathrm{d}p_c}{\mathrm{d}R_m/R_m} = -\frac{\omega C_m R_m}{2} \frac{\mathrm{d}\mathrm{Im}(Z_c)}{\mathrm{d}\mathrm{Re}(Z_c)}|_A = -\frac{1}{2Q} \frac{\mathrm{d}\mathrm{Im}(Z_c)}{\mathrm{d}\mathrm{Re}(Z_c)}|_A.$$
 (4.4)

Since, even in good resonators, the quality factor can change by a large amount with temperature variations, this sensitivity to the quality factor should be minimized to avoid a degradation of the frequency stability. This can be obtained by pushing the point A as close as possible to the top of the circle, where the sensitivity is zero (horizontal tangent). Notice that this sensitivity tends to infinity when R_m approaches $|R_{n0}|_{max}$.

The radius of the circle increases with the value of Z_3 . If Z_3 is infinite, then

$$Z_c = Z_1 + Z_2 + G_m Z_1 Z_2$$
 for $Z_3 = \infty$ (4.5)

becomes a *linear function* of G_m . As illustrated in Fig. 4.5, this corresponds to a circle of infinite radius. The maximum value of $|R_{n0}|$ is no longer limited,

Figure 4.5 Locus of $Z_c(G_m)$ for infinite Z_3 .

and the slope of this strait-line locus would be zero if Z_1 and Z_2 would be purely capacitive. However, if the capacitors have losses represented by their loss angles δ_1 and δ_2 as shown in the figure, the locus of $Z_c(G_m)$ has a slope characterized by an angle $\delta_1 + \delta_2$, and some sensitivity of p_c to Q remains.

Notice that an infinite value of Z_3 cannot be obtained with an electromechanical resonator. Indeed, since the figure of merit M_0 defined by (2.10) is never infinite, the electrical capacitance C_{12} always remains as a component of Z_3 . The situation of Fig. 4.5 can be approached by using large values of C_1 and C_2 , in order to obtain $Z_1 + Z_2 \ll Z_3$ for $G_m \ll G_{mopt}$.

4.2.2 Lossless Circuit

To obtain a maximum activity and a minimum sensitivity of the frequency to the quality factor, the circuit should be made of lossless capacitors, thus

$$Z_i = \frac{1}{j\omega C_i} \tag{4.6}$$

The expression (4.2) of the circuit impedance then becomes

$$Z_{c} = \frac{-G_{m}C_{1}C_{2} - j[\omega(C_{1} + C_{2})(C_{1}C_{2} + C_{2}C_{3} + C_{3}C_{1}) + G_{m}^{2}C_{3}/\omega]}{\omega^{2}(C_{1}C_{2} + C_{2}C_{3} + C_{3}C_{1})^{2} + (G_{m}C_{3})^{2}}.$$
 (4.7)

The locus $Z_c(G_m)$ of Fig. 4.4 is now centered on the imaginary axis, as shown in Fig. 4.6. The right half of the circle corresponding to negative values of transconductance is of no practical interest. For $G_m = 0$ the circuit impedance

Figure 4.6 Loci of $Z_c(G_m)$ and $-Z_m(p)$ in the complex plane for a lossless circuit.

is imaginary and has the value

$$Z_c = \frac{-j}{\omega(C_3 + C_s)} \quad \text{for } G_m = 0, \tag{4.8}$$

where C_s is the series combination of C_1 and C_2 :

$$C_s = \frac{C_1 C_2}{C_1 + C_2} \tag{4.9}$$

It is also imaginary for $G_m = \infty$ where it has the value

$$Z_c = \frac{-j}{\omega C_3} \quad \text{for } G_m = \infty. \tag{4.10}$$

Some negative resistance is produced for $0 < G_m < \infty$, with a maximum given by the radius of the circle. Hence, from (4.8) and (4.10):

$$|R_{n0}|_{max} = \frac{1}{2\omega C_3 (1 + C_3/C_s)}.$$
(4.11)

The minimum possible value of the start-up time constant τ_0 can be obtained by introducing this expression in (3.15):

$$\frac{1}{\tau_{0min}} = \omega \left(\frac{C_m}{4C_3(1 + C_3/C_s)} - \frac{1}{2Q} \right) = \frac{\omega}{2Q} \left(\frac{M}{2(1 + C_3/C_s)} - 1 \right), \quad (4.12)$$

where the figure of merit M is defined by (2.9).

The value of transconductance producing this maximum can be obtained by equating to zero the first derivative of the real part of Z_c in (4.7). This gives

$$G_{mopt} = \omega \left(C_1 + C_2 + \frac{C_1 C_2}{C_3} \right).$$
(4.13)

By using the fact that the locus of $Z_c(G_m)$ is a centered circle of radius $|R_{n0}|_{max}$, and remembering that $\operatorname{Re}(Z_c) = R_{n0}$, the imaginary part of the circuit impedance can be expressed as

$$\operatorname{Im}(Z_c) = -\frac{1}{\omega(C_s + C_3)} - |R_{n0}|_{max} \left[1 \pm \sqrt{1 - \left(\frac{|R_{n0}|}{|R_{n0}|_{max}}\right)^2} \right], \quad (4.14)$$

whereas the slope of the locus is given by

$$\frac{\mathrm{dIm}(Z_c)}{\mathrm{dRe}(Z_c)} = \frac{\pm 1}{\sqrt{\left(\frac{|R_{n0}|_{max}}{|R_{n0}|}\right)^2 - 1}}.$$
(4.15)

It is zero on the imaginary axis $(|R_{n0}| = 0)$ and infinite for $|R_{n0}| = |R_{n0}|_{max}$.

The locus of $-Z_m(p)$ is also reported in Fig. 4.6, for a particular value of motional resistance R_m . A necessary condition for oscillation is that $R_m = |R_{n0}| < |R_{n0}|_{max}$. By introducing (4.11), (2.3) and (2.9), this condition can be expressed as

$$M = \frac{QC_m}{C_3} > 2(1 + C_3/C_s) > 2.$$
(4.16)

Hence *no oscillation is possible* with the Pierce oscillator if the factor of merit M of the resonator (and *a fortiori* its intrinsic value M_0) is smaller than two. This is because the lumped impedance between the drain and the gate in Fig. 4.1 must become inductive.

Moreover, the condition (4.16) must be fulfilled with a large margin, in order to limit the sensitivity the oscillator frequency to variations of Q. Thus we shall impose a margin factor

$$K_m \triangleq \frac{|R_{n0}|_{max}}{R_m} = \frac{M}{2(1+C_3/C_s)} \gg 1.$$
 (4.17)

Then, according to (4.4) and (4.15) the sensitivity at of the frequency at the stable solution A is given

$$\frac{\mathrm{d}p_c}{\mathrm{d}Q/Q} = \frac{-1}{2Q\sqrt{K_m^2 - 1}}.$$
(4.18)

It is drastically degraded when K_m approaches 1.

The exact amount of frequency pulling at the stable point A is obtained by introducing (4.14) (with the minus sign in the parenthesis) and (4.17) into (4.3), giving

$$p_c = \frac{C_m}{2(C_s + C_3)} + \frac{C_m}{4C_3(1 + C_3/C_s)} \left(1 - \sqrt{1 - \frac{1}{K_m^2}}\right).$$
 (4.19)

If $K_m^2 \gg 1$, this expression can be approximated by

$$p_c \cong \frac{C_m}{2(C_s + C_3)} + \frac{1}{2QM} \left(1 + \frac{C_3}{C_s}\right).$$
 (4.20)

Now, since usually $QM \gg (C_s + C_3)/C_m$, this result can be further simplified by neglecting the second term:

$$p_c \cong \frac{C_m}{2(C_s + C_3)}.$$
 (4.21)

The amount of frequency pulling is then independent of the quality factor. The capacitance that is responsible for the frequency pulling, in this case $C_s + C_3$, is usually called (in quartz data sheets) the *load capacitance* of the resonator.

The value of transconductance at solutions A and B in Fig. 4.6 is obtained by equating the real part of Z_c in (4.7) with $-R_m$ and solving for G_m . This yields

$$G_m = \frac{C_1 C_2}{2R_m C_3^2} \left[1 \pm \sqrt{1 - \left[\frac{2}{M} \left(1 + \frac{C_3}{C_s}\right)\right]^2} \right], \qquad (4.22)$$

where the positive sign gives the maximum value (at point B) and the negative sign gives the critical value. According to (4.17) the squared term in the square root is $1/K_m^2$. If $K_m^2 \gg 1$, this result can be approximated to give the maximum transconductance

$$G_{mmax} \cong \frac{C_1 C_2}{R_m C_3^2} = \frac{\omega C_m C_1 C_2 Q}{C_3^2} = M \frac{\omega C_1 C_2}{C_3},$$
(4.23)

and the critical transconductance (for the lossless circuit)

$$G_{mcrit0} \cong \omega^2 R_m C_1 C_2 (1 + C_3 / C_s)^2 = \frac{\omega}{Q C_m} C_1 C_2 (1 + C_3 / C_s)^2.$$
(4.24)

It is worth noticing that the ratio

$$\frac{G_{mmax}}{G_{mcrit0}} \cong \frac{M^2}{(1+C_3/C_s)^2} \underbrace{\cong}_{\text{for } C_3 \ll C_s} M^2$$
(4.25)

is essentially dependent on the figure of merit M.

It is interesting to replace the squared parenthesis in (4.24) by its value obtained from (4.21). The critical transconductance can then be expressed as

$$G_{mcrit0} \cong \frac{\omega C_m}{Q p_c^2} \frac{(C_1 + C_2)^2}{4C_1 C_2} \underset{\text{for } C_2 = C_1}{=} \frac{\omega C_m}{Q p_c^2}.$$
(4.26)

For a given quartz resonator, the critical transconductance is thus inversely proportional to the square of the frequency pulling p_c and is minimum for $C_1 = C_2$. Hence, decreasing the sensitivity of the frequency of oscillation to circuit parameters by decreasing p_c requires a large increase of bias current. This is especially true if the device is a MOS transistor operated in strong inversion: indeed, the transconductance is then only proportional to the square root of the bias current; decreasing p_c by a factor 10 would then require 10'000 more current!

For $C_1 = C_2$ (4.24) becomes

$$G_{mcrit0} \cong \omega^2 R_m (C_1 + 2C_3)^2 = \frac{\omega}{QC_m} (C_1 + 2C_3)^2.$$
 (4.27)

4.2.3 Phase Stability

In order to verify the phase stability condition (1.2), the overall oscillator can be opened at the gate of the transistor, as illustrated in Fig. 4.7.

Figure 4.7 Open-loop oscillator for calculation of gain G.

The open-loop gain G is then easily calculated to be

$$G = \frac{V_1'}{V_1} = \frac{-G_m Z_1 Z_2}{Z_1 + Z_2 + \frac{Z_3 Z_m}{Z_3 + Z_m}},$$
(4.28)

where Z_m is given by (2.8) and Z_1 to Z_3 by (4.6) for a lossless oscillator. To simplify the analysis, let us assume that $|Z_1 + Z_2| \ll |Z_3 Z_m (Z_3 + Z_m)|$ (very large values of C_1 and C_2), which should have no effect on the phase stability. The tangent of the argument of *G* is then obtained as

$$\tan\left(\arg G\right) = \frac{4C_3}{\omega C_m^2 R_m} p^2 - \frac{2p}{\omega C_m R_m} + \omega C_3 R_m, \qquad (4.29)$$

the derivative of which is

$$\frac{\mathrm{d}(\tan\left(\arg G\right))}{\mathrm{d}p} = \frac{2}{\omega C_3 R_m} \left(\frac{4pC_3}{C_m} - 1\right). \tag{4.30}$$

Now, since the sign of $d(\arg G)/d\omega$ is the same as that of $d(\tan(\arg G))/dp$, condition (1.2) becomes

stable phase for
$$p < \frac{C_m}{4C_3}$$
 (point A) (4.31)

unstable phase for
$$p > \frac{C_m}{4C_3}$$
 (point B). (4.32)

Thus, point A of figures 4.4 and 4.6 is indeed stable, whereas point B in unstable.

4.2.4 Relative Oscillator Voltages

By lumping the parallel impedances Z_m and Z_3 in to a single impedance Z_x , the overall oscillator at small signals can be redrawn as shown in Fig. 4.8.

Figure 4.8 Calculation of voltage ratios.

Now, since Z_3 is already included in Z_x , at the critical condition (3.8) for oscillation, according to (4.5)

$$Z_x = -Z_c|_{Z_3 = \infty} = -(Z_1 + Z_2 + G_{mcrit}Z_1Z_2).$$
(4.33)

Voltage ratios can then easily be calculated by means of Fig. 4.8:

$$\frac{V_2}{V_1} = 1 + \frac{Z_x}{Z_1} = -Z_2 \left(\frac{1}{Z_1} + G_{mcrit}\right), \qquad (4.34)$$

with a modulus

$$\frac{|V_2|}{|V_1|} = \sqrt{\frac{(G_1 + G_{mcrit})^2 + (\omega C_1)^2}{G_2^2 + (\omega C_2)^2}},$$
(4.35)

and

$$\frac{V_3}{V_1} = \frac{Z_x}{Z_1} = \frac{V_2}{V_1} - 1.$$
(4.36)

with a modulus

$$\frac{|V_3|}{|V_1|} = \sqrt{\frac{(G_1 + G_2 + G_{mcrit})^2 + \omega^2 (C_1 + C_2)^2}{G_2^2 + (\omega C_2)^2}}.$$
(4.37)

For a lossless circuit with a large margin factor K_m , the critical transconductance is given by (4.24), and the voltage ratio becomes

$$\frac{V_2}{V_1} = -\frac{C_1}{C_2} + j\frac{C_1}{QC_m} \left(1 + \frac{C_3}{C_1} + \frac{C_3}{C_2}\right)^2.$$
(4.38)

If C_2 is not too large, the imaginary part of this expression is usually smaller or much smaller than C_1/C_2 . Then, for $C_1 = C_2$, $V_2 \cong -V_1$ and $V_3 \cong -2V_1$.

4.2.5 Effect of Losses

4.2.5.1 Numerical Example

The effect of losses on the locus of $Z_c(G_m)$ is obtained by introducing the full expression of Z_1 , Z_2 and Z_3 given by (4.1) in the equation (4.2) of Z_c , which gives a very complicated analytical result. A numerical example is shown in Fig. 4.9 with particular values corresponding to a realistic case of a 32 kHz oscillator with large losses.

Figure 4.9 Example of the effect of loss conductance G_1 , G_2 and G_3 on the locus of $Z_c(G_m)$.

As can be seen, the circle is moved to the right of the complex plane, thereby reducing the amount of negative resistance. The corresponding effects on the critical transconductance can be obtained by equating the real part of $-Z_c(G_m)$ to the motional resistance $R_m = 1/(\omega C_m Q)$, thereby providing $Q(G_m)$. The result obtained with the same numerical values is shown in Fig. 4.10(a).

Losses result in an increase of the critical transconductance

$$G_{mcrit} = G_{mcrit0} + \Delta G_{mcrit} \tag{4.39}$$

Figure 4.10 Example of the effect of loss conductance G_1 , G_2 and G_3 ; (a) on the critical transconductance; (b) on the amount of frequency pulling.

where ΔG_{mcrit} is approximately independent of the quality factor. In this example, G_{mcrit} is increased by a factor 6 for $Q = 10^5$.

The effect of losses on the frequency pulling p_c calculated by (4.3) is shown in Fig. 4.10(b) for the same numerical values. It is smaller than 10^{-5} for $Q = 10^5$. This figure also shows the dependency of p_c on Q that was discussed in Section 4.2.1.

4.2.5.2 Approximative Expression for the Increase of G_m

An inspection of Fig. 4.9 shows that if the shift of the circle is small with respect to its radius, then the effect of losses is approximately equivalent to an increase ΔR_m of the motional resistance given by

$$\Delta R_m = \operatorname{Re}(Z_c)|_{G_m = 0}.$$
(4.40)

Then, according to (4.24)

$$\Delta G_{mcrit} \cong \omega^2 C_1 C_2 (1 + C_3/C_s)^2 \Delta R_m.$$
(4.41)

For $G_m = 0$, the expression (4.2) of Z_c is reduced to

$$|Z_c|_{G_m=0} = \frac{1}{1/(Z_1 + Z_2) + 1/Z_3}.$$
(4.42)

If the losses are small with

$$G_i^2 \ll (\omega C_i)^2, \tag{4.43}$$

then

$$\operatorname{Re}(Z_{c})|_{G_{m}=0} = \frac{G_{1}C_{2}^{2} + G_{2}C_{1}^{2} + G_{3}(C_{1} + C_{2})^{2}}{\omega^{2}(C_{1}C_{2} + C_{2}C_{3} + C_{3}C_{1})^{2}}$$
(4.44)

By introducing (4.40) and (4.44) in (4.41), the increase of critical transconductance due to losses can be approximated by

$$\Delta G_{mcrit} \cong \frac{G_1 C_2^2 + G_2 C_1^2 + G_3 (C_1 + C_2)^2}{C_1 C_2}.$$
(4.45)

Notice that this approximation is independent of C_3 . For $C_1 = C_2$, it becomes

$$\Delta G_{mcrit} \cong G_1 + G_2 + 4G_3, \tag{4.46}$$

showing the larger effect of the drain-gate conductance G_3 .

4.2.6 Frequency Adjustment

The mechanical resonant frequency ω_m of the resonator cannot be adjusted with a precision better than about 10 ppm. It is therefore usually necessary to fine tune the frequency of oscillation by electrically adjusting the amount of frequency pulling *p*, given in a good approximation by (4.21).

One possibility would be to adjust capacitor C_3 . However, this is not a good solution, since C_3 should remain as small as possible to maximize the radius of the circular locus of $Z_c(G_m)$.

Best would be to adjust C_1 and C_2 while maintaining $C_1 = C_2$, since it ensures a minimum of critical transconductance for a given amount of frequency pulling, as expressed by (4.26). It is usually more convenient to adjust only one capacitor.

Now the relative range of frequency adjustement can be expressed as

$$\frac{\omega_{max} - \omega_{min}}{\omega} = p_{max} - p_{min}.$$
(4.47)

To increase p_{max} , C_1 and/or C_2 must be reduced. This increases the relative importance of parasitic capacitors (usually voltage-dependent) and reduces the radius of the circular locus of $Z_c(G_m)$. The frequency stability is therefore degraded. The absolute maximum of p for stable oscillation is reached at the point corresponding to G_{mopt} in Fig. 4.4. Calculation for a lossless circuit (Fig. 4.6) yields

$$p_{maxmax} = \frac{C_m}{2C_3} \left(1 - \frac{1}{M} \right), \tag{4.48}$$

which is lower than the pulling p_{pa} at parallel resonance given by (2.15).

According to (4.26), a reduction of p_{min} increases the critical transconductance and therefore the power consumption of the oscillator. The absolute minimum of p would be reached for infinite values of C_1 and C_2 (hence infinite critical transconductance) and is equal to its value at series resonance given by (2.14).

The maximum possible range of frequency adjustment is thus limited by considerations on frequency stability and power consumption. In practice, it is never more than a small fraction of $C_m/(2C_3)$.

In some applications like time-keeping, the precise adjustment of the oscillator can be replaced by adjusting the ratio of the following frequency division chain. The amount of pulling can then be kept at an optimal value with respect to power consumption and frequency stability.

4.3 Nonlinear Analysis

4.3.1 Numerical Example

As soon as the critical transconductance is exceeded, the amplitude of oscillation increases until it is limited by nonlinear effects. As explained in Section 3.1, these nonlinear effects can be analyzed by computing the circuit impedance for the fundamental frequency $Z_{c(1)}$ defined by (3.1).

As an example, consider the simple Pierce oscillator circuit shown in Fig. 4.11(a). The active N-channel transistor is biased by means of the current I_0 (mirrored by the P-channel transistors) and the resistor R connected between drain and gate. The locus of $Z_{c(1)}(I_c)$ has been calculated according to the procedure introduced in Section 3.1, by using the EKV model [18] of MOS transistors for a standard a 0.18 μ m process. The extraction of the fundamental component $V_{(1)}$ of the voltage resulting from the sinusoidal current I_c forced into the circuit was obtained by simulating an *LC* filter tuned at exactly the same frequency.

The results at a frequency of 32 kHz are depicted in Fig. 4.11(b) for several values of bias current I_0 .

Figure 4.11 Example of nonlinear effects in a Pierce oscillator: (a) Circuit schematic with numerical values; (b) Loci of $Z_{c(1)}(I_c)$ for several values of bias I_0 at 32 kHz.

The circle in dotted line is the theoretical locus of $Z_c(G_m)$ for the linear circuit. It includes the losses due to bias resistor *R*, but not those due to the output conductance of the transistors.

For a bias current $I_0 = 0.6 \mu A$, these additional losses are negligible and the locus of $Z_{c(1)}(I_c)$ starts on the circle. It remains on the circle $(Z_{c(1)} = Z_c)$ as long as the amplitude $|I_c| \le 10$ nA. Indeed, assuming that all the AC current flows through C_1 , 10 nA flowing in 20 pF produce a voltage of about 5 mV, for which the circuit remains linear. For $|I_c| = 100$ nA, the circuit is already nonlinear: the locus leaves the circle and the negative resistance is reduced. It is further reduced when the amplitude increases. For $10 \mu A$ and above, the losses are so high that the real part of $Z_{c(1)}$ becomes positive (no negative resistance produced by the circuit).

For a bias current $I_0 = 1 \,\mu$ A, more negative resistance is produced (close to the maximum possible), but the losses due to the output conductance of the active transistor are no longer negligible: the locus of $Z_{c(1)}(I_c)$ does not start exactly on the circle.

For $I_0 = 3 \mu A$, the linear solution is unstable as established in Section 4.2.3. As a consequence, the slope of the locus starts by being negative before becoming positive but very large. The imaginary part of $Z_{c(1)}$, which is proportional to the amount of frequency pulling according to (3.7), becomes very sensitive to the amplitude.

For the extreme case with $I_0 = 10 \,\mu$ A, almost no negative resistance is produced and the slope of the locus is almost infinite. The very large losses at low amplitude are due to a lack of saturation of the mirror output (these losses are reduced if the supply voltage is increased).

Now, let us assume that the motional resistance of the resonator $R_m = 200 \,\mathrm{k}\Omega$. According to Fig. 3.3(b), the locus of $Z_m(p)$ is then the vertical line at $\mathrm{Re}(Z_{c(1)}) = -2 \cdot 10^5 \,\mathrm{V/A}$ also shown in Fig. 4.11(b). Stable oscillation is obtained at the intersection of this locus with that of $Z_{c(1)}(I_c)$ (large black dots). As can be seen in the figure, the imaginary part of $Z_{c(1)}$ at this intersection, and thus the amount of frequency pulling p_s at stable oscillation, is very dependent on the bias current I_0 . Furthermore, for large values of I_0 (1 μ A and 3 μ A), it is also very sensitive to the value of motional resistance R_m and therefore to the quality factor Q of the resonator.

This example illustrates the importance of avoiding excessive values of bias current.

4.3.2 Distortion of the Gate Voltage

Consider the lossless oscillator circuits for AC components of Fig. 4.12. As

Figure 4.12 Equivalent circuit of the lossless oscillator for AC components.

derived in Section 4.2.4, the ratio of gate to drain voltages for components at the oscillation frequency is approximately given by

$$V_1/V_2|_F \cong -C_2/C_1. \tag{4.49}$$

But for harmonic components of the drain voltage, the motional impedance Z_m is almost infinite, therefore the drain to gate voltage ratio is simply given by the capacitive divider $C_1 - C_3$:

$$V_1/V_2|_H = \frac{C_3}{C_1 + C_3}.$$
(4.50)

The relative attenuation of harmonics is thus

$$\frac{V_1/V_2|_H}{V_1/V_2|_F} \cong \frac{C_3C_1}{(C_1 + C_3)C_2}.$$
(4.51)

Therefore, even if the drain voltage is strongly distorted, the gate voltage can remain sinusoidal if $C_3 = 0$ (or more generally if $Z_3 = \infty$). Practically, it remains almost sinusoidal if $C_3 \ll C_2$.

It must be pointed-out that it is very important to limit the amount of distortion of the gate voltage. Indeed, harmonic components can be intermodulated by the nonlinear transfer function of the transistor, thereby producing an additional fundamental component of drain current. Since the phase of this additional component will be different from that of the main component, the frequency of oscillation will be shifted by nonlinear effects.

For $Z_3 = \infty$, the gate signal would remain perfectly sinusoidal, hence the nonlinear transfer function would have no effect on the frequency. Referring to Fig. 3.3(b), this means that the locus of $Z_{c(1)}(|I_c|)$ would be an horizontal straight line.

4.3.3 Amplitude Limitation by the Transistor Transfer Function

4.3.3.1 Introduction

When the oscillation grows up, it is usually first limited by the nonlinear transfer function of the active device, as illustrated in Fig. 4.13. Part (a) of the figure shows the oscillator circuit with its bias current I_0 . A resistive path R_b is provided between drain and gate so that, at equilibrium, the DC component of the drain current I_D can reach the imposed value I_0 . The supply voltage V_B must be large enough in order to maintain I_0 constant even during the positive peaks of drain voltage.

As was discussed in Section 4.3.2, the gate voltage of amplitude $|V_1|$ remains approximately sinusoidal, with

$$V_G(t) = V_{G0} + |V_1| \sin \omega t, \qquad (4.52)$$

Figure 4.13 Amplitude limitation by the nonlinear transfer function of a transistor; (a) basic circuit; (b) mechanism of limitation.

But when its amplitude grows, the drain current I_D is distorted by the nonlinearity of $I_D(V_G)$, as shown in part (b) of the figure, and

$$I_D(t) = I_0 + |I_{D(1)}| \sin \omega t + \text{harmonic components.}$$
(4.53)

The harmonic components cannot flow through the motional impedance, and therefore flow mainly through capacitor C_2 . The only useful component of I_D is the fundamental component of amplitude $|I_{D(1)}|$. Hence the relevant transconductance is that for the fundamental frequency, defined by

$$G_{m(1)} \triangleq \frac{|I_{D(1)}|}{|V_1|} = \frac{I_{D(1)}}{V_1}.$$
(4.54)

It is a real value as long as no phase shift exists in the transistor itself.

Now, because of the creation of harmonics, $|I_{D(1)}|$ grows less than linearly with $|V_1|$ and therefore $G_{m(1)}$ decreases when $|V_1|$ increases. The latter stops increasing when the condition for stable oscillation is reached for

$$G_{m(1)} = G_{mcrit}, \tag{4.55}$$

where G_{mcrit} is given by (4.39), (4.24) and (4.45). The amplitude obtained for a given current depends on the critical transconductance and on the width-tolength ratio of the transistor, which affects the specific current I_{spec} defined by (3.41).

4.3.3.2 Transistor in Weak Inversion

Let us assume that the transistor remains in weak inversion even for the peak value of drain current. In order to avoid losses, it should also remain saturated (fulfilling condition (3.46)), even for the minimum value of drain voltage. Thus $I_D = I_F$ and weak inversion is ensured if $I_{spec} \gg I_{Dmax}$. Since the source voltage $V_S = 0$, the drain current given by the model described in Section 3.8 is

$$\frac{I_D}{I_{spec}} = \exp\frac{V_G - V_{T0}}{nU_T} = \exp\frac{V_{G0} - V_{T0} + |V_1|\sin\phi}{nU_T} = e^{v_e + v_1\sin\phi}, \quad (4.56)$$

where $\phi = \omega t$ and

$$v_e = \frac{V_{G0} - V_{T0}}{nU_T} \text{ and } v_1 = \frac{|V_1|}{nU_T}$$
 (4.57)

are normalized variables.

Notice that saturation may be difficult to ensure with a large drain voltage amplitude if V_{T0} is too small. This problem will be discussed in Section 5.1.6.

The DC component of drain current is obtained by averaging (4.56) over one period:

$$\frac{I_0}{I_{spec}} = e^{\nu_e} \cdot \frac{1}{2\pi} \int_0^{2\pi} e^{\nu_1 \sin \phi} d\phi = e^{\nu_e} \cdot I_{B0}(\nu_1), \qquad (4.58)$$

where

$$I_{B0}(v_1) = 1 + \frac{v_1^2}{2^2} + \frac{v_1^4}{2^2 \cdot 4^2} + \frac{v_1^6}{2^2 \cdot 4^2 \cdot 6^2} + \dots$$
(4.59)

is the modified Bessel function of order 0.

The fundamental component of drain current is given by

$$\frac{|I_{D(1)}|}{I_{spec}} = e^{v_e} \cdot \frac{1}{\pi} \int_0^{2\pi} e^{v_1 \sin \phi} \sin \phi \, d\phi = e^{v_e} \cdot 2I_{B1}(v_1), \tag{4.60}$$

where

$$I_{B1}(v_1) = \frac{v_1}{2} + \frac{v_1^3}{2^2 \cdot 4} + \frac{v_1^5}{2^2 \cdot 4^2 \cdot 6} + \frac{v_1^7}{2^2 \cdot 4^2 \cdot 6^2 \cdot 8} + \dots$$
(4.61)

is the modified Bessel function of order 1.

The transconductance for the fundamental frequency can then be expressed as a function of the bias current I_0 and of the normalized gate voltage amplitude v_1 by introducing (4.57), (4.58) and (4.60) into (4.54), which gives

Low-Power Crystal and MEMS Oscillators

$$G_{m(1)} = \frac{I_0}{nU_T} \cdot \frac{2I_{B1}(v_1)}{v_1 I_{B0}(v_1)} = G_m \frac{2I_{B1}(v_1)}{v_1 I_{B0}(v_1)},$$
(4.62)

where, according to (3.54)

$$G_m = \frac{I_0}{nU_T} \tag{4.63}$$

is the small-signal transconductance (in weak inversion) at bias current $I_D = I_0$. Therefore, at the critical condition for oscillation (where $v_1 = 0$)

$$G_m = G_{mcrit} = \frac{I_{0critmin}}{nU_T},$$
(4.64)

where $I_{0critmin}$ is the critical current for oscillation in weak inversion. It is the minimum possible value of I_{0crit} since weak inversion provides the maximum possible transconductance for a given bias current I_0 .

Introducing (4.62) and (4.64) into (4.55) gives

$$\frac{I_0}{I_{0critmin}} = \frac{I_{B0}(v_1)}{2I_{B1}(v_1)}v_1.$$
(4.65)

This relation between the bias current and the amplitude is plotted in Fig. 4.14. As soon as the critical current is reached, the amplitude grows abruptly until

Figure 4.14 Normalized gate voltage amplitude as a function of bias current for a transistor operated in weak inversion.

it is limited by the nonlinearity at some fraction of nU_T . More current is then needed to increase the amplitude.

As the amplitude increases, the duration of the peaks of drain current is progressively reduced. If these peaks of current would be Dirac functions (zero duration and infinite amplitude), then $|I_{D(1)}|/I_0 = 2$. Introducing (4.62) and (4.64) into (4.55) would then give

$$v_1 = \frac{|V_1|}{nU_T} = 2\frac{I_0}{I_{0critmin}}.$$
(4.66)

This asymptotic linear behavior is also represented in Fig. 4.14. It is a reasonable approximation of weak inversion for $|V_1| \gg nU_T$.

What is the variation of v_e (and thus of the DC gate voltage V_{G0}) when the amplitude increases? For stable oscillation, (4.55) and (4.60) give

$$G_{mcrit} = G_{m(1)} = \frac{|I_{D(1)}|}{|V_1|} = \frac{|I_{D(1)}|}{v_1 n U_T} = \frac{I_{spec}}{n U_T} \cdot \frac{e^{v_e} \cdot 2I_{B1}(v_1)}{v_1}.$$
 (4.67)

Solving for v_e results in

$$v_{e} = \frac{V_{G0} - V_{T0}}{nU_{T}} = \ln \frac{I_{0critmin}}{I_{spec}} - \ln \frac{2I_{B1}(v_{1})}{v_{1}}.$$
(4.68)

The normalized value of DC gate voltage variation ΔV_{G0} is also represented (in dotted line) in Fig. 4.14.

4.3.3.3 Larger Amplitude by Capacitive Attenuator

As shown by Fig. 4.14, to obtain a gate voltage amplitude larger than a few nU_T in weak inversion, a bias current I_0 much larger than its critical value is needed. As a consequence, the drain current will be strongly distorted. One possibility to alleviate this problem is to introduce a capacitive attenuator at the gate, as depicted by Fig. 4.15. The AC component of gate voltage is then attenuated by a factor

$$k_c = (C_a + C_b) / C_a, (4.69)$$

where C_b includes the gate capacitance of the transistor. For the AC component, this is equivalent to a transistor in weak inversion with U_T replaced by $k_c U_T$, thereby producing an equivalent transconductance $I_0/(k_c n U_T)$. Hence, the current axis and the voltage axis of Fig. 4.14 are both expanded by factor k_c . The result is shown in Fig. 4.16 for several values of attenuation k_c .

Figure 4.15 Capacitive attenuator of the AC component of gate voltage (biasing not shown).

Figure 4.16 Normalized gate voltage amplitude for a transistor operated in weak inversion with a capacitive attenuator.

4.3.3.4 Transistor in Moderate or Strong Inversion

Another way to increase the amplitude while maintaining an acceptable amount of distortion is to operate the transistor in strong inversion.

Using the full model (3.40) of the transistor in saturation ($I_D = I_F = I(V_S, V_G)$) and the normalized voltages v_e and v_1 defined by (4.57), the DC and fundamental components of drain current can be expressed as

$$\frac{I_0}{I_{spec}} = \frac{1}{2\pi} \int_0^{2\pi} \left[\ln \left(1 + e^{(\nu_e + \nu_1 \sin \phi)/2} \right) \right]^2 d\phi, \qquad (4.70)$$

$$\frac{|I_{D(1)}|}{I_{spec}} = \frac{1}{\pi} \int_0^{2\pi} \left[\ln \left(1 + e^{(\nu_e + \nu_1 \sin \phi)/2} \right) \right]^2 \sin \phi d\phi.$$
(4.71)

Compared to weak inversion (equations (4.58) and (4.60)), the calculation is more complicated since the normalized DC gate voltage v_e remains inside the integral.

Let us define the inversion coefficient at the critical current for oscillation (hence for $|V_1| = 0$) as

4 Theory of the Pierce Oscillator

$$IC_0 \triangleq I_{0crit} / I_{spec}. \tag{4.72}$$

The critical transconductance can then be calculated by applying (3.55) with $I_D = I_{0crit}$:

$$G_{mcrit} = \frac{I_{0crit}}{nU_T} \cdot \frac{1 - \mathrm{e}^{-\sqrt{\mathrm{IC}_0}}}{\sqrt{IC_0}}.$$
(4.73)

According to (4.54) and (4.55), the condition for stable oscillation can be expressed as

$$\frac{|I_{D(1)}|}{|V_1|} = \frac{|I_{D(1)}|}{v_1 n U_T} = G_{mcrit}.$$
(4.74)

Using (4.64), (4.73) and (4.72), we obtain the ratio

$$\frac{I_{0critmin}}{I_{spec}} = \frac{nU_T G_{mcrit}}{I_{spec}} = \frac{I_{0crit}}{I_{spec}} \cdot \frac{1 - e^{-\sqrt{IC_0}}}{\sqrt{IC_0}} = \sqrt{IC_0} (1 - e^{-\sqrt{IC_0}}), \quad (4.75)$$

which only depends on IC_0 . The same ratio can be obtained from (4.74):

$$\frac{I_{0critmin}}{I_{spec}} = \frac{nU_T G_{mcrit}}{I_{spec}} = \frac{|I_{D(1)}|}{v_1 I_{spec}}.$$
(4.76)

The required current I_0 can then be related to the critical current in weak inversion $I_{0critmin}$ (minimum critical current) by

$$\frac{I_0}{I_{0critmin}} = \frac{I_0}{I_{spec}} \cdot \frac{I_{spec}}{I_{0critmin}}.$$
(4.77)

The calculation of the current required for a given amplitude can thus be carried out in the following manner:

- 1. Select a value of IC_0 .
- 2. Calculate the corresponding value of $I_{0critmin}/I_{spec}$ by (4.75)
- 3. Select a value of normalized DC gate voltage v_e .
- 4. Compute $|I_{D(1)}|(v_1)/I_{spec}$ for the selected value of v_e , using (4.71).
- 5. Choose the value of v_1 giving the required value of $I_{0critmin}/I_{spec}$, using (4.76).
- 6. Compute the value of $I_0/I_{spec}(v_e, v_1)$ by (4.70)
- 7. Apply (4.77) to obtain $I_0/I_{0critmin}(v_1)$; this gives one point of the curve.
- 8. Go back to step 3 to calculate a new point.

Figure 4.17 Normalized gate voltage amplitude as a function of bias current for several values of IC_0 , the inversion coefficient at the critical condition for oscillation. It is assumed that the transistor remains saturated all along the oscillation cycle. The limit of validity of the strong inversion model (4.86) is indicated by the thin dotted line.

The result of this procedure applied for several values of IC_0 is presented in Fig. 4.17. It must be remembered that this result is only valid if the active transistor and the transistor providing the bias current I_0 remain saturated during the whole cycle of oscillation. If one of these transistors leaves saturation, the resulting increase of losses will reduce the amplitude.

A comparison with Fig. 4.16 shows that these results are comparable to those obtained with a capacitive attenuator (compare for example $k_c = 8$ in Fig. 4.16 with $IC_0 = 64$ in Fig. 4.17). In both cases, a large amplitude can be obtained with a bias current not much higher that its critical value (for example, with $IC_0 = 64$, $|V_1| = 11nU_T$ for $I_0/I_{0crit} = 1.25$).

However, this increase of linearity is obtained at the price of a larger current for a given amplitude (all the curves are at the right side of that for weak inversion).

The variation of the normalized DC gate voltage v_e with the normalized amplitude v_1 obtained with the above calculations is shown in Fig. 4.18. The shift of DC gate voltage in weak inversion given by (4.68) is also reported on this figure. It will be needed later for properly designing the bias circuitry.

The nonlinear effects due to the transfer function are essentially equivalent to a reduction of the small-signal transconductance G_m (this is exactly true if Z_3 is very large, so that V_1 remains perfectly sinusoidal). Thus the locus of

Figure 4.18 Variation of the DC component V_{G0} of gate voltage with the gate voltage amplitude $|V_1|$ at stable oscillation. The shift ΔV_{G0} in weak inversion is shown in dotted line.

 $Z_{c(1)}(I_c)$ follows the circular locus of $Z_c(G_m)$. For a given value of R_m , the value of p_c is therefore independent of the amplitude.

As illustrated in the example of Fig. 4.11, this is not the case for stronger nonlinear effects such as those due to the desaturation of the active transistor, or of the transistor delivering the bias current. In order to avoid those effects, the amplitude should be limited. This is best obtained by using an amplitude control loop as will be described in Section 5.2.

4.3.3.5 Transistor Strictly in Strong Inversion

If the transistor is in strong inversion at the critical current for oscillation $(I_{spec} \ll I_{0,crit})$ then from (3.56):

$$I_{0crit} = nU_T \sqrt{IC_0} G_{mcrit} = \sqrt{IC_0} I_{0critmin}.$$
(4.78)

If the transistor remains strictly in strong inversion as the oscillation grows up, its drain current in saturation $I_D = I_F$ can be expressed from (3.43) by

$$I_D = \frac{I_{spec}}{4} (v_e + v_1 \sin \phi)^2, \qquad (4.79)$$

where v_e and v_1 are the normalized voltages defined by (4.57). The fundamental component of I_D is then given by

$$\frac{|I_{D(1)}|}{I_{spec}} = \frac{1}{4\pi} \int_0^{2\pi} (v_e + v_1 \sin \phi)^2 \sin \phi d\phi = \frac{v_e v_1}{2}.$$
 (4.80)

The transconductance for the fundamental frequency, equal to the critical transconductance at stable oscillation according to (4.55), becomes

$$G_{m(1)} = \frac{|I_{D(1)}|}{|V_1|} = \frac{v_e I_{spec}}{2nU_T} = G_{mcrit}.$$
(4.81)

Solving for v_e gives

$$v_e = \frac{2nU_T G_{mcrit}}{I_{spec}} = \frac{2I_{0critmin}}{I_{spec}} = 2\sqrt{IC_0}$$
(4.82)

where the last expression comes from the fact that, using (4.78):

$$\frac{I_{0critmin}}{I_{spec}} = \frac{I_{0crit}}{I_{spec}} \cdot \frac{I_{0critmin}}{I_{0crit}} = \frac{IC_0}{\sqrt{IC_0}} = \sqrt{IC_0}.$$
(4.83)

The normalized effective DC gate voltage v_e is thus constant. But this is true *only for*

$$v_1 < v_e = 2\sqrt{IC_0}$$
(4.84)

otherwise the transistor enters weak inversion in the negative half periods of gate voltage and (4.79) is no longer valid. This limit is shown by the dotted strait line in Fig. 4.18. Notice that v_e is already slightly descending below this limit, since the full model used for the calculation includes moderate inversion.

Returning to strict strong inversion, the DC component of drain current, that is the bias current I_0 is given by

$$\frac{I_0}{I_{spec}} = \frac{1}{8\pi} \int_0^{2\pi} (v_e + v_1 \sin \phi)^2 d\phi = \frac{1}{4} \left(v_e^2 + \frac{v_1^2}{2} \right) = IC_0 + \frac{v_1^2}{8}.$$
 (4.85)

Hence

$$\frac{I_0}{I_{critmin}} = \frac{I_0}{I_{spec}} \cdot \frac{I_{spec}}{I_{critmin}} = \sqrt{IC_0} + \frac{v_1^2}{8\sqrt{IC_0}}.$$
(4.86)

By introducing the condition (4.84), the limit of validity becomes

$$v_1 < \frac{3}{4} \frac{I_0}{I_{0critmin}}.$$
 (4.87)

It is reported as a thin dotted line in Fig. 4.17.

4.3.4 Energy and Power of Mechanical Oscillation

As explained in Section 2.4, the energy of mechanical oscillation is directly related to the amplitude of motional current I_m flowing in the motional impedance Z_m . Considering the lossless case of Fig. 4.12, this current is related to the current I_1 flowing through capacitor C_1 by

$$I_1 = (1 + j\omega C_3 Z_m) I_m. (4.88)$$

The real part of Z_m is R_m , whereas at stable oscillation its imaginary part compensates that of the circuit:

$$\operatorname{Im}(Z_m) = -\operatorname{Im}(Z_{c(1)}). \tag{4.89}$$

If the circuit is not strongly nonlinear, $Z_{c(1)}$ may be replaced by Z_c , the circular locus of which is represented in Fig. 4.6. Now if $R_m \ll |R_{n0}|_{max}$ ($K_m \gg 1$), this figure shows that $\text{Im}(Z_c) = 1/j\omega(C_3 + C_s)$. Thus, at stable oscillation:

$$Z_m = R_m - \frac{1}{j\omega(C_3 + C_s)},$$
 (4.90)

which, introduced in (4.88) yields

$$\frac{I_1}{I_m} = \left(1 - \frac{C_3}{C_s + C_3} + j\omega C_3 R_m\right) = \left(\frac{C_s}{C_s + C_3} + \frac{j}{M}\right),$$
(4.91)

or, for the amplitudes:

$$\frac{|I_1|}{|I_m|} = \sqrt{\left(\frac{C_s}{C_s + C_3}\right)^2 + \frac{1}{M^2}}.$$
(4.92)

Now the second term may usually be neglected since $M \gg 2$, hence

$$|I_m| \cong \left(1 + \frac{C_3}{C_s}\right) |I_1| = \left(1 + \frac{C_3}{C_s}\right) \omega C_1 |V_1|.$$
(4.93)

The amplitude of motional current depends on the gate voltage amplitude $|V_1|$ calculated in Section 4.3.3. The energy of mechanical oscillation is then obtained by introducing this result in (2.23):

$$E_m \cong \left(1 + \frac{C_3}{C_s}\right)^2 \frac{C_1^2}{2C_m} |V_1|^2.$$
(4.94)

It is proportional to the maximum energy stored in capacitor C_1 and to the ratio C_1/C_m . The power dissipated in the resonator can be obtained by applying (2.24), which gives

$$P_m = \frac{\omega}{Q} E_m \cong \left(1 + \frac{C_3}{C_s}\right)^2 \frac{\omega C_1^2}{2QC_m} |V_1|^2 = \left(1 + \frac{C_3}{C_s}\right)^2 \frac{\omega^2 C_1^2 R_m}{2} |V_1|^2.$$
(4.95)

4.3.5 Frequency Stability

4.3.5.1 Introduction

The main feature to be optimized in a crystal oscillator, especially for timekeeping applications, is its frequency stability. Separated in three groups, the causes of degradation of this stability will be discussed in what follows, together with possible cures.

4.3.5.2 Resonator

The resonant frequency ω_m of the resonator itself is not perfectly constant:

a. Some variation with temperature is always present. As discussed in Section 2.5, this variation depends on the type of resonator, which must be selected in accordance with the specifications of the oscillator.

b. There is no way to avoid some aging of the resonator after fabrication. Since the rate of aging usually decreases with time, it is possible to carry out some pre-aging on the resonator before using it.

4.3.5.3 Nonlinear Effects in the Circuit

The amount of frequency pulling p_s at stable oscillation was discussed in Section 3.2. As explained by Fig. 3.3, it is proportional to the imaginary part of $Z_{c(1)}$ (the circuit impedance for the fundamental frequency) at the stable point S.

Now, as illustrated by the example of Fig. 4.11(b), this imaginary part may be strongly dependent on nonlinear effects. The nonlinear effects are themselves dependent on various variables, including the supply voltage of the circuits, the threshold voltage of the transistor and the ambient temperature. They must therefore be minimized to improve the frequency stability.

a. The nonlinear transfer function $I_D(V_G)$ of the active transistor are the first to intervene when the amplitude increases. They limit the amplitude $|V_1|$ at the gate as illustrated in Fig. 4.17. To limit the resulting nonlinear effects, the bias current should not be much higher than its critical value, typically no more than 10 or 20% above. The inversion coefficient IC_0 of the transistor should be selected in order to obtain the desired amplitude. Now, precise values of currents are hard to obtain in integrated circuits, and the critical current itself depends on many possibly variable parameters. Thus, the only

possibility to control the amount of overdrive is to implement some kind of voltage amplitude regulation, as will be discussed in Section 5.2.

As was already explained in Section 4.3.2, the change of frequency due to the nonlinear $I_D(V_G)$ function is caused by intermodulation between harmonic components of the gate voltage. These are produced by harmonic components of current flowing through the drain-to-gate impedance Z_3 , which can be reduced by increasing $|Z_3|$ (in particular by decreasing C_3).

b. Nonlinearities in Z_1 are due to the nonlinear dependency of the gate capacitance on the gate voltage. Their effect can be reduced by implementing a sufficiently large value of C_1 by means of a linear capacitor.

c. An important nonlinearity in Z_2 occurs when the amplitude is so large that the active transistor and/or the transistor delivering the bias current I_0 leave saturation in the peaks of drain voltage. Both transistors should be kept saturated all along the oscillation cycle.

d. If $|Z_3|$ is large, as it should be, its possible nonlinearity should have negligible effect on the frequency.

4.3.5.4 Variation of Linear Effects

If nonlinear effect on the frequency are made negligible, the amount of frequency pulling is equal to its value p_c at the critical condition for oscillation. As illustrated by Fig. 4.4, p_c is proportional to the imaginary part of the circuit impedance Z_c at the solution point A, where the real part of Z_c compensates the motional resistance of the resonator ($\text{Re}(Z_c) = -R_m$). Hence, any vertical displacement of A results in a variation of p_c . Such a displacement may be due to several causes:

a. Even if the resonator has a very constant motional frequency, its quality factor may change, resulting in a change of motional resistance R_m . The effect of a variation of R_m is proportional to the slope of Z_c at point A. This slope can be minimized by

- reducing C_3 to increase the radius of the circle,

- reducing the losses, in order to have the circular locus better centered on the imaginary axis, and/or

- reducing R_m (increasing Q).

b. Variation of the losses, that should therefore be

- as small as possible

- as constant as possible.

c. Variations of C_1 , C_2 and/or C_3 , with an effect on p_c given by (4.21). These 3 capacitors should therefore be kept as constant as possible. The voltage dependency of C_1 due to the voltage dependent gate capacitance of the transistor can be minimized by implementing a sufficiently large value of C_1 by means of a linear capacitor. The same can be done to reduce the voltage dependency of C_2 due to the voltage dependent junction capacitance at the drain node of the circuit.

Some capacitance variation may be due to mechanically unstable connections between the circuit and the resonator.

The sensitivity of p_c to capacitance variations can be obtained by differentiating (4.21). For C_s (series connection of C_1 and C_2) much larger than C_3 , this gives

$$dp_c = -p_c \left(\frac{C_2}{C_1(C_1 + C_2)} dC_1 + \frac{C_1}{C_2(C_1 + C_2)} dC_2 + \frac{1}{C_s} dC_3 \right).$$
(4.96)

Thus, the effect of capacitance variations on the frequency of oscillation can be reduced by reducing p_c . But, as already explained in Section 4.2.2, this may require a large increase of bias current, according to (4.26).

4.3.6 Elimination of Unwanted Modes

4.3.6.1 Introduction

As was explained in Section 2.2, all electromechanical resonators, in particular the quartz resonator, have several possible modes of oscillation. Each of them corresponds to a series resonant circuit in the complete equivalent circuit of Fig. 2.2(a). We have explained in the same section that, once oscillation was obtained on one of these modes, no coupling could be produced by the circuit to the other modes.

Now, in all previous analyses, we have assumed that oscillation was obtained at the "wanted" mode and not at any other "unwanted" mode. Let us now examine how this can be ensured.

Assuming that the circuit is designed to provide, for the desired mode, a large margin factor K_m (defined by (4.17)) and that losses are negligible, the critical transconductance is given by (4.24) repeated here for convenience:

$$G_{mcrit0} \cong \omega^2 R_m \cdot C_1 C_2 (1 + C_3 / C_s)^2.$$
(4.97)

Now, the part after the dot is given by the circuit, and is at least the *same for all the other modes* (it could be larger for some modes if the corresponding

value of K_m would not be large, and (4.22) would have to be used instead of (4.24)).

On the contrary, the term $\omega^2 R_m$ (= $\omega/(QC_m)$) is *specific to each mode*. Hence $(\omega^2 R_m)_w$ can be used to distinguish the wanted mode from all other unwanted modes, each of them being characterized by their value of $(\omega^2 R_m)_u$. Let us define

$$\alpha \triangleq \frac{(G_{mcrit})_u}{(G_{mcrit})_w}.$$
(4.98)

For the lossless case, according to (4.97):

$$\alpha = \alpha_0 \triangleq \frac{(G_{mcrit0})_u}{(G_{mcrit0})_w} = \frac{(\omega^2 R_m)_u}{(\omega^2 R_m)_w}.$$
(4.99)

The wanted mode will be said to be *more active* than the unwanted mode if $\alpha > 1$ and less active if $\alpha < 1$.

According to (3.55), the transconductance is proportional to the current if the transistor is in weak inversion $(IC_0 \ll 1)$, but only to the square root of the current if the transistor is in strong inversion $(IC_0 \gg 1)$. Hence:

$$(I_{0crit})_u = \alpha (I_{0crit})_w$$
 in weak inversion (4.100)

$$(I_{0crit})_u = \alpha^2 (I_{0crit})_w$$
 in strong inversion. (4.101)

4.3.6.2 Wanted Mode More Active Than Unwanted Modes ($\alpha > 1$)

The wanted mode of oscillation is frequently the most active one. A safe procedure is then to impose a fixed bias current I_0 in the range

$$(I_{0crit})_w < I_0 < (I_{0crit})_u. \tag{4.102}$$

In practice however, this is only possible if $\alpha \gg 1$. Indeed, a small range of possible current would require a precise value of current that is not available in an integrated circuit environment. Even if such a precise current would be possible, its value would depend on G_{mcrit} and therefore on the value of quality factor Q and on that of the various capacitors. Moreover, a small ratio I_0/I_{0crit} would provide only a small excess of negative resistance, resulting in a large start-up time constant τ_0 given by (3.15), and thus in a very long start-up time.

If the range of possible current is limited (α not much larger than 1), the best solution is to generate the bias current by means of an amplitude

regulator, as was explained in Section 3.4. Such a regulator provides a large initial bias current, which ensures a short start-up time. This bias current decreases when the amplitude increases, until equilibrium is reached.

Instead of regulating the current $|I_{cs}| = |I_m|$ in the motional branch as in Fig. 3.4, it is preferable to limit the voltage $|V_1|$ at the gate, which is related to $|I_m|$ by (4.93). This type of regulation is illustrated by Fig. 4.19 and will be detailed in Section 5.2.

Figure 4.19 Regulation of the gate voltage amplitude.

In this example, Curve a represents the amplitude of oscillation $|V_1|$ at the gate as a function of the bias current I_0 for the wanted mode, as given by Fig. 4.16 or 4.17. Curve b represents the bias current $I_0(|V_1|)$ delivered by the amplitude detector. When the loop is closed, the system is expected to reach the stable point S_w , with a bias current only slightly larger than its critical value $(I_{0crit})_w$. For the unwanted mode, the $|V_1|(I_0)$ relationship is given by Curve c.

Let us assume that the start-up time constant of the unwanted mode is shorter than that for the wanted mode. Oscillation will start at this unwanted mode, and possibly reach the corresponding equilibrium point S_u , with a value of bias current just slightly larger than $(I_{0crit})_u$. The transconductance of the transistor is thus practically not affected by this oscillation, and remains larger than its critical value for the wanted mode. The amplitude of the wanted mode can therefore still grow up, thereby reducing I_0 until the stable point S_w is reached. The bias current is then below its critical value for the unwanted mode, that can no longer be sustained. Oscillation at the wanted mode only is thus ensured. It is important to point out such a behavior is *not ensured* if I_0 at point S_u is much larger than $(I_{0crit})_u$, resulting in a strongly nonlinear behavior of the transistor. As a consequence, the remaining transconductance may not be sufficient for starting up oscillation at the wanted mode. This is illustrated by the results of simulations depicted in Fig. 4.20.

Figure 4.20 Possible dominance of the less active of two possible modes; in these simulation of start-up in a $0.18 \,\mu\text{m}$ process, the channel width is $W = 50 \,\mu\text{m}$ whereas the channel length *L* is changed from 2 to $4 \,\mu\text{m}$. Notice that low values of quality factors ($Q_u < Q_w = 1000$) are used to facilitate the simulation.

In this example, the resonator has two possible modes (two series branches in parallel). The wanted mode w has a resonant angular frequency $\omega_w = 2 \cdot 10^5 \text{ s}^{-1}$ with a motional inductance $L_{mw}=250 \text{ H}$, whereas $L_{mu}=100 \text{ H}$ for the unwanted mode u, giving $\omega_u = 3.16 \cdot 10^5 \text{ s}^{-1}$. It is therefore less active than mode w, in a ratio $\alpha = 2.5$. The upper part of the figure shows that, for a channel length $L = 2 \mu \text{m}$ of the active transistor, the motional current $|I_{mw}|$ of mode w remains zero (no oscillation at the wanted mode) whereas $|I_{mu}|$ stabilizes at about $2 \mu \text{A}$. If L is increased to $4 \mu \text{m}$, the circuit become slightly less nonlinear because the inversion coefficient in the peaks of drain current is increased (from 0.26 to 0.49). As a result, oscillation at mode u does not prevent mode w to grow and to finally stay alone.

4.3.6.3 Effect of Losses

As discussed in Section 4.2.5, the main effect of losses is to increase the critical transconductance G_{mcrit} . At a given frequency, these losses may always be represented by an additional component of conductance G_1 , G_2 and/or G_3 in parallel with the capacitors. As long as they are not too large, the resulting increase of G_{mcrit} is given by (4.45).

If the G_i remain independent of the frequency (as is the case if they are due to real conductances in parallel), the critical transconductance is increased by the same amount for all possible modes of oscillation. The relative difference of critical transconductances is reduced and, according to (4.98), the value of α becomes closer to unity. The potential problem illustrated by Fig. 4.20 is worsened, and this kind of losses cannot help separating the wanted mode from the unwanted one.

But each of the G_i can possibly be frequency dependent. The most simple case is a resistance R_i in series with capacitance C_i . If $(\omega C_i R_i)^2 \ll 1$, then

$$G_i \cong \omega^2 C_i^2 R_i. \tag{4.103}$$

The loss conductance is then increasing with the frequency, which may help eliminating an unwanted mode, as discussed below.

4.3.6.4 Wanted Mode Less Active Than Unwanted Modes ($\alpha < 1$)

This is a difficult situation. If the unwanted mode has a *higher* frequency than the wanted mode, its overall activity may be reduced by introducing a resistance in series with C_1 and/or C_2 . As given by (4.103), this will produce an additional component of G_1 and/or G_2 that is proportional to ω^2 . This component is therefore larger for the unwanted mode, which may push the value of α above unity.

An other way to analyze this solution is to consider the path of the motional current for each mode as illustrated in Fig. 4.21. If C_3 is sufficiently small to be negligible, most of the motional current of each resonator branch flows in the loop closed by capacitors C_1 and C_2 . Hence, a resistor R_s inserted in this loop is approximately added to the motional resistors R_{mw} and R_{mu} . The effective activity ratio can therefore be approximated by

$$\alpha \simeq \frac{\omega_u^2 (R_{mu} + R_s)}{\omega_w^2 (R_{mw} + R_s)},\tag{4.104}$$

which is assumed to be smaller than unity for $R_s = 0$ (more active unwanted mode at higher frequency). This ratio will become larger than unity for

Figure 4.21 Loss resistor R_s is the main loop of oscillation current.

$$R_{s} > \frac{\omega_{w}^{2} R_{mw} - \omega_{u}^{2} R_{mu}}{\omega_{u}^{2} - \omega_{w}^{2}} = \frac{1 - \alpha_{0}}{(\omega_{u}/\omega_{w})^{2} - 1} R_{mw}.$$
 (4.105)

If α_0 is close to unity or if the frequency ratio is large, then $R_s \ll R_{mw}$ and the unwanted mode can be eliminated without too much effect on the wanted mode.

The situation is even more difficult if the unwanted mode is more active and has a *lower* frequency than the wanted mode. This is the case if the wanted mode is an overtone.

One possible solution would be to exploit the nonlinear effects illustrated by Fig. 4.20. Indeed, in the upper part of the figure, the less active higher frequency mode dominates because it has a shorter start-up time constant. However, this solution is *not recommended* because two possible stable modes of oscillation exist, and which one dominates depends on the initial conditions. For example, simulations show that, in the example of the figure with $L = 2\mu$ m, the more active low-frequency mode still dominates if the supply voltage of the circuit is raised very slowly instead of being switched on abruptly.

There is no simple way to produce losses that increase when the frequency decreases, but the unwanted mode can be avoided by inserting a parallel resonant circuit tuned to its frequency in series with the source of the transistor. The unwanted mode will then be prevented if the (real) impedance at the resonance is larger than $1/G_{mcritu}$ (where G_{mcritu} is the critical transconductance for the unwanted mode). Furthermore, the capacitance of the resonant circuit should be large enough to prevent source degeneration for the wanted mode. For the example of Fig. 4.20, this solution would require a capacitance of 1 nF, an inductance of 25 mH and parallel resistance of 1 M Ω , corresponding to a quality factor of 200, which is not realistic. In an integrated circuit en-

vironment, this solution is thus only applicable at high frequencies, and for a large ratio ω_w/ω_u .

4.4 Phase Noise

4.4.1 Linear Effects on Phase Noise

4.4.1.1 General Case

According to (3.30), the phase noise of the oscillator depends on the energy of oscillation E_m , the quality factor Q of the resonator, and the frequency of oscillation ω . It also depends on the noise excess factor γ of the circuit.

As defined by (3.23), this noise excess factor is the ratio between the spectrum $S_{V_n^2}$ of the noise voltage V_n produced by the circuit to that of the thermal noise of the motional resistance $4kTR_m$. If $G_i \ll \omega C_i$, losses can be neglected and this noise voltage can be calculated from the equivalent circuit of Fig. 4.22. The source of noise I_n is the channel noise of the transistor plus

Figure 4.22 Equivalent circuit of the Pierce oscillator for the calculation of the noise voltage V_n .

additional noise delivered by the biasing current source. Assuming $C_3 \ll C_1$ and C_2 , the noise voltage can be expressed as

$$V_n = \frac{I_n}{j\omega_n C_2 + G_m C_3 / C_1},$$
(4.106)

where ω_n is the frequency at which noise is considered.

At frequencies close to the oscillation frequency ω , the spectral densities are thus related by

4 Theory of the Pierce Oscillator

$$S_{V_n^2} = \frac{S_{I_n^2}}{(\omega C_2)^2 + (G_m C_3 / C_1)^2} = \frac{S_{I_n^2}}{(\omega C_2)^2 \left[1 + \left(\frac{G_m}{MG_{mcrit0}}\right)^2\right]} \cong \frac{S_{I_n^2}}{(\omega C_2)^2},$$
(4.107)

where the second expression has been obtained by introducing the factor of merit *M* defined by (2.9) through the relationship (4.24) between R_m and G_{mcrit0} . Since $M \gg 1$, the term between brackets is usually close to unity, thus the noise excess factor for very small amplitudes is

$$\gamma_0 \triangleq \frac{S_{V_n^2}}{4kTR_m} \cong \frac{S_{I_n^2}}{4kTR_m(\omega C_2)^2} \tag{4.108}$$

4.4.1.2 Channel Noise of the Active Transistor

If the bias current were free of noise, the only source of I_n would be the channel noise of the active transistor. Its spectral density given by (3.60) can be introduced into (4.108). The noise excess factor is then given by

$$\gamma_0 \cong \frac{\gamma_t n G_{mcrit}}{(\omega C_2)^2 R_m}.$$
(4.109)

Using again (4.24) to replace R_m by G_{mcrit0} , it becomes

$$\gamma_0 \cong \gamma_t n \cdot \frac{C_1}{C_2} \cdot \frac{G_{mcrit}}{G_{mcrit0}}.$$
(4.110)

4.4.2 Phase Noise in the Nonlinear Time Variant Circuit

4.4.2.1 Introduction

As discussed in Section 3.7.2, the results obtained in the previous section are no longer valid when the amplitude increases, since the circuit becomes nonlinear and the noise becomes cyclostationary.

Neglecting the parallel capacitor C_3 , the phase noise can be analyzed by means of the equivalent circuit of Fig. 3.9 with $C_i = C_2$. The cyclostationary noise sources are functions of $\sin(\phi + \Delta \phi)$, where $\phi = \omega t$ and $\Delta \phi$ is the phase shift between the sinusoidal voltages V_2 and V_1 .

An approximation of this phase shift can be calculated at the critical condition for oscillation from (4.34) and (4.45). As long as the condition (4.43) if fulfilled (small losses):

$$\tan \Delta \phi \cong \frac{1}{\omega C_1} \left[G_{mcrit0} + G_1 \left(1 + \frac{C_2}{C_1} \right) + G_3 \frac{C_1 + C_2}{C_s} \right].$$
(4.111)

It is independent of a possible loss conductance G_2 .

Now, because of the presence of C_3 (or more generally Z_3 between drain and gate, some noise fed back through the transistor is added to the noise current I_n of Fig. 4.22. This effect will be *neglected*, as was done in the linear analysis.

4.4.2.2 Effect of the White Channel Noise in Weak Inversion

In weak inversion, the variation of drain current during each cycle of stable oscillation can be expressed by introducing (4.58) and (4.65) in (4.56). With the phase shift $\Delta \phi$, this yields

$$I_D = I_{0critmin} \frac{v_1}{2I_{B1}(v_1)} e^{v_1 \sin(\phi + \Delta\phi)}.$$
 (4.112)

Thus, from (3.61) and (3.54), the cyclostationary drain noise current spectrum is

$$\alpha_{i}^{2}S_{I_{n}^{2}} = \underbrace{2nkTG_{mcrit}\frac{v_{1}}{2I_{B1}(v_{1})}}_{S_{I_{n}^{2}}}\underbrace{e^{v_{1}\sin(\phi+\Delta\phi)}}_{\alpha_{i}^{2}}, \quad (4.113)$$

where the first part is the spectrum $S_{l_n^2}$ of a fictitious white noise current modulated by α_i . According to (3.34), the squared RMS value of the effective impulse sensitivity function (ISF) is then

$$\overline{\Gamma_i^2(v_1)} = \overline{\cos^2 \phi \alpha_i^2} = \frac{1}{2\pi} \int_0^{2\pi} \cos^2 \phi \cdot e^{v_1 \sin(\phi + \Delta \phi)} d\phi \quad (\text{weak inversion}).$$
(4.114)

The phase noise spectrum is then obtained by introducing the above values of $S_{I_{i}^{2}}$ and $\overline{\Gamma_{i}^{2}}$ in (3.33), which results in

$$S_{\phi_n^2} = S_{\phi_n^{20}} \frac{v_1}{\mathbf{I}_{B1}(v_1)} \overline{\Gamma_i^2(v_1)}, \qquad (4.115)$$

where

$$S_{\phi_n^2 0} = \frac{nkTG_{mcrit}}{2(C_2|V_2|\Delta\omega)^2} \cdot \frac{C_m^2}{C_2^2}.$$
 (4.116)

is the phase noise spectrum for very small amplitudes. Referring to Fig. 3.9, $C_2|V_2|$ may be replaced by $|I_m|/\omega$ (even with a small phase shift, the amplitude of the current is only very slightly affected). Thus, by introducing the expression (4.24) of the lossless critical transconductance G_{mcrit0} (with C_3 neglected):

$$S_{\phi_n^2 0} = \frac{nC_1}{2C_2} \cdot \frac{G_{mcrit}}{G_{mcrit0}} \cdot \frac{kT}{Q^2 |I_m|^2 R_m} \cdot \frac{\omega^2}{\Delta \omega^2}.$$
 (4.117)

According to (3.29), this corresponds to an noise excess factor

$$\gamma_0 = \frac{nC_1}{2C_2} \cdot \frac{G_{mcrit}}{G_{mcrit0}},\tag{4.118}$$

which is identical to the value given by (4.110) and obtained by the linear analysis, since $\gamma_t = 1/2$ in weak inversion. For larger amplitudes, γ grows proportionally to the noise spectrum contribution:

$$\gamma = \gamma_0 \frac{v_1}{I_{B1}(v_1)} \overline{\Gamma_i^2(v_1)}.$$
(4.119)

This variation is plotted in Fig. 4.23 for several values of phase shift $\Delta \phi$.

Figure 4.23 Phase noise excess factor in weak inversion.

The increase of γ with the amplitude depends on the phase shift $\Delta \phi$. There would be no increase with $\Delta \phi = 0$.

4.4.2.3 Effect of the White Channel Noise in Strong Inversion

The variation of the transconductance in strong inversion can be expressed by introducing in (3.56) the normalized variables v_e and v_1 defined by (4.57):

$$G_m = \beta U_T (v_e + v_1 \sin(\phi + \Delta \phi)). \tag{4.120}$$

In stable oscillation, the value of v_e is independent of the amplitude, as indicated by (4.82). Hence $\beta U_T v_e = G_{mcrit}$, giving

$$G_m = G_{mcrit}(1 + m_v \sin{(\phi + \Delta\phi)}), \qquad (4.121)$$

where

$$m_{v} = \frac{v_{1}}{v_{e}} = \frac{|V_{1}|}{2nU_{T}\sqrt{IC_{0}}} \le 1$$
(4.122)

is the gate voltage modulation index. Thus, from (3.60), the spectrum of the cyclostationary drain current noise is

$$\alpha_i^2 S_{I_n^2} = \underbrace{4\gamma_i kTnG_{mcrit}}_{S_{I_n^2}} \underbrace{(1 + m_v \sin(\phi + \Delta\phi))}_{\alpha_i^2}.$$
(4.123)

The squared RMS value of the effective ISF is thus

$$\overline{\Gamma_i^2(v_1)} = \frac{1}{2\pi} \int_0^{2\pi} \cos^2 \phi \cdot (1 + m_v \sin(\phi + \Delta \phi)) d\phi = \frac{1}{2}.$$
 (4.124)

It is constant, hence the phase noise spectrum is independent of the phase shift $\Delta \phi$ and of the amplitude of oscillation. This is true as long as the transistor remains strictly in strong inversion (i.e with $m_v \leq 1$). It can easily be shown that the corresponding noise excess factor is $\gamma = \gamma_0$ given by (4.110).

4.4.2.4 Effect of the Flicker Noise in Weak Inversion

Using the approximation (3.62) of a noise voltage at the gate independent of the current, the resulting drain current noise spectrum is

$$\alpha_{i}^{2}S_{I_{n}^{2}} = \frac{K_{f}G_{m}^{2}}{\omega_{n}} = \underbrace{\frac{K_{f}G_{mcrit}^{2}}{\omega_{n}} \left(\frac{v_{1}}{2I_{B1}(v_{1})}\right)^{2}}_{K_{fi}/\omega_{n}}\underbrace{\left(e^{v_{1}\sin(\phi+\Delta\phi)}\right)^{2}}_{\alpha_{i}^{2}}, \quad (4.125)$$

since the transconductance is proportional to the drain current given by (4.112). The first part is the spectrum density K_{fi}/ω_n of a fictitious stationary flicker current noise source modulated by α_i .

According to (3.34), the average value of the effective ISF is then

$$\overline{\Gamma_i} = \overline{\cos\phi \cdot \alpha_i} = \frac{1}{2\pi} \int_0^{2\pi} \cos\phi \cdot e^{\nu_1 \sin(\phi + \Delta\phi)} d\phi.$$
(4.126)

Now

$$\int_0^{2\pi} \cos\phi \cdot e^{v_1 \sin(\phi + \Delta\phi)} d\phi = \sin(\Delta\phi) \int_0^{2\pi} \sin\phi \cdot e^{v_1 \sin\phi} d\phi.$$
(4.127)

Thus:

$$\overline{\Gamma_i} = \sin\left(\Delta\phi\right) \cdot I_{B1}(v_1). \tag{4.128}$$

The phase noise spectrum is obtained by introducing the above values of K_{fi} and $\overline{\Gamma_i}$ in (3.36), which yields

$$S_{\phi_n^2} = \left(\frac{G_{mcrit}C_m v_1}{2C_2^2 |V_2|}\right)^2 \cdot \frac{K_f}{\Delta \omega^3} \cdot \sin^2(\Delta \phi). \tag{4.129}$$

By introducing again the expression (4.24) of the lossless transconductance G_{mcrit0} (C_3 neglected) and using the good approximation $C_2|V_2| = C_1|V_1|$, this results becomes

$$S_{\phi_n^2} = \left(\frac{G_{mcrit}}{G_{mcrit0}}\right)^2 \left(\frac{\omega}{2QnU_T}\right)^2 \cdot \frac{K_f}{\Delta\omega^3} \cdot \sin^2(\Delta\phi), \qquad (4.130)$$

which is *independent of the amplitude*. Thus the flicker noise contribution to the phase noise is independent of the amplitude, but depends on the phase shift $\Delta \phi$. Remember that this results is obtained with the hypotheses of a sinusoidal drain voltage and the noise model (3.62).

4.4.2.5 Effect of the Flicker Noise in Strong Inversion

Using the expression (4.121) of the transconductance, the noise current drain spectrum is

$$\alpha_{i}^{2}S_{I_{n}^{2}} = \frac{K_{f}G_{m}^{2}}{\omega_{n}} = \underbrace{\frac{K_{f}G_{mcrit}^{2}}{\omega_{n}}}_{K_{fi}/\omega_{n}} \underbrace{(1 + m_{v}\sin{(\phi + \Delta\phi)})^{2}}_{\alpha_{i}^{2}}.$$
 (4.131)

The average value of the effective ISF is thus

$$\overline{\Gamma_i} = \overline{\cos\phi \cdot \alpha_i} = \frac{1}{2\pi} \int_0^{2\pi} \cos\phi \cdot (1 + m_v \sin(\phi + \Delta\phi)) d\phi = \frac{m_v}{2} \sin(\Delta\phi).$$
(4.132)

The phase noise spectrum is obtained by introducing the above values of K_{fi} and $\overline{\Gamma_i}$ in (3.36):

$$S_{\phi_n^2} = \left(\frac{m_\nu G_{mcrit} C_m}{2C_2^2 |V_2|}\right)^2 \cdot \frac{K_f}{\Delta \omega^3} \cdot \sin^2(\Delta \phi). \tag{4.133}$$

This result is identical to (4.129), except that the normalized voltage v_1 is replaced by the modulation index $m_v = v_1/(2\sqrt{IC_0})$ (as defined by (4.122)). For strong inversion, the result (4.130) is thus changed to

$$S_{\phi_n^2} = \left(\frac{G_{mcrit}}{G_{mcrit0}}\right)^2 \left(\frac{\omega}{4QnU_T}\right)^2 \cdot \frac{1}{IC_0} \cdot \frac{K_f}{\Delta\omega^3} \cdot \sin^2(\Delta\phi).$$
(4.134)

For the same value of phase shift $\Delta \phi$, the noise spectrum is reduced by a factor $4IC_0$ compared to weak inversion.

4.4.2.6 Effect of the Noise in the Bias Current

The noise density associated with the bias current I_0 is constant along the oscillation cycle, thus $\alpha_i = 1$. As long as the hypothesis of a sinusoidal voltage V_2 is valid, the effective ISF Γ_i is given by (3.34).

Hence, the average value of the effective ISF is zero and no flicker noise (or other low frequency noise) is transposed around the oscillation frequency.

Still according to (3.34), $\overline{\Gamma_i^2} = 1/2$. The phase noise produced by the white noise content of the bias current of density $S_{I_{2,i}^2}$ is thus, from (3.33)

$$S_{\phi_n^2} = \frac{S_{I_{nb}^2}}{4(C_2|V_2|)^2 \Delta \omega^2} \cdot \frac{C_m^2}{C_2^2}.$$
(4.135)

Or, after replacing again $C_2|V_2|$ by $|I_m|/\omega$ and using (2.3) to replace C_m :

$$S_{\phi_n^2} = \frac{S_{I_{nb}^2}}{(2|I_m|C_2 Q R_m \Delta \omega)^2}.$$
 (4.136)

According to (3.29), the phase noise excess factor due to bias noise is thus

$$\gamma_b = \frac{S_{I_{mb}^2}}{4kTR_m(\omega C_2)^2}.$$
(4.137)

The comparison with (4.108) shows that, with the hypothesis of a sinusoidal drain voltage V_2 , the circuits behaves linearly with repect to the noise of the bias current I_0 (as could be expected).

Now if the saturated transistor delivering the bias current is controlled by a gate voltage that is free of noise at frequencies around the oscillation frequency, then $S_{I_{nb}^2}$ is given by (3.60). Using the expression of the critical transconductance G_{mcrit0} of the lossless circuit and neglecting C_3 , (4.137) becomes

$$\gamma_b = \gamma_t n \frac{C_1}{C_2} \cdot \frac{G_{mb}}{G_{mcrit0}},\tag{4.138}$$

where G_{mh} is the transconductance of the biasing transistor.

This contribution to phase noise can thus be made negligible by having this transconductance much lower than G_{mcrit} , by operating the biasing transistor in strong inversion at an inversion coefficient much larger than IC_0 , and by filtering out the noise at its gate for frequencies around the oscillation frequency.

4.5 Design Process

4.5.1 Design Steps

On the basis of what has been explained so far, the design of the core of a Pierce oscillator should be done according to the following steps.

4.5.1.1 Selection of a Quartz Crystal or MEM Resonator

Several criteria should be considered, most of them imposed by the system. Most important are the desired frequency of oscillation and its acceptable dependency on temperature. Both have an impact on the type of resonator. For example, very low frequency is only possible with resonators oscillating in flexural mode (possibly in the form of a tuning fork), but their temperature dependency is quadratic, with a coefficient of about $-4 \cdot 10^{-8} / °C^2$. For very high frequencies, a thickness mode is necessary, either shearing or expansion. Other criteria are cost, size, and aging properties. The quality factor Q should be as high as possible, especially to ensure a low phase noise. A good circuit design can always take advantage of its high value.

Technical data published by commercial quartz crystal vendors always include the frequency of oscillation ω and the motional resistor R_m (or at least its maximum value). They do not always publish the third parameter needed to characterize the series resonant circuit of Fig. 2.2, namely Q or C_m . But they usually give the value of the "static capacitor" C_0 across the resonator measured as a dipole, defined by (2.1). The value of C_{12} can thus be obtained since the values of C_{10} and C_{20} are known, measurable or negligible.

Knowing C_{12} , the value of C_m is always smaller than $C_{12}/100$ (because of the limited piezoelectric coupling coefficient of quartz). It is usually ranging between 0.1 and 0.25 this limit. Practical numerical values range from 0.5 to 5 fF for quartz resonators.

The value of C_m might be smaller for MEM resonators, due to the small value of the electrical capacitance given by (2.27). The motional resistance R_m would then be higher and the parallel capacitance C_3 would be dominated by parasitic capacitances, there by reducing the margin factor K_m defined by (4.17). In the extreme case, oscillation might not be possible with the Pierce oscillator, and alternative architectures like those discussed in Chapter 6 might be needed.

4.5.1.2 Choice of Circuit Capacitances C₁ and C₂ and Estimation of C₃

As given by (4.21), the values of C_1 and C_2 essentially control the amount of frequency pulling p_c by the circuit. If p_c is increased, the frequency of oscillation moves away from the intrinsic mechanical resonant frequency of the resonator and becomes more dependent on the sustaining circuit. Frequency stability is then degraded. If p_c is reduced, (4.26) shows that the critical transconductance G_{mcrit} is increased, resulting in an increase of power consumption. The same formula shows that for a given amount of pulling, G_{mcrit} is minimum for $C_1 = C_2$.

As explained in Section 4.2.2, C_1 and C_2 must be large enough with respect to C_3 to ensure a maximum value of negative resistance much larger than the motional resistance R_m ($K_m \gg 1$). This is to minimize the effect of variations of R_m on the frequency of oscillation.

If the source of the transistor is grounded, C_3 is usually dominated by the intrinsic parallel capacitance C_{12} of the resonator plus the drain-to-source capacitance of the transistor (that must be pre-estimated). If the drain is grounded, C_{10} (or C_{20}) is added (see Fig. 2.2) and C_3 may become much larger.

It should be pointed out that many crystal vendors do not provide the value of motional capacitor C_m , but specify instead the value of load capacitance for the specified frequency of oscillation (thereby imposing the value of p_c). This load capacitance is the total equivalent capacitance connected in parallel with the physical resonator. Thus, for the Pierce oscillator:

$$C_{Load} \triangleq C_3 + C_s - C_0, \tag{4.139}$$

If frequency adjustment is obtained by adjusting the value of C_s , best would be to maintain $C_1 = C_2$. In practice, only C_1 or C_2 is adjusted, depending on which of the 3 nodes in grounded in the final implementation.

4.5.1.3 Calculation of Pulling and Series Resonant Frequency

Knowing C_m , C_1 , C_2 and C_3 , the frequency pulling p_c at the critical condition for oscillation can be calculated by (4.21), assuming a negligible effect of losses. In a good design, this effect as well as that of nonlinearities should be kept negligible. Hence the pulling p_s at stable oscillation will be very close to this value. Knowing the specified frequency of stable oscillation f_s , the exact (series) resonant frequency f_m to be specified for the resonator is given by

$$f_m \triangleq \frac{\omega_m}{2\pi} = f_s(1 - p_c). \tag{4.140}$$

4.5.1.4 Calculation of the Minimum Start-up Time Constant and of the Corresponding Transconductance

The maximum possible negative resistance $|R_{n0}|_{max}$ is given by (4.11). The minimum start-up time constant is then calculated by (3.15), and (4.13) gives the value G_{mont} of the transconductance for which it is obtained.

4.5.1.5 Calculation of the Critical Transconductance and Minimum Critical Bias Current

Assuming that K_m^2 is duly much larger than unity, the lossless critical transconductance G_{mcrit0} is given by (4.24) (since the values of ω and R_m are always available from the resonator data sheet).

After verification of the condition (4.43) with the expected values of loss conductances, the increase of critical transconductance ΔG_{mcrit} due to theses losses can be calculated by (4.45) and added to its lossless value G_{mcrit0} .

The minimum value of critical current $I_{critmin}$, which would be obtained with the transistor operated in weak inversion, can be calculated by (4.64).

4.5.1.6 Choice of the Amplitude of Oscillation $|V_1|$ at the Gate

If the amplitude of oscillation is too small, the output signal has to be amplified to be used in the system. As will be shown later, the input admittance of the amplifier may have a real part proportional to its voltage gain, which adds losses in the oscillator. Moreover, the input referred noise of the amplifier is transformed into a component of phase noise. Furthermore, according to (4.94), the energy of oscillation is proportional to $|V_1^2|$. Thus, according to (3.30), a too small value of $|V_1|$ may result in an unacceptable level of phase noise around the frequency of oscillation.

If the amplitude of oscillation is too large, the power dissipated in the resonator (given by (4.95)) can exceed the acceptable limit, resulting in excessive aging or even breaking of the resonator. Moreover, a large amplitude of oscillation requires a large value of supply voltage to maintain the active transistor in saturation, in order to avoid additional losses and a degradation of frequency stability.

4.5.1.7 Calculation of Power

The power dissipated in the resonator is obtained by (4.95). This is always possible since ω and R_m are always known. The result must then be compared with the maximum acceptable value, as given by the vendor.

4.5.1.8 Choice of the Amount of Overdrive

As illustrated by Fig. 4.17 (or by Fig. 4.16), the overdrive current ratio I_0/I_{0crit} necessary to obtain a given amplitude can be controlled by IC_0 , the inversion coefficient of the transistor at I_{0crit} (or by k_c , the attenuation of the capacitive divider of Fig. 4.16).

A small amount of overdrive should be chosen to minimize the nonlinear effects. This is needed to reduce the risk of oscillation on an unwanted mode, as discussed in Section 4.3.6. It is also needed for a good frequency stability, as explained in Section 4.3.5.3a.

But Fig. 4.17 also shows that the larger the overdrive, the smaller the bias current necessary to obtain a given amplitude. Indeed, the absolute minimum is obtained when the transistor is weak inversion.

4.5.1.9 Calculation of Critical Current, Bias Current and Specific Current of the Transistor

Once the choice of IC_0 has been made, the critical current of oscillation (bias current for zero amplitude) is obtained from (4.73) and (4.64):

$$I_{0crit} = I_{0critmin} \frac{\sqrt{IC_0}}{1 - e^{-\sqrt{IC_0}}}.$$
 (4.141)

It is simply $k_c \cdot I_{0critmin}$ in weak inversion with a capacitive attenuator as in Fig. 4.15.

The bias current needed to obtain the expected amplitude is then be obtained by inspecting Fig. 4.17 (or Fig. 4.16).

Knowing I_{0crit} and IC_0 , the specific current of the transistor is obtained from the definition (4.72) of IC_0 :

$$I_{spec} = I_{0crit} / IC_0. \tag{4.142}$$

4.5.1.10 Calculation of the Active Transistor

The width-to-length ratio of the active transistor W/L is obtained from the definition (3.41) of I_{spec} .

To avoid additional losses due to the output conductance G_{ds} , the intrinsic voltage gain of the transistor given by (3.58) should be much larger than unity. Thus, the channel length *L* should be more than the minimum possible, to ensure an acceptable value of V_M .

Knowing the values of L and W, the gate capacitance can be calculated to verify that it is only a small fraction of C_1 , since it is voltage dependent.

The voltage-dependent drain capacitance is proportional to W, and should only be a small fraction of C_2 .

The drain to gate capacitance is also proportional to W. It must be included in the value of C_3 .

4.5.1.11 Calculation of Energy and Phase Noise

The energy of oscillation in the resonator is given by 4.94. Its calculation requires the value of C_m or an approximation of it.

The phase shift $\Delta \phi$ is obtained from the approximation (4.111).

In strict strong inversion, the noise excess factor due to the active transistor alone is just the small amplitude value given by (4.110). In weak inversion, it increase with the amplitude as expressed by (4.119). It should be augmented to include the noise component of the bias current as discussed in Section (4.4.2.6). The phase noise spectrum due white noise sources can then be calculated by (3.30).

The component of phase noise due to the flicker noise of the active transistor is calculated by (4.130) in weak inversion, and by (4.134) in strong inversion.

Overall, and due to the very large values of quality factor Q, the phase noise of the quartz oscillator itself is negligible in many applications.

4.5.1.12 Final Complete Design

The next design steps will be to select which of the three points of the basic circuit is grounded, to define a bias scheme (including the very important amplitude limitation) and to design the output circuitry that is usually an amplifying stage. These steps will be discussed in Chapter 5.

4.5.2 Design Examples

The design process summarized in the previous section will now be illustrated by two examples with two different quartz resonators. Their characteristics are given in Table 4.1.

The quartz of Example 1 is a typical miniaturized wristwatch tuning fork. Its flexural mode in X+5 cut gives a quadratic temperature behavior $(3.5 \cdot 10^{-8})^{\circ}C^{2}$, with a maximum around 25°C). The quartz of Example 2 is a high frequency AT cut inverted mesa, with a cubical temperature behavior. It has a lower minimum value of quality factor Q and oscillates in fundamental mode.

Table 4.2 gives the main data of the process to be used in these examples. It is a typical 0.18 μ m process. Note that, except for the threshold V_{T0} , only the nominal values are given; the final design should be checked for the worst case by computer simulation.

The successive design steps of Section 4.5.1 are presented in Table 4.3.

The quartz data do not provide the value of C_{12} defined in Fig. 2.2(a). Instead, they only give the lumped parallel capacitance C_0 defined by (2.1) (quartz considered as a dipole). To consider the worst case in Step 2, we

	Param.	Example 1	Example 2	Unit
exact osc.frequency	f_s	32768.00	$50.00000 \cdot 10^{6}$	Hz
approximation	ω	$2.06 \cdot 10^{5}$	$3.14 \cdot 10^{8}$	1/s
max. resistance	R_m	$42 \cdot 10^3$	100	Ω
motional capacitance	C_m	$2.1 \cdot 10^{-15}$	$2.7 \cdot 10^{-15}$	F
min. quality factor	Q	55100	11800	
parallel capacitance	C_0	$0.9 \cdot 10^{-12}$	$2.4 \cdot 10^{-12}$	F
max. power	Pmax	10^{-6}	10^{-4}	W

Table 4.1 Quartz crystal data.

parameter	N-channel	P-channel	unit
kT	$4.16 \cdot 10^{-21}$	$4.16 \cdot 10^{-21}$	J
U_T	$26 \cdot 10^{-3}$	$26 \cdot 10^{-3}$	V
n	1.30	1.35	
I_{spec} (for $L = W$)	$0.50\cdot 10^{-6}$	$0.20\cdot 10^{-6}$	А
V_{T0}	0.45 ± 0.1	0.45 ± 0.1	V
C_{ox}	$8.50 \cdot 10^{-3}$	$8.50 \cdot 10^{-3}$	F/m^2
C_d/W	$0.90 \cdot 10^{-9}$	$1.05\cdot 10^{-9}$	F/m
$\tilde{C_{ed}}/W$	$0.36 \cdot 10^{-9}$	$0.33\cdot 10^{-9}$	F/m
V_M/L	$30 \cdot 10^6$	$40 \cdot 10^{6}$	V/m
WLK_f	$2 \cdot 10^{-22}$		$m^2 V^2$

Table 4.2 Process data.

assume that $C_{12} = C_0$ to evaluate the value of C_3 . Only a very small additional capacitor due to interconnects is assumed for the more critical high frequency quartz.

Step 3 assumes that the amount of pulling p_s in stable oscillation is not modified by losses or by nonlinear effects, hence $p_s = p_c$. It provides the exact value of the resonant frequency f_m .

The maximum negative resistance obtained in Step 4 is much larger than R_m for Example 1. It is sufficiently larger ($K_m^2 = 20.7 \gg 1$) for Example 2 to validate the approximations of p_c by (4.21) and of G_{mcrit0} by (4.24). From the values obtained for τ_{0min} , the minimum start-up times (ranging between $7\tau_{0min}$ and $15\tau_{0min}$) are 0.16 to 0.35 s and 0.15 to 0.32 ms. These values will be larger if the transconductance at start-up is smaller (or larger) than the calculated value of G_{mont} .

In Step 5, estimated values of loss conductances are introduced. G_1 accounts for the load by the output amplifier. G_2 is essentially the output conductance of the saturated transistor and that of the driving current source. G_3 will be mainly due to the device biasing the gate. All these value will have

to be verified during the final design stage, and corrected if necessary. The increase of critical transconductance ΔG_{mcrit} is calculated by the approximation (4.45) after verification of the condition (4.43).

In Step 6, the amplitude of oscillation is chosen sufficiently low to be compatible with a supply voltage below 1.5V. For Example 2, it is also limited to maintain the power P_m dissipated in the resonator (Step 7) below its maximum acceptable value P_{max} . The drain voltage amplitude $|V_2|$ is obtained by (4.35).

The choice of the inversion coefficient IC_0 is made in Step 8. In Example 1, the noise is not critical and the risk of exciting unwanted overtones is small. Hence, a reasonably large overdrive is acceptable, and $IC_0 = 1$ is chosen to achieve the minimum possible bias current. The transistor is thus approximately in weak inversion.

Nonlinear effects must be limited in Example 2, essentially to minimize the phase noise. The choice is then $IC_0 = 64$, resulting in an overdrive $I_0/I_{0crit} = 1.078$, as calculated in Step 9.

In Step 9, the critical current I_{0crit} is calculated by (4.141) and the bias current I_0 is obtained from Fig. 4.17 (or calculated by (4.86) for Example 2).

In Step 10, a long channel length L is chosen for Example 1, to render the output conductance G_{ds} totally negligible. The length is reduced in Example 2 to avoid a too large width W. As a consequence, the value of G_{ds} is the main part of G_2 . Calculation of the various (voltage-dependent) capacitors of the transistor show that they are all negligible with respect to C_1 , C_2 and C_3 .

In Step 11, the noise excess factor γ is equal to its small amplitude value γ_0 in strong inversion (Example 2). It does not include the noise contribution of the current source I_0 . But even if γ is increased by a factor 10, thereby increasing the noise by about 10 dB, the phase noise remains very low.

The noise included in I_0 is not modulated by the active transistor. Hence its low-frequency noise content is not shifted around f_s .

Notice that the resulting phase noise is expressed in dBc/Hz (decibel relative to the carrier) for $\Delta f = 1$ kHz. With negligible amplitude noise, this is about equivalent to radian²/Hz.

step	variable	Example 1	Example 2	unit	ref.
2	C_1	$20 \cdot 10^{-12}$	$15 \cdot 10^{-12}$	F	
	C_2	$20 \cdot 10^{-12}$	$15 \cdot 10^{-12}$	F	
	$\tilde{C_3}$	$2.0 \cdot 10^{-12}$	$2.6 \cdot 10^{-12}$	F	
	C_s	$10 \cdot 10^{-12}$	$7.5 \cdot 10^{-12}$	F	(4.9)
3	p_c	$87.5 \cdot 10^{-6}$	$134 \cdot 10^{-6}$		(4.21)
	f_m	32765.13	$49.99332 \cdot 10^{6}$	Hz	(4.140)
4	$ R_{n0} _{max}$	$1.01 \cdot 10^{6}$	455	Ω	(4.11)
	K_m	24.1	4.55		(4.17)
	$ au_{0min}$	$23.2 \cdot 10^{-3}$	$21.2 \cdot 10^{-6}$	S	(3.15)
	G_{mopt}	$49.4 \cdot 10^{-6}$	$36.6 \cdot 10^{-3}$	A/V	(4.13)
5	G_{mcrit0}	$1.03 \cdot 10^{-6}$	$4.03 \cdot 10^{-3}$	A/V	(4.24)
	G_1	$0.10 \cdot 10^{-6}$	$0.20 \cdot 10^{-3}$	A/V	
	G_2	$0.01\cdot 10^{-6}$	$0.20 \cdot 10^{-3}$	A/V	
	$\tilde{G_3}$	$0.10\cdot 10^{-6}$	$0.20 \cdot 10^{-3}$	A/V	
	ΔG_{mcrit}	$0.51 \cdot 10^{-6}$	$1.20 \cdot 10^{-3}$	A/V	(4.45)
	G_{mcrit}	$1.54 \cdot 10^{-6}$	$5.23 \cdot 10^{-3}$	A/V	(4.39)
	I _{Ocritmin}	$51.9 \cdot 10^{-9}$	$0.177 \cdot 10^{-3}$	А	(4.64)
6	$ V_1 /nU_T$	4.00	6.00		
	$ V_1 $	$135 \cdot 10^{-3}$	$203 \cdot 10^{-3}$	V	
	$ V_2 $	$145 \cdot 10^{-3}$	$309 \cdot 10^{-3}$	V	(4.35)
	$ V_3 $	$276 \cdot 10^{-3}$	$472 \cdot 10^{-3}$	V	(4.37)
7	E_m	$2.51 \cdot 10^{-9}$	$3.11 \cdot 10^{-9}$	J	(4.94)
	P_m	$9.37 \cdot 10^{-9}$	$82.8 \cdot 10^{-6}$	W	(4.95)
8	IC_0	1	64		
	$I_0/I_{0critmin}$	2.70	8.6		Fig. 4.17
9	I _{0crit}	$82.1 \cdot 10^{-9}$	$1.41 \cdot 10^{-3}$	А	(4.141)
	I_0	$140 \cdot 10^{-9}$	$1.52 \cdot 10^{-3}$	Α	
	Ispec	$82.1 \cdot 10^{-9}$	$22.1 \cdot 10^{-6}$	Α	(4.142)
10	W/L	0.164	44.2		(3.41)
	L	$6.00 \cdot 10^{-6}$	$1.00 \cdot 10^{-6}$	m	
	W	$0.985 \cdot 10^{-6}$	$44.2 \cdot 10^{-6}$	m	
	V_M	180	30	V	
	G_{ds}	$0.78 \cdot 10^{-9}$	$50.6 \cdot 10^{-6}$	A/V	(3.57)
	C_g	$50 \cdot 10^{-13}$	$376 \cdot 10^{-13}$	F	
	C_d	$0.88 \cdot 10^{-15}$	$39.8 \cdot 10^{-13}$	F	
	C_{gd}	$0.36 \cdot 10^{-13}$	$15.9 \cdot 10^{-13}$	F	
11	$\Delta \phi$	0.376	0.837	rad	(4.111)
	γ_0	0.973	1.12		(4.110)
	γ	1.31		15	Fig.4.23
	$S_{\Phi_n^2 1/f^2}$ at 1k	-187	-150	dBc/Hz	(3.30)
	$S_{\Phi_n^2 1/f^3}$ at 1k	-189		dBc/Hz	(4.130)
	$S_{\Phi_n^2 1/f^3}$ at 1k		-140	dBc/Hz	(4.134)

 Table 4.3 Design calculations.

Chapter 5 Implementations of the Pierce Oscillator

5.1 Grounded-Source Oscillator

5.1.1 Basic Circuit

Grounding the source of the active transistor results in the basic oscillator circuit depicted in Fig. 5.1. Transistor T_2 is part of a current mirror that delivers the bias current I_0 to the active transistor T_1 . The latter is maintained in active mode by a resistor R_3 that forces the DC component V_{D0} of the drain voltage V_D to be equal to the DC component V_{G0} of the gate voltage V_G (since no current is flowing through R_3).

Figure 5.1 Basic grounded source oscillator.

To avoid unnecessary losses, both transistor must remain saturated all along the oscillation cycle.

If T_1 is in *weak inversion*, it remains saturated as long as $V_D > 5U_T$, according to (3.46). Since $V_{Dmin} = V_{D0} - |V_2|$, the minimum acceptable value of threshold voltage can be expressed as

$$V_{T0} > 5U_T + |V_2| - (V_{D0} - V_{T0}), (5.1)$$

where $(V_{D0} - V_{T0})$ is given by (4.68) for $V_{D0} = V_{G0}$. The drain amplitude $|V_2|$ is related to the gate amplitude $|V_1|$ by (4.35). Some additional margin should be provided to account for nonlinear effects that result in slightly larger negative half periods of drain voltage.

For T_1 is in *strong inversion*, the minimum value of drain voltage ensuring saturation is given by (3.47). By introducing the DC components V_{G0} and V_{D0} and the complex voltages V_1 and V_2 at the gate and at the drain, this condition becomes

$$V_{T0} > |V_1 - nV_2| + V_{G0} - nV_{D0}.$$
(5.2)

For $V_{D0} = V_{G0}$, it may be rewritten to express the minimum acceptable threshold voltage:

$$V_{T0} > \frac{1}{n} [|V_1 - nV_2| - (n-1)(V_{G0} - V_{T0})].$$
(5.3)

The first term in the square parenthesis can be related to $|V_1|$ by using (4.35):

$$|V_1 - nV_2| = |V_1| \sqrt{\frac{(nG_1 + G_2 + nG_{mcrit})^2 + \omega^2 (nC_1 + C_2)^2}{G_2^2 + (\omega C_2)^2}}.$$
 (5.4)

The value $V_{G0} - V_{T0}$ for a given value of AC amplitude $|V_1|$ can be obtained from Fig. 4.18 or from (4.82) for strict strong inversion. To ensure that the active transistor remains saturated along the whole oscillation cycle, the minimum threshold guaranteed for the process should fulfill condition (5.3). If this condition is not fulfilled, the circuit should be modified to obtain a DC component of drain voltage larger than V_{G0} , as will be discussed in Section 5.1.6.

For a given amplitude of oscillation $|V_2|$, the minimum value of supply voltage V_B is limited by the need to maintain the P-channel biasing transistor T_2 in saturation:

$$V_B > V_{D0} + |V_2| + V_{D2sat}, (5.5)$$

where V_{D2sat} is the saturation drain voltage of T₂ given by (3.47) (with $V_S = 0$) if it is in strong inversion. It has a minimum value given by (3.46)
obtained in weak inversion. Hence, if its width does not become too large, this transistor should have a specific current larger than the bias current I_0 to reduce the minimum value of V_B . But, according to (4.138), the noise contribution of T_2 is then no longer negligible. The drain amplitude $|V_2|$ is related to the gate amplitude by (4.35) and the DC component of drain voltage $V_{D0} = V_{G0}$ can be found in Fig. 4.18, using the maximum value of V_{T0} for the process considered.

5.1.2 Dynamic Behavior of Bias

If the bias current I_0 is constant, then the DC component of drain current I_{D0} has the same value. But if there are variations of I_0 , they are not followed immediately by I_{D0} . Let us consider the equivalent circuit the oscillator driven by small variations of the bias current, as shown in Fig. 5.2. δI_0 and δI_{D0}

Figure 5.2 Calculation of the bias transfer function.

are now complex variables representing small variations of I_0 and I_{D0} . The (angular) frequency Ω of these variations is supposed to be much smaller than ω_m , hence the motional impedance can be neglected (since $C_m \ll C_1$). It can easily be shown that

$$\frac{\delta I_{D0}}{\delta I_0} = \frac{G_m Z_1 Z_2}{Z_1 + Z_2 + Z_3 + \overline{G_m} Z_1 Z_2},$$
(5.6)

where $\overline{G_m}$ is the average value of transconductance along each oscillatory cycle. It has the value

$$\overline{G_m} = \frac{I_0}{nU_T}$$
 (in weak inv.) and $\overline{G_m} = G_{mcrit}$ (in strict strong inv.), (5.7)

since it is proportional to the drain current in weak inversion and varies linearly with the gate voltage in strong inversion. Calculating (5.6) for the general case with real and imaginary parts of the impedances would result in a complicated expression, so it should be computed numerically. But let us consider lossless capacitive impedances Z_1, Z_2 (as in the example of Fig. 5.1), and neglect C_3 , thus $Z_3 = R_3$. This expression becomes, in the s-domain

$$\frac{\delta I_{D0}}{\delta I_0} = \frac{\overline{G_m}}{s^2 C_1 C_2 R + s(C_1 + C_2) + \overline{G_m}}.$$
(5.8)

For $G_m R_3 \gg (C_1 + C_2)^2 / (C_1 C_2)$, the roots of the denominator are conjugate complex, thus this expression can be rewritten as

$$\frac{\delta I_{D0}}{\delta I_0} = \frac{\Omega_0^2}{s^2 + s\Omega_0/Q_b + \Omega_0^2}.$$
(5.9)

This transfer function has a resonant peak at frequency

$$\Omega_0 = \sqrt{\frac{\overline{G_m}}{R_3 C_1 C_2}} \tag{5.10}$$

In stable oscillation, $\overline{G_m} \ge G_{mcrit0}$, hence by introducing the expression (4.24) of G_{mcrit0} (and neglecting C_3), (5.10) becomes

$$\Omega_0 \ge \omega_m \sqrt{\frac{R_m}{R_3}},\tag{5.11}$$

showing that the bias resistance R_3 must be much larger than the motional resistance R_m to obtain a resonant frequency of the bias circuit much lower than the frequency of oscillation.

The quality factor of this resonant circuit is

$$Q_{b} = \sqrt{\frac{\overline{G_{m}}R_{3}C_{1}C_{2}}{(C_{1}+C_{2})^{2}}} \underbrace{= \sqrt{\overline{G_{m}}R_{3}/4}}_{\text{for }C_{1}=C_{2}}.$$
(5.12)

So, without C_3 the resonant peak could be very large, since $R_3 \gg 1/G_m$ to limit the loss conductance G_3 . However, C_3 strongly attenuates this peak as soon as its impedance at Ω_0 is comparable to R_3 , which occurs if

$$C_3 \cong \sqrt{\frac{C_1 C_2}{\overline{G_m} R_3}} = \frac{C_s}{Q_b}.$$
(5.13)

so the higher the peak without C_3 , the more it is attenuated by C_3 . For example, with $C_1 = C_2$ and $C_3 = C_1/10$, the maximum peak is only 1.43 and occurs for $G_m R_3 \cong 30$ (where it would be 2.74 with $C_3 = 0$ according to (5.12)). For $C_3 = C_1/100$, the maximum peak is 3.62 and occurs for $G_m R_3 \cong 200$ (where it would be 7.07 with $C_3 = 0$). Thus, with usual values of C_3/C_1 , the peak is never very large. However, just above the peak frequency, the phase always reaches at least 90 degrees, which may have consequences on the stability of an amplitude regulating loop, as will be seen further.

5.1.3 Dynamic Behavior of Oscillation Amplitude

For a constant DC component of drain current $I_{D0} = I_0$, stable oscillation is reached with a gate amplitude $|V_1|$ as plotted in Fig. 4.17 (or Fig. 4.16). At this point the negative resistance R_n produced by the circuit compensates exactly the motional resistance R_m of the resonator, and the time constant of growth (or decay) τ defined by (3.3) is infinite.

Now, if at some time I_{D0} differs from this stable point by an amount $\delta I_{D0}(t)$, the instantaneous value of amplitude will depart by an amount $\delta |V_1|(t)$ from its stable value, as illustrated by Fig. 5.3.

DC component of drain current

Figure 5.3 Calculation of the dynamic behavior of the oscillation amplitude.

As shown by the figure, this produces an instantaneous excess of current δI_{ex} (that would tend to zero if $\delta I_{D0}(t)$ would remain constant). Since all these variables are time dependent, we can express them in the s-domain as:

$$\delta I_{ex} = \delta I_0 - \delta |V_1| / R_{iv} \tag{5.14}$$

where resistance R_{iv} is the slope of the $|V_1|(I_0)$ curve corresponding to stable oscillation. According to (4.55), this curve is the locus of $G_{m(1)} = G_{mcrit}$, where $G_{m(1)}$ is the effective transconductance including the effect of nonlinearity of the transistor. The small excess current δI_{ex} produces an increase of transconductance $\delta G_{m(1)}$, thus in the s-domain:

$$\delta G_{m(1)} = k_1 \delta I_{ex}, \tag{5.15}$$

where

$$k_1 \triangleq \frac{\mathrm{d}G_{m(1)}}{\mathrm{d}I_{ex}} \tag{5.16}$$

This increase of $G_{m(1)}$ is the same as what would be obtained by an increase δI_{0crit} of the critical transconductance, as illustrated by the curve in interrupted line. Since $G_{m(1)} = G_m$ at I_{ocrit} , the coefficient k_1 can therefore be expressed as

$$k_{1} = \frac{\mathrm{d}I_{0crit}}{\mathrm{d}I_{ex}} \cdot \frac{\mathrm{d}G_{m}}{\mathrm{d}I_{D}} \mid_{I_{D} = I_{0crit}} = \frac{I_{0crit}}{I_{0}} \cdot \frac{1}{2nU_{T}} \left(\frac{1 - \mathrm{e}^{-\sqrt{IC_{0}}}}{\sqrt{IC_{0}}} + \mathrm{e}^{-\sqrt{IC_{0}}}\right) \quad (5.17)$$

by using expression (3.55) of the transconductance G_m . In weak inversion, I_0/I_{0crit} is given by (4.65) and $IC_0 \ll 1$; (5.17) then becomes

$$k_1 = \frac{2I_{B1}(v_1)}{|V_1|I_{B0}(v_1)}$$
 (weak inversion) (5.18)

It must be remembered that $G_{m(1)} = G_{mcrit} = G_{mcrit0} + \Delta G_{mcrit}$ is the value of transconductance needed to produce a negative resistance R_n equal the motional resistance $-R_m$. Then, if the increase of critical transconductance ΔG_{mcrit} due to losses is constant, from (4.24):

$$k_2 \triangleq -\frac{\mathrm{d}R_n}{\mathrm{d}G_{m(1)}} = \frac{R_m}{G_{mcrit0}} = \frac{1}{\omega^2 C_1 C_2 (1 + C_3 / C_s)^2}.$$
 (5.19)

Thus, the excess current δI_{ex} produces a net excess of negative resistance given by

$$\delta R_n = \frac{\mathrm{d}R_n}{\mathrm{d}G_{m(1)}} \cdot \frac{\mathrm{d}G_{m(1)}}{\mathrm{d}I_{ex}} \delta I_{ex} = -k_1 k_2 \delta I_{ex}$$
(5.20)

The time constant τ given by (3.3) is then no longer infinite but, by introducing (5.20) and (5.14)

Low-Power Crystal and MEMS Oscillators

$$\frac{1}{\tau(s)} = \frac{\delta R_n}{-2L_m} = \frac{k_1 k_2}{2L_m} \left(\delta I_0 - \frac{\delta |V_1|}{R_{iv}} \right), \tag{5.21}$$

where all variables are in the s-domain. The exponential growth of gate voltage amplitude can be expressed in the time domain as

$$\frac{\mathrm{d}(\delta|V_1|)}{\mathrm{d}t} = \frac{|V_1|}{\tau},\tag{5.22}$$

which becomes, in the s-domain

$$s\delta|V_1| = \frac{|V_1|}{\tau(s)} = K_{iv}\left(\delta I_0 - \frac{\delta|V_1|}{R_{iv}}\right),$$
 (5.23)

where

$$K_{iv} = \frac{k_1 k_2 |V_1|}{2L_m} = \frac{k_1 k_2 \omega^2 C_m |V_1|}{2}.$$
(5.24)

Solving (5.23) for $\delta |V_1|$ gives low-pass the transfer function for the amplitude of oscillation

$$\frac{\delta |V_1|}{\delta I_{D0}} = \frac{K_{iv}}{s + \Omega_{civ}},\tag{5.25}$$

where

$$\Omega_{civ} = K_{iv}/R_{iv} \tag{5.26}$$

is the cut-off frequency. The differential resistance R_{iv} is related to the slope s_{iv} of the normalized function of Fig. 4.17 (or Fig. 4.16) by

$$R_{iv} = s_{iv}/G_{mcrit}.$$
(5.27)

The expressions (5.17) of k_1 and (5.19) of k_2 can be introduced in (5.24), which gives

$$K_{iv} = \frac{|V_1|}{4nU_T} \cdot \frac{I_{0crit}}{I_0} \cdot \frac{C_m}{C_1 C_2 (1 + C_3/C_s)^2} \cdot \left(\frac{1 - e^{-\sqrt{IC_0}}}{\sqrt{IC_0}} + e^{-\sqrt{IC_0}}\right), \quad (5.28)$$

where the term in parenthesis changes from 2 in weak inversion to $1/\sqrt{IC_0}$ in strong inversion. For the lossless case, $G_{mcrit} = G_{mcrit0} = R_m/k_2$ according to (5.19). The cut-off frequency can then be expressed from (5.26) as

$$\Omega_{civ} = \frac{\omega}{4Qs_{iv}} \cdot \frac{|V_1|}{nU_T} \cdot \frac{I_{0crit}}{I_0} \cdot \left(\frac{1 - e^{-\sqrt{IC_0}}}{\sqrt{IC_0}} + e^{-\sqrt{IC_0}}\right) \quad \text{(lossless case)}.$$
(5.29)

It is proportional to the frequency of oscillation and inversely proportional to the quality factor Q of the resonator. The amplitude of oscillation follows the variations of the drain current for frequencies lower than Ω_{civ} , with the transresistance R_{iv} . Beyond this frequency, the transfer function is that of an integrator K_{iv}/s and the variations are attenuated. However, they are shifted by 90 degrees, which may endanger the stability of an amplitude regulating loop. As can be seen in (5.28), this integrating behavior does not depend on the frequency of oscillation nor on the quality factor of the resonator.

5.1.4 Design Examples

Table 5.1 shows the values obtained for the implementation of the two examples introduced in Section 4.5.2 (Tables 4.1 and 4.2), using the results of Table 4.3. For the calculation of the minimum value of the N-channel threshold ensuring saturation of the active transistor, weak inversion has been assumed for Example 1 with $V_{Dsat} = 5U_T$, and strong inversion for Example 2. Both results are lower than the minimum value of 0.35 V guaranteed for the process.

To minimize the value of supply voltage V_B in Example 1, the bias transistor T_2 is operated at an inversion coefficient $IC_2 = 1$ for which a value of V_{Dsat} =150 mV is assumed. The minimum supply voltage is then only 0.86 V in the worst case of maximum threshold. Such a low value of IC_2 would have required an excessively large transistor (W=2.3 mm) in Example 2. Therefore, the inversion coefficient has been increased to 10, with the result of an increase of saturation voltage. Combined with the large inversion coefficient of the active transistor and with the larger amplitude of oscillation, it increases the minimum value of V_B to 1.62 V in the worst case. Of course, the oscillator would still works under this limit, but the amplitude of oscillation would be limited by losses due to the output conductance of T_2 , with the negative consequences discussed in Section 4.3.5.

Even if the gate voltage of the biasing transistor T_2 is free of noise, the contribution γ_b of the bias current noise is not negligible. It increases the phase noise by 2dB in Example 1 and 4dB in Example 2.

Sizing the bias transistor is easy in Example 1. In Example 2, the channel length L has been selected as short as possible while keeping a value of output conductance G_{ds} smaller than the estimated value of G_3 . Because of the large current, a very wide transistor is however needed to limit the inversion coefficient at a large value of current. For both examples, the added

variable	Example 1	Example 2	unit	ref.
$ V_1 - nV_2 $	$319 \cdot 10^{-3}$	$561 \cdot 10^{-3}$	V	(5.4)
V_{T0min}	$321 \cdot 10^{-3}$	$307 \cdot 10^{-3}$	V	(5.1),(5.3)
IC_2	1.00	10.0	V	choice
V_{D2sat}	$150 \cdot 10^{-3}$	$200 \cdot 10^{-3}$	V	(3.46),(3.47)
V_{Bmin}	0.86	1.62	V	(5.5)
$G_{mb} = G_{m2}$	$2.52 \cdot 10^{-6}$	$13.1 \cdot 10^{-3}$	A/V	(3.55)
γ_{b}	1.66	2.93		(4.138)
$\gamma_0 + \gamma_b$	2.97	4.05		
$S_{\Phi_n^2 1/f^2}$ at 1kHz	-185	-146	dBc/Hz	(3.30)
I _{spec2}	$1.40 \cdot 10^{-7}$	$1.52 \cdot 10^{-4}$	А	(3.45)
W_2/L_2	0.7	760		(3.41)
$L_2^{2^{i}}$	$4 \cdot 10^{-6}$	$3 \cdot 10^{-7}$	m	choice
$\tilde{W_2}$	$2.8 \cdot 10^{-6}$	$228\cdot 10^{-6}$	m	
V_{M2}	160	$12 \cdot 10^{-6}$	V	
G_{ds2}	$0.88\cdot 10^{-9}$	$0.13\cdot 10^{-3}$	A/V	(3.57)
C_{d2}^{d32}	$2.94 \cdot 10^{-15}$	$239\cdot 10^{-15}$	F	
C_{gd2}^{uz}	$0.92\cdot 10^{-15}$	$75.2 \cdot 10^{-15}$	F	
R_3	$1.00 \cdot 10^{7}$	$5.00 \cdot 10^{3}$	V/A	choice
$\overline{G_m}$	$4.14 \cdot 10^{-6}$	$5.23\cdot 10^{-3}$	A/V	(5.7)
Ω_0	$32.0 \cdot 10^{3}$	$68.2 \cdot 10^{6}$	1/s	(5.10)
Q_{h}	3.22	2.55		(5.12)
s _{iv}	2.05	5.33		Fig. 4.17
R_{iv}	$1.34 \cdot 10^{6}$	$1.02 \cdot 10^{3}$	V/A	(5.27)
K _{iv}	$2.14 \cdot 10^{6}$	$1.16 \cdot 10^{6}$	V/As	(5.28)
Ω_{civ}	1.60	$1.13 \cdot 10^{3}$	1/s	(5.26)

Table 5.1 Examples of practical implementations of the basic grounded source oscillator.

parasitic capacitors (drain and drain-to-gate) can be considered negligible with respect to C_2 .

The only component of loss conductance G_3 is the drain-to-gate bias resistor, so $R_3 = 1/G_3$. The resulting resonance of the bias circuit occurs at a frequency sufficiently lower than the oscillation frequency.

The maximum frequency for which the amplitude of oscillation follows the variations of drain current (Ω_{civ}) is very low. Hence, these variations are strongly attenuated at frequencies for which the phase is increased beyond 180 degrees by the other poles in a amplitude regulation loop. This will be needed to ensure the stability of this loop.

5.1.5 Implementation of the Drain-to-Gate Resistor

The drain-to-gate resistor R_3 in the basic grounded-source oscillator of Fig. 5.1 is needed to bias the active transistor T_1 in saturation. Its value must be sufficiently large to limit the loss conductance G_3 (but not too large, in order to keep $\Omega_0 \gg \Omega_{civ}$).

Many processes do not provide any possibility to implement a real resistor. When they do, the sheet resistivity is usually high enough to implement the few kiloohms needed in Example 2 above. But it is usually much to small to implement the $10M\Omega$ resistors of Example 1 on a acceptable area.

A possibility to replace a linear resistor by a transistor is illustrated in Fig. 5.4. It is applicable when the imaginary part of (4.38) relating the AC drain voltage V_2 to the AC gate voltage V_1 is much smaller than unity. Then $V_2 = -V_1$ if $C_2 = C_1$.

Figure 5.4 Implementation of a linear resistive element by a transistor.

The voltage $V_3 = 2V_1$ across transistor T₃ varies symmetrically with respect to some constant voltage V_b . This voltage is applied at the source of the associated transistor T₄, with a bias current I_b .

Assuming that both transistors are in strong inversion $(I_b \gg I_{spec4})$, the application of (3.39) and (3.43) to the saturated T_4 $(I_{D4} = I_{F4} = I_b)$ and to the non-saturated T_3 $(I_{D3} = I_{F3} - I_{R3} = I)$ that share the same constant gate voltage V_G yields

$$I = \frac{\beta}{K_r} (V_G - V_{T0} - nV_b) V_3 = \frac{1}{K_r} \sqrt{2n\beta I_b} \cdot V_3,$$
(5.30)

corresponding to a resistor of value

$$R = K_r / \sqrt{2n\beta I_b} = \frac{K_r U_T}{I_{spec} \sqrt{IC}} \quad \text{(in strong inversion)}. \tag{5.31}$$

where I_{spec} and *IC* are the specific current and the inversion coefficient of transistor T_4 . This linearity is maintained as long as T_3 is not saturated, hence for value of voltage limited by

$$|V_3| < \frac{2}{n} (V_G - V_{T0} - nV_b) = 2\sqrt{2I_b/\beta n} = 4U_T \sqrt{IC}.$$
 (5.32)

Once the value of *IC* has been selected to fulfill (5.32), the specific current I_{spec}/K_r of transistor T_3 needed for the desired value of *R* can be calculated from (5.31).

If *R* is very large as in our Example 1, the corresponding value of I_{spec}/K_r becomes very low, requiring a very large value of channel length *L*. But there are limits to *L*. One limit is the area occupied by the device. Another limit is the channel-to-substrate leakage current due to carrier generation in the space charge region underneath the channel. Therefore, there is a limit to the minimum possible value of I_{spec}/K_r . Below this limit, the only possibility to further increase *R* given by (5.31) is to reduce the inversion coefficient, thereby reducing the range of linearity given by (5.32).

The behavior of the circuit at low values of *IC* can be obtained by using the full model (3.40) instead of (3.43) in the calculation of $I(V_3)$. This yields

$$\frac{K_r I}{I_{spec}} = \left[\ln \left(1 + e^{V_3/4U_T} (e^{\sqrt{IC}} - 1) \right) \right]^2 - \left[\ln \left(1 + e^{-V_3/4U_T} (e^{\sqrt{IC}} - 1) \right) \right]^2.$$
(5.33)

This equation is plotted in Fig. 5.5 for several values of inversion coefficient *IC*. As can be seen, this $I(V_3)$ function is linear within the voltage range rep-

Figure 5.5 Current-voltage relationship in moderate and weak inversion.

resented for IC = 16 and 25, the slope corresponding to the value of *R* given by (5.31). For IC = 9, the function is already slightly nonlinear; according

to (5.32), it leaves the linear range for $V_3 > 12U_T$). For lower values of *IC*, the transistors are no longer truly in strong inversion, and the nonlinearity increases. The limit case of weak inversion can be calculated either by the limit of (5.33) for $IC \rightarrow 0$ or by using (3.42) in the calculation of $I(V_3)$. The result is then

$$I = \frac{2I_b}{K_r} \sinh \frac{V_3}{2U_T} = \frac{I_b}{K_r} \left(e^{V_1/U_T} - e^{-V_1/U_T} \right) \quad \text{(weak inversion)} \quad (5.34)$$

The slope of this function at $V_3 = 0$ is the small signal equivalent conductance G_0 given by

$$G_0 = \frac{I_b}{K_r U_T} \quad \text{(weak inversion)}. \tag{5.35}$$

For amplitudes larger than U_T , this function becomes nonlinear. Assuming that the gate voltage V_1 remains sinusoidal in spite of this small additional nonlinearity, the equivalent conductance contributing to the loss conductance G_3 is the conductance for the fundamental frequency component:

$$G_{(1)} \triangleq \frac{I_{(1)}}{|V_3|} = \frac{I_{(1)}}{2|V_1|} = \frac{I_b}{K_r} \cdot \frac{1}{\pi} \int_0^{2\pi} \sin\phi \left(e^{nv_1 \sin\phi} - e^{-nv_1 \sin\phi} \right) d\phi \quad (5.36)$$

where $v_1 = |V_1|/(nU_T)$ as defined previously. By introducing (5.35) we obtain finally

$$G_{(1)} = G_0 \cdot \frac{2I_{B1}(nv_1)}{nv_1}$$
(5.37)

This result is plotted in Fig. 5.6. As can be seen, $G_{(1)} = G_0$ for very small values of |V|, but it increases rapidly for $|V_3| = 2|V_1| > U_T$ due to the strong nonlinearity of equation (5.34). In Example 1 of Table 4.3, $V_3 \cong 10U_T$. Thus $G_{(1)} \cong 10G_0$ and a value of $G_0 = 10^{-8}$ A/V would have to be realized to obtain $G_3 = 10^{-7}$ A/V as intended. According to (5.35), the saturation current of T₃ would then be $I_h/K_r = 0.25$ nA.

Now, to implement the drain-to-gate bias resistor by means of the scheme of Fig. 5.4, the bias voltage V_b must be equal to the DC component of gate voltage V_{G0} of the active transistor T_1 . As illustrated in Fig. 5.7, this can be done by means of an additional transistor T_5 matched to T_1 . Indeed, if the two transistors have the same inversion coefficient $(I_b/I_{spec5} = I_0/I_{spec1})$, then $V_b = V_{G0}$ in absence of oscillation $(|V_1| = 0)$. But when $|V_1|$ increases, V_{G0} is reduced as illustrated by Fig. 4.18. This variation ΔV_{G0} is negligible if $|V_1|$ remains small or if IC_0 is large. Otherwise V_b must be reduced by the same amount by reducing the inversion coefficient of T_5 .

Figure 5.6 Equivalent loss conductance of the nonlinear resistor implemented by transistors in weak inversion (for a *symmetrical* sinusoidal signal of total amplitude $|V_3|$).

Figure 5.7 Implementation of the drain-to-source bias resistor R_3 by transistor T_3 (all transistors are in the same substrate).

If all transistors are in weak inversion, ΔV_{G0} is given by (4.68) (or by Fig. 4.18) and is usually not negligible. But it can be compensated by choosing

$$\ln \frac{IC_5}{IC_0} = \frac{\Delta V_{G0}}{nU_T} \quad \text{or} \quad \frac{IC_5}{IC_0} = \frac{|V_1|/nU_T}{2I_{B1}(|V_1|/nU_T)},$$
(5.38)

where IC_0 is, as before, the inversion coefficient of T_1 at the critical condition of oscillation, and I_{B1} the modified Bessel function first order.

The implementation of R_3 by this scheme increases the minimum value of supply voltage V_B of Fig. 5.4, because of the stack of transistors T_5 and T_4 . Indeed, to obtain the linearity provided by strong inversion, (5.32) implies

$$V_{G4} = V_{T0} + nV_{G0} + n|V_3|/2 > V_{D1max} = V_{G0} + |V_2|.$$
(5.39)

This problem may be alleviated by reducing the inversion coefficient T_4 below the limit given by (5.32). As shown by Fig. 5.5, the resulting nonlinearity remains acceptable even for an inversion coefficient as low as 1.

5.1.6 Increasing the Maximum Amplitude

Even with a large supply voltage, the maximum of $|V_2|$ is limited by the fact that the active transistor leaves saturation in the negative peaks of drain voltage. This limitation is especially important when the threshold V_{T0} is low. In order to increase $|V_2|$, some scheme must be implemented to raise the DC component of drain voltage V_{D0} by ΔV_{D0} above the DC component of gate voltage V_{G0} . According to (5.2), the minimum possible value of V_{T0} in strong inversion is then decreased by $n\Delta V_{D0}$ (but only by ΔV_{D0} in weak inversion, according to (5.1)).

In the basic circuit of Fig. 5.1, V_{D0} and V_{G0} are forced to be equal by the linear resistor R_3 . This situation is not changed if R_3 is implemented by a transistor as in Fig. 5.7 (because of the transistor is also a symmetrical device), provided $V_2 = -V_1$. But the symmetry is lost if $|V_2| > |V_1|$, and V_{D0} is pushed above V_{G0} . The amount of increase ΔV_{D0} can be calculated by stating that the average current through transistor T_3 is zero, or that the average forward component of current compensates the average reverse component (according to the definition introduced in Section 3.8). If the transistor T_3 remains in weak inversion during the whole oscillation cycle, this is expressed by means of (3.39) and (3.42) as

$$e^{-\frac{V_{G0}}{U_T}} \int_0^{2\pi} e^{-\frac{|V_1|}{U_T}\sin\phi} d\phi = e^{-\frac{V_{D0}}{U_T}} \int_0^{2\pi} e^{-\frac{|V_2|}{U_T}\sin\phi} d\phi,$$
(5.40)

which yields finally

$$\Delta V_{D0} = V_{D0} - V_{G0} = U_T \ln \frac{I_{B0}(|V_2|/U_T)}{I_{B0}(|V_1|/U_T)}.$$
(5.41)

Notice that ΔV_{D0} becomes negative (reduction of V_{D0}) if $|V_2|/|V_1| < 1$.

In the case of a linear biasing resistor R_3 , a voltage shift $\Delta V_{D0} = R_3 I_b$ can be created by flowing a current $I_b \ll I_0$ through this resistor, as shown in Fig. 5.8(a). If floating diodes are available in the process, a diode D can be placed between gate and drain, as illustrated in Fig. 5.8(b). For an ideal diode and an infinite resistance R_3 , the shift of drain voltage would depend on the amplitude $|V_3|$ across the diode according to

Figure 5.8 Ways to increase the maximum possible amplitude of oscillation; (a) by flowing a DC current I_b through resistor R_3 ; (b) by adding a floating diode D; (c) shift ΔV_{D0} produced by an ideal diode D for R_3 infinite.

$$\Delta V_{D0} = U_T \ln[I_{B0}(|V_3|/U_T)].$$
(5.42)

The plot of Fig. 5.8(c) shows that this shift would be just slightly smaller than the amplitude. But an integrated diode is never ideal, which reduces the shift. Furthermore, a resistance R_3 is usually still needed to ensure a sufficient settling speed of the bias circuitry, according to (5.10), which further reduces the shift.

If the polarity of the diode is inverted, then then $V_{D0} < V_{G0}$. This may be useful to reduce the minimum of supply voltage V_B when desaturation of the active transistor is not a problem (small amplitude and/or high threshold V_{T0}).

5.2 Amplitude Regulation

5.2.1 Introduction

We know that an oscillator must be somewhat nonlinear in order to fix the amplitude of oscillation. We have seen in Section 4.3.3 that the first nonlinearity that plays a role when the oscillation grows up is that of the transfer function of the active transistor (this will no longer be true for the inverter-oscillator that will be discussed discussed in Section 5.4.1). We have also pointed out that this nonlinearity has only a small effect on the frequency of oscillation (none at all if $|Z_3|$ is infinite). On the contrary, as illustrated by the example of Section 4.3.1, other nonlinear effects (in particular the desaturation of transistors) may have a dramatic impact on the frequency, while dissipating power uselessly. It is therefore very important to avoid these effects by limiting the bias current I_0 of the active transistor.

Best is to limit I_0 just above its critical value I_{0crit} as in our examples of Section 4.5.2. But this requires a very precise value of bias current. Moreover, I_{0crit} depends not only on the precise value of capacitors, but also on the quality factor of the resonator and on the amount of losses that are neither predictable nor constant.

Therefore, the only realistic way is to implement a control loop that regulates the voltage amplitude $|V_1|$ at the gate. Some kind of voltage reference is needed, but it should not depend on process parameters or on the supply voltage.

The next section describes an amplitude regulator that has become a standard in low-power oscillators for time-keeping. It uses U_T as an internal voltage reference.

5.2.2 Basic Regulator

The basic circuit of the regulator is shown in Fig. 5.9(a). It is driven by the voltage V_1 produced at the gate of the oscillator, and delivers the bias current I_0 of the oscillator. Transistors T_6 and T_8 are designed to operate in *weak inversion*. They have the same channel length, but their channel widths are in the ratio

$$K_w \triangleq W_8 / W_6 > 1. \tag{5.43}$$

They are in the same substrate but the source of T_8 is degenerated by a resistor R_6 .

Figure 5.9 (a) Basic amplitude regulator; (b) DC solutions.

In absence of oscillation ($V_1 = 0$), the circuit settles to DC values. Resistors R_4 and R_5 can be considered as short circuits since there are no gate currents. The two N-channel transistors are saturated so the expressions (3.39) and (3.42) of the drain currents for I_R negligible give

$$I_8 = I_6 \cdot K_w e^{-R_6 I_8 / U_T}, \tag{5.44}$$

which is represented in a normalized form in Fig. 5.9(b) for $K_w = 10$.

The one-to-one complementary mirror $T_9 - T_7$ forces the two branch currents to be equal with $I_6 = I_8$. This is represented by the interrupted line in the same figure.

Two solutions are possible corresponding to point P and Q. It can be shown that P is stable, hence Q is unstable. The circuit is self-starting (from noise). The current at stable point P is obtained by equating I_6 and I_8 in (5.44); it is multiplied by the gain K_i of the current mirror $T_9 - T_2$ to produce the start-up value of I_0 :

$$I_{0start} = \frac{K_i U_T}{R_6} \ln K_w. \tag{5.45}$$

It should be pointed out that if the transistor T_8 is placed inside a separate well connected to its source (as shown in dotted line in Fig. 5.9(a), then U_T is replaced by nU_T in (5.45).

Although this circuit is in principle self-starting, this might no longer be true if some leakage currents are present (e.g. currents of reverse-biased drain-substrate junctions). Fig. 5.9(b) shows in dotted line the case of a dominant leakage current flowing across T_6 and/or T_9 . If this current is small, the new stable solution P' remains very close to P, but a third solution appears at point M, between P' and Q. This solution is unstable, therefore Q becomes stable. This does not occur in the opposite case of a leakage current across T_7 and/or T_8 . It is therefore very important to implement the ratio K_w by $W_8 = K_w W_6$ and *not* by $L_6 = K_w L_8$. The dominant drain leakage of the wider T_8 then ensures that the circuit is self-starting.

If I_{0start} is larger than I_{crit} of the oscillator, the oscillation grows up and V_1 is superimposed on the DC component of gate voltage for T_6 , but not for T_8 , since V_1 is blocked by the low-pass filter of time constant R_5C_5 . The two transistors still have the same DC component of gate voltage but the average drain current of T_6 is amplified by $I_{B0}(v_1)$ (with $v_1 = |V_1|/(nU_T)$ as previously), as is shown by (4.58). Thus, from (5.44):

$$I_6 = \frac{I_{B0}(v_1)}{K_w} I_8 e^{R_6 I_8 / U_T}.$$
(5.46)

Again, equating the two currents provides their value, which is then multiplied by K_i to obtain the current delivered to the oscillator:

$$I_0 = \frac{K_i U_T}{R_6} \ln \frac{K_w}{I_{B0}(v_1)},$$
(5.47)

or, by introducing (5.45):

$$\frac{I_0}{I_{0start}} = \frac{\ln[K_w/I_{B0}(v_1)]}{\ln K_w} = 1 - \frac{\ln[I_{B0}(v_1)]}{\ln K_w}.$$
(5.48)

This result is plotted in Fig. 5.10(a) for several values of K_w . The limit of the

Figure 5.10 (a) Regulation curve; (b) maximum regulated amplitude.

regulated amplitude for $I_0 \ll I_{0start}$ is obtained by nulling the left hand side of (5.48), giving

$$I_{B0}(v_{1max}) = K_w, (5.49)$$

which is plotted in Fig. 5.10(b). For amplitudes larger than v_{1max} , the regulator delivers just a very small current essentially due to the drain to substrate leakage of T₈.

It should be noticed that, according to (4.58), the shift ΔV_{G06} of the DC gate voltage component of T₆ due to the AC amplitude $|V_1|$ at a fixed bias current I_6 is

$$\Delta V_{G06} = -nU_T \ln [I_{B0}(v_1)].$$
(5.50)

It is different from the shift ΔV_{G0} at *constant* $G_{m(1)} = G_{mcrit}$ expressed in (4.68).

The slope s_{vi} of the regulator's normalized transfer function is obtained by differentiating (5.48):

$$s_{vi} = -\frac{1}{\ln K_w} \cdot \frac{I_{B1}(v_1)}{I_{B0}(v_1)},$$
(5.51)

since the derivative of $I_{B0}(v_1)$ is $I_{B1}(v_1)$. The variation of this slope with the normalized current can be calculated by using (5.51) and (5.48) as parametric equations, v_1 being the parameter. It is plotted in Fig. 5.11 for several values of K_w . After de-normalization, this slope is the transconductance of

Figure 5.11 Normalized transconductance of the regulator.

the regulator

$$G_{vi} \triangleq \frac{\delta I_0}{\delta |V_1|} = \frac{I_{0start}}{nU_T} s_{vi} = -\frac{I_{0start}}{nU_T \ln K_w} \cdot \frac{I_{B1}(v_1)}{I_{B0}(v_1)} = -\frac{K_i}{nR_6} \cdot \frac{I_{B1}(v_1)}{I_{B0}(v_1)}, \quad (5.52)$$

where the last form has been obtained by introducing (5.45). Now for $|V_1| > nU_T(v_1 > 1)$, the ratio $I_{B1}(v_1)/I_{B0}(v_1)$ is comprised between 0.5 and 1. Hence, G_{vi} is approximately equal to $K_i/(nR_6)$.

The previous results are only valid if transistor T_6 remains in weak inversion, even in the peaks of drain current. Its maximum inversion coefficient can be expressed from (4.56) as

$$IC_{6max} = \mathbf{e}^{\nu_e} \cdot \mathbf{e}^{\nu_1}, \tag{5.53}$$

with v_1 and v_e defined by (4.57) applied to T_6 and T_8 . Now, the DC current I_6 obtained from (4.58) is

$$I_6 = I_{spec6} I_{B0}(v_1) e^{v_e}, (5.54)$$

but it can also be expressed from (5.48) as

$$I_{6} = I_{6start} \frac{\ln \left(K_{w} / I_{B0}(v_{1}) \right)}{\ln K_{w}}.$$
(5.55)

The value of v_e can be obtained by equating these two expressions. It can then be introduced in (5.53), which yields

$$\frac{IC_{6max}}{IC_{6start}} = \frac{\ln\left(K_w/I_{B0}(v_1)\right)}{\ln K_w} \frac{e^{v_1}}{I_{B0}(v_1)},$$
(5.56)

where IC_{6max} is the inversion coefficient of T_6 for $I_6 = I_{6start}$. Combined with (5.48) (applied to I_6/I_{6start}) and using v_1 as a parameter, this equation gives the variation of IC_6/IC_{6start} in the whole possible range of I_6 . It is plotted in Fig. 5.12 for several values of K_w .

Figure 5.12 Peak inversion coefficient of transistor T_6 .

It can be seen that the maximum value of IC_6 is 1.5 to $3IC_{6start}$. Thus, to ensure weak inversion with $IC_6 < 0.1$, IC_{6start} should be smaller than 0.03 to 0.06. As shown by the simulations reported in Fig. 5.13, this requirement is exaggerated and a value

$$IC_{6start} < 0.2$$
 (5.57)

is sufficient to remain very close to the theoretical result for weak inversion (shown in dotted line).

But if I_{spec6} is reduced further, the voltage scale is expanded at high current because of strong inversion, but unchanged at low current. As a consequence, the slope s_{vi} increases at intermediate current levels, and finally becomes negative. The overall loop will then be unstable.

The inversion coefficient of T_8 is always smaller, since this transistor is K_w -times wider as does not receive the AC voltage.

Figure 5.13 Effect of strong inversion on the regulator characteristics. The theoretical curve for weak inversion is shown in dotted line.

Capacitor C_6 is needed in Fig. 5.9(a) to limit the AC drain variation of transistor T_6 , thereby keeping it in saturation. For the fundamental component, the AC amplitude $|V_{D6}|$ at the drain is

$$|V_{D6}| = \frac{1 - G_{m6(1)}R_4}{\sqrt{1 + (\omega R_4 C_6)^2}} V_1, \tag{5.58}$$

with, according to (4.62)

$$G_{m6(1)} = \frac{I_6}{|V_1|} \cdot \frac{2I_{B1}(v_1)}{I_{B0}(v_1)} = G_{m6} \cdot \frac{2I_{B1(v_1)}}{v_1 I_{B0(v_1)}}.$$
(5.59)

It could in principle be cancelled by choosing $G_{m6(1)}R_4 = 1$, but the harmonic components would remain. An upper bound of $|V_{D6}|$ including all components may be estimated by assuming that the drain current is a very large spike

of negligible length with respect to the period of oscillation $2\pi/\omega$. The drain voltage would then be a triangular wave of amplitude

$$|V_{D6|max} \cong \frac{\pi I_6}{\omega C_6}.$$
(5.60)

The DC component of gate voltage is obtained by applying (4.58) to transistor T_6 :

$$V_{G06} = V_{T0} + nU_T \ln \frac{I_6}{I_{spec6} \cdot I_{B0}(v_1)}.$$
 (5.61)

In order to maintain T_6 in saturation, C_6 should be sufficiently large to ensure

$$V_{G06} - |V_{D6}| > 5U_T \tag{5.62}$$

for the largest value $I_6 = I_{6start}$.

The values of R_4 and R_5 should be sufficiently large to limit the loss conductance G_1 of the oscillator.

The regulator of Fig. 5.9 is a positive feedback loop. At equilibrium, its open-loop low-frequency gain for *constant input voltage* $|V_1|$ can be calculated to be

$$G_{R0(ol)} = \frac{1}{1+\alpha} \le 1,$$
 (5.63)

with

$$\alpha \triangleq \frac{V_{R6}}{nU_T} = \frac{I_0}{I_{0start}} \ln K_w, \qquad (5.64)$$

where V_{R6} is the voltage across resistor R_6 . This gain is always smaller than unity, but it approaches unity if the bias current becomes much smaller than the start-up current.

If the output noise current spectral density (noise content of current I_0) in open-loop is $S_{i_0^2(ol)}$, when the loop is closed it becomes

$$S_{i_{n0}^2} = \left(\frac{1}{1 - G_0}\right)^2 S_{i_{n0}^2(ol)} = \left(1 + \frac{1}{\alpha}\right)^2 S_{i_{n0}^2(ol)},$$
(5.65)

showing that the noise content of the output current I_0 increases with I_{0max}/I_0 . This noise may be reduced by an RC filter before it reaches the gate of T_2 , but care must be taken to maintain the stability of the overall amplitude regulating loop discussed in Section 5.2.3.

For a frequency Ω much lower than the frequency Ω_{ci} of each of the N poles inside the regulator loop, the phase of the open-loop gain can be approximated by

$$\Phi_{R(ol)} = -\sum_{1}^{N} \frac{\Omega}{\Omega_{ci}}.$$
(5.66)

Hence, the closed-loop gain G_R (for constant $|V_1|$) is given by

$$\frac{1}{G_R} = \frac{1}{G_{R0(ol)}(1+j\Phi_{R(ol)})} - 1 = \frac{\alpha - j\Phi_{R(ol)}}{1+\Phi_{R(ol)}}.$$
(5.67)

For $\Phi_{R(ol)} \ll 1$, it becomes

$$G_R = \frac{1 + j\Phi_R}{\alpha},\tag{5.68}$$

with

$$\Phi_{R} = \Phi_{R(ol)}(1 + 1/\alpha).$$
(5.69)

Thus, reducing the value of α also results in an increase of the phase shift in the regulator, which may endanger the stability of the regulation loop. According to (5.64), the ratio I_{0start}/I_0 must therefore be limited.

If R_4 is a perfectly linear resistor, the DC voltage component at the drain of T_6 is equal to that at its gate. Thus, the resistor R_5 of the low-pass filter can be connected to the drain instead of the gate, as illustrated in dotted line in the figure. This variant offers the advantage of reducing the load on the oscillator. Furthermore, it improves the attenuation of the residual AC component that reaches the gate of T_8 .

A very large value of ratio K_w is required to reach an amplitude larger than $4U_T$, as can be seen in Fig. 5.10(a). Instead, the regulated amplitude can be increased by attenuating the input voltage of the regulator. This can be done by adding a capacitor C_7 shown in dotted line in Fig. 5.9(a). A part of C_7 can be the gate capacitance of transistor T₆. It can be shown that, since this transistor is in weak inversion, its gate capacitor is the oxide capacitor multiplied by (n-1)/n < 1.

5.2.3 Amplitude Regulating Loop

The amplitude regulating loop is realized by combining the oscillator of Fig. 5.1 with the regulator of Fig. 5.9(a). The input of the regulator is connected to the gate of T_1 , since it is the gate voltage amplitude that needs to be regulated.

As illustrated in Fig. 5.14, a stable amplitude is reached at the intersection S of the $|V_1|(I_0)$ function of the oscillator with the $I_0(|V_1|)$ function of the

Figure 5.14 Amplitude regulating loop; a stable amplitude is reached at point S if the regulator has the monotonic descending transfer function obtained in weak inversion. If it leaves weak inversion, monotonicity is lost and a relaxation cycle may occur.

regulator. But this is true only if the current delivered by the regulator is descending monotonically when the amplitude increases, as obtained when the transistor T_6 is maintained in weak inversion by observing the condition (5.57).

This monotonicity is lost if the transistor leaves weak inversion during the peaks of AC current. If the intersection with the $|V_1|(I_0)$ function of the oscillator occurs in a region of positive slope (point U), the loop is no longer stable. Instead, a relaxation cycle takes place, as shown in interrupted line in the figure. At start-up, the amplitude $|V_1|$ increases and the current I_0 decreases down to point M where the slope becomes positive. The current jumps abruptly to a very low value (point O) where the amplitude starts decreasing, until point P is reached. The current then jumps to a high value at point N and the cycle is repeated.

A negative slope of the regulator is thus a necessary condition for a stable loop, but this condition is not sufficient. Indeed, the loop must also satisfy the Nyquist criterion of stability.

Neglecting all other poles than the dominant pole Ω_{civ} of the oscillator amplitude, the gain of the open loop is obtained by combining (5.25), (5.26) and (5.52):

$$G_{ol} \triangleq \frac{\delta V_1}{\delta I_{D0}} \cdot \frac{\delta I_0}{\delta |V_1|} = \frac{K_{iv} G_{vi}}{s + K_{iv} / R_{iv}},\tag{5.70}$$

variable	Example 1	Example 2	unit	reference
C_{7}/C_{4}	0	1		choice
K_w	16	8		choice
I_0/I_{start}	0.12	0.21		Fig. 5.10a
I	$1.17 \cdot 10^{-6}$	$7.24\cdot 10^{-3}$	Α	from I_0
K _i	10	100		choice
I	$0.117 \cdot 10^{-6}$	$72.4 \cdot 10^{-6}$	Α	from I _{0start}
R_6	$0.617 \cdot 10^{6}$	$74.7 \cdot 10^{3}$	V/A	(5.45)
Ispec6	$584 \cdot 10^{-9}$	$362\cdot 10^{-6}$	Α	(5.57)
W_6/L_6	1.17	724		
$L_{6} = L_{8}$	$2 \cdot 10^{-6}$	$0.5\cdot 10^{-6}$	m	choice
W ₆	$2.34 \cdot 10^{-6}$	$362\cdot 10^{-6}$	m	
$W_8 = K_w W_6$	$37.4 \cdot 10^{-6}$	$2.89\cdot 10^{-3}$	m	
$v_1 C_4 / (C_4 + C_7)$	4	3		
$-s_{vi}$	0.31	0.39		(5.51)
$-G_{vi}$	$10.8 \cdot 10^{-6}$	$83.4 \cdot 10^{-3}$	A/V	(5.52)
Ω_1	23	$96.5 \cdot 10^{3}$	1/s	(5.71)
Ω_0/Ω_1	1400	706		

Table 5.2 Examples of practical implementations of the amplitude regulator.

where K_{iv} and R_{iv} and G_{vi} are given by (5.28), (5.27) and (5.52) respectively. For very low frequencies including DC, it has the absolute value $R_{iv}G_{vi}$ that should be sufficiently higher than unity to obtain a good regulation. But for frequencies higher than $\Omega_{civ} = K_{iv}/R_{iv}$, it behaves as an integrator with a unity gain frequency (or gain-bandwidth product) simply given by

$$\Omega_1 = K_{iv} |G_{vi}|. \tag{5.71}$$

There are several other poles in the loop. Indeed, we have seen that the dynamic behavior of the oscillator bias has a resonant frequency with two poles at Ω_0 . Moreover, the basic regulator of Fig. 5.9(a) may introduce three more poles. For loop stability, each of these poles should be at frequency much higher than Ω_1 . If this condition is verified, the phase margin at Ω_1 can be approximated by using (5.69) and (5.66):

$$\Delta \Phi = \frac{\Pi}{2} - 2\frac{\Omega_1}{\Omega_0} - (1 + 1/\alpha) \sum_{i=1}^N \frac{\Omega_1}{\Omega_{ci}},$$
(5.72)

where N is the number of poles in the regulator and Ω_{ci} the frequency of pole *i*.

Examples of implementation of regulators adapted to the two examples of oscillators described in the previous sections (Tables 4.1, 4.2, 4.3 and 5.1) are given in Table 5.2.

To avoid a too large value of K_w in Example 2, the input voltage of the regulator is divided by two by introducing $C_7 = C_4$. The regulator is then designed for $v_1 = 3$ instead of 6.

In this example, in spite of a large current ratio K_i , a very large width of transistors T_6 and T_8 is needed to maintain them in weak inversion.

For both examples, the unity gain frequency Ω_1 is, as it should, much lower than the resonant frequency Ω_0 of the biasing circuit. The loop will be stable if the additional poles due to the regulator itself are also at a much higher frequency. Their number and their values depend on the specific implementation of the regulator. Several possibilities will be discussed in the following sections.

5.2.4 Simplified Regulator Using Linear Resistors

If R_4 is a linear resistor, the DC component V_{D0} of drain voltage remains equal to V_{G0} at the gate. If C_6 is sufficiently large, it will limit the amplitude of drain voltage $|V_{D6}|$ evaluated by (5.58) to a very low value, so that the low-pass filter R_5C_5 can be removed, as shown in Fig. 5.15. For a correct

Figure 5.15 Simplified form of the regulator; the low-pass filter R_5C_5 is suppressed and T_8 is driven directly by the DC component of drain voltage V_{D06} that follows V_{G06} .

operation of the regulator, the residual AC amplitude $|V_{D6}|$ should be smaller than about $0.3nU_T$. If the required value of C_6 is to large, it might be better to keep the additional low-pass filter R_5C_5 .

Another simplified version of the regulator is depicted in Fig. 5.16(a). Here, the low-pass filter R_5C_5 is maintained, but the drain of T_6 is directly connected to the gate. This transistor is therefore a nonlinear load for the

Figure 5.16 (a) Simplified form of the regulator; the drain of T_6 is directly connected to the gate. (b) The equivalent conductance loading the oscillator is smaller than the small-signal transconductance G_{m6} .

oscillator, which should be made negligible. The contribution to G_1 is the transconductance for the fundamental component $G_{m6(1)}$ given by (5.59) and plotted in Fig. 5.16(b).

Thanks to the DC shift, it is always smaller than the small-signal conductance G_{m6} for $I_{D6} = I_6$. To avoid a too large loss conductance G_1 , the branch current I_6 should be much smaller than the bias current I_0 of the oscillator.

The most compact solution is obtained by merging the regulator with the oscillator as illustrated in Fig. 5.17 [21]. Transistors T_6 and T_7 of the reg-

Figure 5.17 Compact regulating loop by merging the oscillator with the regulator.

ulator are merged with T_1 and T_2 of the oscillator, so that T_1 and T_8 have the same DC gate voltage. Since transistor T_6 must be in weak inversion,

this solution is only possible if the oscillator is designed with T_2 in weak inversion, with $I_{spec1} > 5I_{0start}$ according to (5.57).

5.2.5 Elimination of Resistors

A possible implementation of the regulator without any resistor is depicted in Fig. 5.18.

Figure 5.18 Possible implementation of the amplitude regulator without resistors. Resistor R_4 of Fig. 5.15 is replaced by transistor T_{12} ; this modifies the characteristics of the regulator. Resistor R_6 is replaced by transistor T_{10} .

The role of resistor R_6 of the original circuit (Fig. 5.9) is to define the value of start-up current. It is here replaced by transistor T_{10} operating in strong inversion with $V_D \ll V_{Dsat}$ (or $I_F - I_R \ll I_F$). The corresponding resistance is the inverse of the source transconductance of T_{10} given by (3.50). If transistors T_{10} and T_{11} are identical, the equivalent resistance is then

$$R_6 = \frac{U_T}{\sqrt{I_{F10}I_{spec10}}} = \frac{U_T}{\sqrt{I_{11}I_{spec10}}}.$$
(5.73)

The bias current I_{11} must be provided by some external current reference. This could be avoided by suppressing T_{11} and connecting the gate of T_{10} to some bias voltage V_b . From (3.50), the equivalent resistance would then be

$$R_6 = \frac{1}{\beta_{10}(V_b - V_{T0})}.$$
(5.74)

A simple possibility is to use the supply voltage V_B as bias voltage V_b , with the risk of perturbing the oscillator by the noise content of V_B .

The linear resistor R_4 of Fig. 5.15 is replaced by transistor T_{12} , according to the scheme described in Fig. 5.4 (with T_3, T_4 becoming T_{12}, T_{13}). However, to obtain a linear element, this scheme required symmetrical voltage variations at the two ends of the device. It is therefore not applicable to eliminate the AC component without producing an additional shift of the DC component. Since the AC component of voltage is filtered out at the drain, this voltage shift for weak inversion can be obtained by applying (5.41) with $|V_2| = 0$:

$$\Delta V_{D06} = V_{D06} - V_{G06} = -U_T \ln \left(\mathbf{I}_{B0}(nv_1) \right).$$
(5.75)

This shift must be added to ΔV_{G06} (given by (5.50)) in the calculation of the regulator transfer function. The result (5.48) is modified to

$$\frac{I_0}{I_{0start}} = 1 - \frac{\ln\left[I_{B0}(v_1)\right] + \ln\left[I_{B0}(nv_1)\right]/n}{\ln K_w},$$
(5.76)

which becomes dependent on the value of n. It is plotted in Fig. 5.19 for n = 1.30. Compared to those of Fig. 5.10, these regulation curves have a

Figure 5.19 Regulation curve for the circuit of Fig. 5.18 with T_{12} in weak inversion.

reduced voltage scale, thereby requiring a larger value of the ratio K_w to achieve a given amplitude.

The contribution of the regulator to the loss conductance G_1 of the oscillator is the conductance $G_{(1)}$ of transistor T_{12} for the fundamental frequency component (at the gate node of T_6). Assuming that all N-channel transistors are in weak inversion, this conductance can be calculated to be :

$$G_{(1)} = G_0 \cdot \frac{2I_{B1}(nv_1)}{nv_1}.$$
(5.77)

This result is identical to (5.37) plotted in Fig. 5.6, but the small signal value G_0 is

$$G_0 = e^{(V_{G14} - V_{G06})/U_T} \frac{I_8}{K_r U_T}$$
(5.78)

with $K_r = \beta_{13}/\beta_{12}$. The voltage difference $(V_{G14} - V_{G06})$ depends on the relative size of transistors T₆ and T₁₄ and on the shift of DC gate voltage of T₆ given by (5.50):

$$V_{G14} - V_{G06} = nU_T \cdot \ln\left[\frac{\beta_6}{\beta_{14}} I_{B0}(v_1)\right],$$
(5.79)

thus (5.78) becomes

$$G_0 = \left[\frac{\beta_6}{\beta_{14}} I_{B0}(v_1)\right]^n \frac{I_8}{K_r U_T},$$
(5.80)

which is can be made independent of *n* by choosing $\beta_{14}/\beta_6 = I_{B0}(v_1)$.

To improve the amount of filtering, the low-pass filter R_5C_5 of Fig. 5.9(a) can be implemented by means of an additional transistor T_{15} (shown in dotted line in Fig. 5.18) with the same gate voltage as T_{12} . This transistor does not produce any voltage shift since it only receives the very small residual AC voltage, but it should have a smaller value of specific current to compensate for the additional voltage shift given by (5.75). To obtain the same small signal conductance G_0 as T_{12} :

$$\beta_{15} = \beta_{12} / I_{B0}(nv_1). \tag{5.81}$$

Now, even if T_{12} and T_{13} are in strong inversion, with inversion coefficients $IC_{12} = IC_{13}$ much larger that unity, T_{12} cannot behave as a linear resistor, since there is no AC voltage at the drain of T_6 . The voltage shift can be calculated to be

$$\Delta V_{D06} = V_{D06} - V_{G06} = 2U_T \sqrt{IC_{13}} \left[1 - \sqrt{1 - \frac{|V_1|^2}{8U_T^2 IC_{13}}} \right], \qquad (5.82)$$

which is only valid if the peaks of V_1 do not saturate T_{12} , i.e. for

$$|V_1| < 2U_T \sqrt{IC_{13}}.$$
 (5.83)

This shift can be made negligible with respect to ΔV_{G06} expressed by (5.50) by choosing a large value of inversion coefficient IC_{13} . The basic regulation curves of Fig. 5.10(a) will then remain valid.

5.3 Extraction of the Oscillatory Signal

The amplitude $|V_1|$ of the signal produced by the oscillator is usually not sufficient for the intended application and must therefore be amplified. The most simple amplifier is shown in Fig. 5.20. The complementary transistors T_{16} and T_{17} replicate T_1 and T_2 of the oscillator with a ratio K_a in specific current, current and transconductance (e.g. $I_{spec16} = K_a I_{spec1}$). Their capacitive load C_8 is usually much smaller than the functional capacitance C_2 of the oscillator. Since the gate of T_{16} is connected to that of T_1 , the transconduct-

Figure 5.20 Buffer amplifier for signal extraction.

ance for the fundamental is proportional to the critical transconductance of the oscillator: $G_{m16(1)} = K_a G_{mcrit}$. The voltage gain is the given by

$$A_{\nu} = \frac{K_a G_{mcrit}}{\omega C_8}.$$
(5.84)

The input capacitance of this amplifier can be included in the functional capacitor C_1 of the oscillator. But the unavoidable drain-to-gate capacitance produces an increase of the loss conductance G_1 . Indeed, as long as the two transistors remain saturated, a fraction $C_{GD16}/(C_8 + C_{GD16})$ of the drain current variations is feed back to the input, which corresponds to an input conductance for the fundamental

$$G_{in(1)} = K_a G_{mcrit} \frac{C_{GD16}}{C_8 + C_{GD16}}.$$
 (5.85)

The noise of this amplifier can be characterized by its input-referred noise voltage spectral density $S_{v_n^2 a}$. The white noise component of this spectrum can be expressed as

$$S_{v_n^2 a} = \frac{4\gamma_a kT}{K_a G_{mcrit}},\tag{5.86}$$

where γ_a is the noise excess factor of the amplifier. This factor is always larger than 1/2, but it may be much larger than unity if T₁₆ is in strong inversion with an inversion coefficient much larger than that of T₁₇.

This voltage noise results in a component of phase noise, with a spectrum given by given by

$$S_{\phi_n^2 a} = S_{\nu_n^2 a} / |V_1^2|. \tag{5.87}$$

This noise is added to the phase noise of the oscillator (given by (3.29) or (3.30)) and dominates at frequencies distant from the frequency of oscillation.

5.4 CMOS-Inverter Oscillator

5.4.1 Direct Implementation

One of the earliest implementations of a CMOS oscillator is illustrated by Fig. 5.21. It is a simple CMOS inverter biased in active mode by a resistor

Figure 5.21 Direct implementation of a CMOS inverter as an oscillator.

R, to which the two functional capacitors of the Pierce circuit are added. It is still a grounded-source configuration, since both sources are grounded with respect to AC signals. The transconductances of the two transistors are added, but they are produced by the same current I_0 . If the transistors are designed to have the same specific current, the combined transconductance is doubled. According to (3.55), the critical current is thus reduced by a factor 2 for any given value of inversion coefficient IC_0 .

However, this simple circuit suffers from two major drawbacks.

First, the current drawn from the supply voltage is not constant and its average value I_0 depends on the supply voltage and on the threshold voltage of the two transistors. This dependency increases when the inversion factor is decreased and is maximum in weak inversion.

The second drawback is that, at low values of the inversion coefficient, the nonlinearity of the transfer function of the inverter results in an *increase* of the transconductance for the fundamental frequency $G_{m(1)}$ with the amplitude of oscillation. Thus, as soon as the critical transconductance is reached (for a critical value of V_B), the amplitude increases abruptly, until it is limited by the loss conductance of the transistors leaving saturation in the peaks of oscillation. The corresponding variation of $Z_{c(1)}(|I_c)|$ simulated in an example is shown in Fig. 5.22. The simulated circuit is depicted in part (a) of

Figure 5.22 Simulation of the circuit impedance for the fundamental frequency $Z_{c(1)}$ of a CMOS-inverter oscillator.

the figure. The two complementary transistors have approximately identical specific currents and the loss due to the biasing resistor is practically negligible.

Part (b) of the figure shows the loci of $Z_{c(1)}(|I_c|)$ calculated from simulations with several values of supply voltage V_B . As long as the amplitude $|I_c|$ of the sinusoidal current injected in the circuit is smaller than 100 nA, the circuit remains linear and its small-signal transconductance G_m increases with V_B . The corresponding values of the linear circuit impedance Z_c are located approximately on the expected circular locus (shown in thin line). The small departure for large values of V_B is caused by the output conductance G_{ds} of the transistors. Indeed, this conductance is not constant but increases with the current, thereby progressively shifting the circle.

For larger values of $|I_c|$, the circuit becomes nonlinear. Its impedance $Z_{c(1)}$ for the fundamental frequency starts changing with the amplitude.

For $V_B \leq 1$ V, the bias current is small and the transistors are in weak or moderate inversion. The negative resistance first *increases* with the amplitude as a result of the increase of $G_{m(1)}$. It only starts decreasing when the amplitude is so large as to push the transistors out of saturation, which creates a large equivalent loss conductance G_2 . The current drain I_0 is always much larger than its critical value and the excess of power is dissipated in losses.

For $V_B \ge 1.2$ V, the transistors are in strong inversion and the voltage-tocurrent transfer function of the inverter are approximately linear (difference of two approximately identical shifted square laws). Thus, as soon as the critical transconductance is reached, the amplitude grows until the transistors leave saturation, thereby reducing the negative resistance.

With the values selected, this circuit provides a maximum negative resistance of about $580k\Omega$ at $V_B=1.2V$. Simulation results obtained with a motional resistance $R_m=50k\Omega$ are illustrated in Fig. 5.23(a).

Starting from low values of V_B , the critical value of the current I_0 flowing through the transistors is reached for $V_B=0.78$ V (point b). At this point, the amplitude of oscillation grows until the peak-to-peak value of the voltage at the drains reaches approximately V_B (point c). The current is then much larger than its critical value, and the drain voltage is strongly distorted. A further increase of V_B is followed by the drain amplitude, and results in a further increase of I_0 . The motional current I_m also increases first, but then decreases. This is because the increase of losses produced by desaturated transistors overcomes the increase of bias current.

Starting from high values of V_B , the oscillation is sustained down to $V_B = 0.62 \text{ V}$ (point d). At this point, it decreases to zero and I_0 falls down much lower than its critical value

The explanation of this hysteresis loop can be found in part (b) of the figure. To each value of supply voltage V_B corresponds one locus of the fundamental impedance $Z_{c(1)}(|I_c|)$. The figure shows only the loci simulated for the two critical values of V_B . With the amplitude $|I_c|$ increasing, these loci first follow the circular locus of the linear circuit (corresponding to an in-

Figure 5.23 Simulation of the CMOS inverter-oscillator of Fig. 5.22(a) with $R_m = 50 \text{ k}\Omega$; (a) variation of motional current, current drain and peak-to-peak drain amplitude; (b) partial $Z_{c(1)}$ complex plane explaining the hysteresis loop.

crease of the negative resistance $|R_n|$). This is because $G_{m(1)}$ increases with the amplitude, as explained above. When the losses at the drain becomes too important, the loci loop back and the negative resistance decreases as normally.

The locus of the motional impedance $-Z_m(p)$ for $R_m=50$ k Ω is represented in dotted line in the same figure. As explained in Chapter 3, stable oscillation can be reached for $Z_{c(1)} = Z_m$.

Starting from low values of V_B , the first solution is found at point b (origin of the $Z_{c(1)}$ locus for $V_B = 0.78$ V). But this solution is unstable since the amplitude stability criterion (1.3) is not met. At this value of V_B , the amplitude first increases and then decreases until the stable point c is reached. Larger values of V_B correspond to lower positions of this stable solution.

When V_B is reduced below 0.78 V, the stable solution will move on intermediate loci, until point d is reached for V_B =0.62 V. But this point is metastable since for any small change of amplitude the negative resistance becomes smaller than R_m . At this value of V_B , the amplitude decreases until point a is reached.

This hysteresis loop can disappear if the transistors are both in strong inversion at the critical value of V_B . But this requires a higher value of V_B and the critical current is increased, thus the advantage of minimizing the current is lost. It is very difficult in practice to avoid dissipating much more power than the minimum needed for a given amplitude of oscillation.

The current (and thus the excess of negative resistance) is strongly dependent on the supply voltage and on the gate threshold voltage of the transistors. Since the amplitude limitation is achieved by increasing the losses, the amount of frequency pulling depends also strongly on these voltages and thus on the temperature. Furthermore, because of this strong possible overdrive, this circuit is prone to parasitic oscillation on unwanted modes of the resonator.

Its only advantages are a possible rail-to-rail output (peak-to-peak drain voltage close to V_B) and a large power efficiency

$$\eta = \frac{P_m}{V_B I_0}.$$
(5.88)

The mechanical power P_m and the efficiency η calculated from the simulation of the circuit of Fig. 5.22 are plotted in Fig. 5.24. The power efficiency

Figure 5.24 Mechanical power and power efficiency of the CMOS inverteroscillator of Fig. 5.22(a) with $R_m = 50 \text{ k}\Omega$.

reaches a maximum close to 50% at the minimum value of V_B but decreases for higher values with the increase of losses.

Compared to the current-biased Pierce oscillator, the high value of P_m (and thus of E_m for a given value of Q) might be an advantage to reduce the phase noise, according to (3.30). However, the noise excess factor γ is increased by a higher current due to losses, which compensates this higher energy of oscillation. Moreover, for high frequency resonators, P_m might largely exceed the acceptable value (it was close to the limit in Example 2 of Tables 4.1 to 4.3).

In spite of its apparent simplicity the direct implementation of a CMOS inverter-oscillator illustrated in Fig. 5.21 is not recommended because of its many pitfalls.

5.4.2 Current-controlled CMOS-inverter oscillator

The best way of exploiting the increased transconductance provided by a complementary inverter is to impose its bias current as illustrated by Fig. 5.25 [22].

Figure 5.25 CMOS-inverter oscillator biased by current I_0 . The coupling capacitor C_c is necessary to activate the P-channel transistor.

As for the basic grounded source circuit of Fig. 5.1 and all its variants and extensions, the bias current I_0 is imposed by transistor T_2 . A coupling capacitor C_c must be added to ensure the activity of the P-channel part of the inverter. Its impedance must be much lower than the source transconductance of the transistor. Assuming that the two complementary transistors have about the same transconductance (otherwise the complementary scheme is useless):

$$\omega C_c \gg n G_{mcrit}/2 \tag{5.89}$$

For the Example 1 of Section 4.5.2, this gives $C_c \gg 4.9 \,\text{pF}$, thus a large capacitance of at least 50 pF is needed.

The large signal behavior of this complementary circuit is exactly the same as that of the basic circuit. When the amplitude grows, the DC component V_{G0} of the N-channel transistors decreases by ΔV_{G0} according to Fig. 4.18 to keep I_0 constant. For the P-channel transistor, the current is kept constant by a decrease ΔV_0 of the voltage V_0 at its source. According to (3.40), the saturated drain current is controlled by $V_G - nV_S$. Hence, for symmetrical transistors ($I_{specp} = I_{specn}$):

$$\Delta V_0 = 2\Delta V_{G0}/n. \tag{5.90}$$

To minimize losses, the two transistors should remain saturated in the peaks of drain amplitude:

$$V_{DS0n} + |V_2| < V_{DSsatn}$$
 and $V_{DS0p} + |V_2| < V_{DSsatp}$, (5.91)

where V_{DS0n} and V_{DS0p} are the DC component of the voltage across the transistors, and $|V_2|$ is, as before, the amplitude of oscillation at the drain.

Considering the case of *weak inversion*, (4.58), V_{DS0n} is obtained directly from (4.68):

$$V_{DS0n} = V_{G0n} = V_{T0n} - nU_T \ln\left[\frac{I_{spec}}{I_{0critmin}} \cdot \frac{2I_{B1}(v_1)}{v_1}\right]$$
(5.92)

The same DC current I_0 flows through the two complementary transistors. It is given by (4.58) with

$$v_e = v_{en} = \frac{V_{Gon} - V_{T0n}}{n_n U_T}$$
(5.93)

for the N-channel transistor and

$$v_e = v_{ep} = \frac{V_{Gop} - V_{T0p} - nV_{Sp}}{n_p U_T}$$
(5.94)

for the P-channel device (with the definitions of Fig. 3.10 for voltages). If the transistors are symmetrical ($I_{specp} = I_{specn}$ and $n_p = n_n$), equating the two expressions of I_0 yields

$$V_{Sp} = (V_{G0p} - V_{T0p} - V_{G0n} + V_{T0n})/n, (5.95)$$

where V_{T0n} and V_{T0p} are the values of threshold V_{T0} for the two types of transistors. Now $V_{G0p} = V_B - V_{G0n}$, thus

$$V_{DS0p} = V_{G0p} - V_{Sp} = V_B \left(1 - \frac{1}{n} \right) + V_{G0n} \left(\frac{2}{n} - 1 \right) + \frac{V_{T0p} - V_{T0n}}{n}, \quad (5.96)$$

or, by introducing (5.92)

$$V_{DS0p} = \frac{V_{T0p}}{n} + \frac{n-1}{n} (V_B - V_{T0n}) - (2-n)U_T \ln\left[\frac{I_{spec}}{I_{0critmin}} \cdot \frac{2I_{B1}(v_1)}{v_1}\right].$$
(5.97)

The drain amplitude $|V_2|$ must then be limited to fulfill the two conditions of (5.91) with $V_{DSsatn} = V_{DSsatp} \cong 5U_T$. If needed, the DC voltage V_{DS0n}

Figure 5.26 CMOS-inverter oscillator modified to allow an increase of drain amplitude.

across the N-channel transistor can be increased by one of the schemes discussed in Section 5.1.6.

If the DC voltages across both transistors must be increased, the solution depicted in Fig. 5.26 can be implemented. Two separate resistors R_n and R_p are used to bias the gates of the two transistors, and a small current I_b is flown through them. The voltage drops ΔV_n and ΔV_p across them are equivalent to an increase of V_{Tn} and V_{Tp} in equations (5.92) and (5.96). The gate of the P-channel transistor is coupled by means of capacitor C_p .

If transistors must be used to implement resistors, the floating resistor R_p is hard to realize. It is then better to bias the gate of the P-channel transistor from a separate voltage source of adequate value.

As shown by (5.96), V_{DS0p} increases with V_B . This would not be the case if the P-channel transistor were put in a separate well connected to its source (as indicated in dotted line in Fig. 5.25). The DC voltage across the transistor would then be symmetrical to that of the N-channel device:

$$V_{DS0p} = V_{G0p} = V_{T0p} - nU_T \ln\left[\frac{I_{spec}}{I_{0critmin}} \cdot \frac{2I_{B1}(v_1)}{v_1}\right],$$
(5.98)

which is always smaller than the value given by (5.96). The advantage would be a reduction of the minimum value of supply voltage V_B .

5.5 Grounded-Drain Oscillator

5.5.1 Basic Implementation

The basic grounded-drain version of the Pierce oscillator is shown in Fig. 5.27. To avoid modulation by the source, the active transistor T_1 is put in a sep-

Figure 5.27 Basic grounded-drain version of the 3-point Pierce oscillator.

arate well connected to its source. In this N-channel implementation, the drain of T_1 is connected to the positive rail of the power supply (which is the ground of the AC signal), and a bias current I_0 is delivered by a current source T_2 (also N-channel). As in the grounded-source version, T_1 is biased in saturation by means of resistor R_3 .

All the results obtained in Chapter 4 for the Pierce oscillator are applicable to this circuit. But there are some notable differences with respect to the grounded-source implementation of Section 5.1.

One side of the resonator is grounded. Therefore, only one additional pin is needed, hence its appellation "single pin oscillator" [23]. But this advantage also turns out to be a drawback, since C_3 now includes parasitic capacitors to ground (connecting pad, package feedthrough, external connections). Even if these are minimized, it includes C_{10} or C_{20} of the resonator itself. As a result, C_3 becomes much larger than its minimum value C_{12} due to the resonator. The radius of the circular locus of Fig. 4.6 and the margin factor K_m defined by (4.17) are thus drastically reduced, with the various negative consequences discussed in Chapter 4.

One potential advantage of this implementation is that the voltage V_3 across the resonator can be used as the output signal. As expressed by (4.37) this voltage is larger than V_1 . However, this will further increase the over-

all value of C_3 . It might also increase the loss conductance G_3 , which has a strong effect on the critical transconductance, according to (4.45).

Another negative point is the fact that the relatively large capacitance to ground of the separate well is now part of C_2 . Since this capacitance is voltage dependent, the frequency stability is degraded.

As for the grounded-source realization, even with a large value of supply voltage, the maximum amplitude is limited by the desaturation of the active transistor in the peak of oscillation. This limit can be pushed by flowing some current through the bias resistor R_3 , thereby lowering the DC voltages at the gate and at the source and substrate node.

The resistor can be implemented by means of a P-channel transistor T_3 biased in the linear region of strong inversion. Then, according to (3.50):

$$R_3 = \frac{1}{G_{ms3}} = \frac{U_T}{\sqrt{I_{F3}I_{spec3}}}.$$
 (5.99)

The circuit of Fig. 5.27 assumes that a the N-channel active transistor can be put in a separate P-type well. If only N-type wells are available, P-channel devices must be used.

The amplitude of oscillation can be controlled by the regulator discussed in Section 5.2 (or by its P-channel version). This circuit can be capacitively coupled to the gate of T_1 to control $|V_3|$, or to its drain to control $|V_2|$. It delivers the bias current I_0 .

5.5.2 Single-Substrate Implementation

It might be tempting to avoid a separate well for the active transistor T_1 and to realize the circuit as shown in Fig. 5.28. This was the only possibility for the first implementation of this oscillator in a P-MOS process [24]. The common substrate of the N-channel devices is now the negative rail of the power supply (reference 0). The source voltage V_S and drain voltage V_G are both changing with the oscillatory signal, whereas the drain voltage is constant and equal to V_R .

The general expression of the circuit impedance Z_c is now

$$Z_c = \frac{Z_1 Z_3 + Z_2 Z_3 + n G_m Z_1 Z_2 Z_3}{Z_1 + Z_2 + Z_3 + G_m Z_2 [n Z_1 + (n-1)Z_3]},$$
(5.100)

where each impedance Z_i is defined by (4.1). It would be reduced to (4.2) (impedance of the basic circuit) for n = 1. The circuit impedance is still a

Figure 5.28 Grounded-drain 3-point Pierce oscillator without separate well.

bilinear function of the gate transconductance G_m , hence the locus of $Z_c(G_m)$ is still a circle.

For the lossless circuit $(Z_i = 1/j\omega C_i)$, this circle is centered on the imaginary axis, as illustrated in Fig. 5.29.

Figure 5.29 Loci of $Z_c(G_m)$: a: Single-substrate with $C_1 = C_2$; b: separate well with $C_1 = C_2$ (optimum ratio); c: single-substrate with $C_2/C_1 = 2n - 1$ (optimum ratio). All three loci have the same value of $C_s + C_3$, thus same frequency pulling for $R_m \ll |R_{n0}|_{max}$. The radius of the loci for the single-substrate is dramatically reduced.

Compared to the basic implementation of Fig. 5.27 (corresponding to n = 1), the upper point of the circle ($G_m = 0$) is not changed, but the lower point ($G_m = \infty$) is much higher, due to the term $C_1(n-1)/n$ added to C_3 . The radius of the circle is therefore drastically reduced. The maximum value of negative resistance (radius of the circle) is reduced to

$$|R_{n0}|_{max} = \frac{n - (n-1)C_1/C_s}{2\omega C_3(1 + C_3/C_s)(n + (n-1)C_1/C_3)},$$
(5.101)

where C_s is the series combination of C_1 and C_2 .

For $R_m \ll |R_{n0}|_{max}$ (which is much more difficult to satisfy), the critical transconductance for the lossless case is

$$G_{mcrit0} \cong \frac{\omega^2 R_m (C_1 C_2 + C_2 C_3 + C_3 C_1)^2}{C_1 [C_2 - (n-1)C_1]},$$
(5.102)

or, by combination with (4.21) (which is not modified):

$$G_{mcrit0} \cong \frac{\omega C_m}{Q p_c^2} \cdot \frac{(C_1 + C_2)^2}{4C_1 [C_2 - (n-1)C_1]},$$
(5.103)

which reduces to (4.26) for n = 1. The optimum is no longer for $C_1 = C_2$, but for

$$C_2 = (2n-1)C_1$$
 giving $G_{mcrit0} \cong n \frac{\omega C_m}{Q p_c^2}$. (5.104)

Thus, even with the optimum capacitance ratio, the critical transconductance for a given value of frequency pulling is increased by factor *n*. As shown in Fig. 5.28 (curve c), the radius of the locus is slightly larger than for $C_1 = C_2$ (curve a), but still much smaller than for the optimum implementation with a separate well (curve b).

In summary, the implementation of the grounded-drain Pierce oscillator in a single substrate (with no separate well) strongly reduces the radius of the circular locus, thereby reducing the margin factor K_m defined by (4.17). The minimum critical transconductance is increased and is obtained with $C_1 < C_2$ (and thus $|V_1| > |V_2|$ according to (4.38)). In view of these many drawbacks, this solution should be avoided.

Chapter 6 Alternative Architectures

6.1 Introduction

The basic 3-point Pierce oscillator of Fig. 4.1 is the only possible configuration of a quartz (or MEMS) oscillator using a single active transistor. As soon as two or more active transistors are considered, many configurations become possible. Three of them will be discussed in this last Chapter.

Two-transistors symmetrical circuits for parallel and series resonance will be analyzed in Sections 6.2 and 6.3. An example of more complicated architecture using an operational transconductance amplifier (OTA) will by presented more briefly in Section 6.4. These three circuits will be compared with the Pierce oscillator in Section 6.5.

6.2 Symmetrical Oscillator for Parallel Resonance

6.2.1 Basic Structure

The standard circuit used for a symmetrical parallel resonance oscillator is illustrated in Fig. 6.1(a). It is based on a known circuit using vacuum tubes (figure 68b, page 82 of [15]). The negative resistance produced by the cross-coupled differential pair is simply

$$Z_{c00} = -2/G_m, (6.1)$$

Figure 6.1 Basic parallel resonance oscillator; (a) standard circuit for a R, L, G resonator; (b) modified circuit adapted to the absence of a DC path in the resonator (without bias circuitry).

where G_m is the transconductance of each transistor. The critical condition for oscillation is thus

$$G_m = 2G, \tag{6.2}$$

and oscillation will take place exactly at the resonant frequency of the resonator, since the circuit admittance is real (except for the effect of parasitic capacitors).

This circuit produces a *voltage stable* negative resistance compatible with parallel resonance. It would not provide a stable oscillatory solution with a plain series resonator. One obvious reason is that a DC path is needed across the resonator, otherwise the circuit becomes bistable. But even if bistability is avoided by some means, no stable oscillation would be possible, because the basic condition (1.2) for phase stability would not be fulfilled. Therefore, if this circuit is associated with a quartz resonator, it must exploit the parallel resonance discussed in Chapter 2. For this parallel resonance, the parallel capacitance C_P is part of the resonator. If necessary, this capacitance may be increased to a value $C_D > C_P$ to reduce the amount of frequency pulling.

To eliminate the DC bistable solution, the DC coupling between the sources of the transistors must be replaced by a capacitive coupling C_S as illustrated in Fig. 6.1(b). The circuit impedance (without parallel capacitance) becomes

$$Z_{c0} = -\frac{2}{G_m} + j\frac{n}{\omega C_S}.$$
(6.3)

Away from the resonant frequencies of the quartz, the drains are simply connected by a parallel capacitance C_D and a parasitic oscillation may occur at the frequency ω_p that cancels the imaginary part of the total admittance:

$$\operatorname{Im}\left[\frac{1}{Z_{c0}(\omega_p)}\right] + \omega_p C_D = 0, \tag{6.4}$$

which results in

$$\omega_p^2 = \frac{nG_m^2}{4C_D C_S} \left(1 - \frac{nC_D}{C_S}\right). \tag{6.5}$$

Thus if

$$C_S < nC_D, \tag{6.6}$$

this frequency does not exist and no parasitic oscillation can occur.

6.2.2 Linear Analysis with the Parallel Resonator

The variation of the parallel impedance Z_p of the resonator (i.e with the parallel capacitance C_p across the motional impedance Z_m) was discussed in Chapter 2, with the locus of $Z_p(Qp)$ illustrated in Fig. 2.3. This circular locus is reproduced in Fig. 6.2, with the figure of merit *M* replaced by its value for the loaded dipole resonator defined by

$$M_L \triangleq \frac{QC_m}{C_D} \le M_D < M_0. \tag{6.7}$$

The circuit impedance Z_{c0} given by (6.3) (without the parallel capacitance C_D that is now part of the parallel resonator) is a linear function of $2/G_m$ with a constant imaginary part. The locus of $-\omega C_D Z_{c0}$ is plotted in dotted line in Fig. 6.2. It is an horizontal strait line that is below -1 in order to fulfill condition (6.6). One of its two intersections with $\omega C_D Z_p(p)$ corresponds to the critical condition for oscillation (the other can be shown to be unstable).

As can be seen, the oscillation frequency is always *above* the parallel resonance frequency. By introducing the definition (6.7) of M_L , the range of possible pulling can be expressed as

$$\frac{C_m}{2C_D} \le p_c \le \frac{C_m}{2C_D} + \frac{1}{2Q},$$
 (6.8)

whereas the range of critical transconductance for the lossless circuit is

Figure 6.2 Normalized loci of $Z_p(p)$ and $-Z_{c0}(G_m)$. Their intersection defines the critical condition for oscillation.

$$\frac{2\omega C_D}{M_L} \le G_{mcrit0} \le \frac{4\omega C_D}{M_L}.$$
(6.9)

In normal cases, $M_L \gg 1$ (very large circle) whereas nC_D/C_s is not much larger than unity. Then G_{mcrit0} has the lowest value of this range:

$$G_{mcrit0} = \frac{2\omega C_D}{M_L} = \frac{2\omega C_D^2}{QC_m} = 2\omega^2 C_D^2 R_m.$$
(6.10)

6.2.3 Linear Analysis with the Series Motional Resonator

Although it is basically a parallel resonance oscillator, this circuit can be analyzed as was done for the previous circuit, by separating the motional impedance Z_m of the resonator from the overall circuit impedance Z_c (that includes the parallel capacitance C_D). Both approaches are equivalent for the small-signal linear analysis, but the splitting $(Z_m, Z_{c(1)})$ is needed to consider nonlinear effects, as explained in Chapter 3. Indeed, the current flowing through Z_p is no longer sinusoidal when the voltage across it is distorted.

The impedance of the whole circuit shown in Fig. 6.3(a) in the general case with losses is

$$Z_{c} = \frac{Z_{D}Z_{c0}}{Z_{D} + Z_{c0}} = \frac{Z_{D}(2 + nG_{m}Z_{S})}{2 + nG_{m}Z_{S} - G_{m}Z_{D}},$$
(6.11)

Figure 6.3 Parallel resonance oscillator with lossy impedances Z_S and Z_D ; (a) full circuit without bias; (b) small-signal equivalent circuit.

It corresponds to the small-signal equivalent circuit of Fig. 6.3(b).

The values of Z_c for the extremes of G_m are

$$Z_c = Z_D$$
 for $G_m = 0$ and $\frac{nZ_D Z_S}{nZ_S - Z_D}$ for $G_m = \infty$. (6.12)

If the two impedances are simply capacitors (lossless circuit), these limits become $-j/\omega C_D$ and $-j/\omega (C_D - C_S/n)$, and the circular locus of Z_c is centered on the imaginary axis, as illustrated in Fig. 6.4.

The stable locus with $C_S < C_D$ looks similar to the locus of $Z_c(G_m)$ for the Pierce lossless oscillator, represented in Fig. 4.6. However, there is a major difference due to the fact that C_D plays the role of $C_3 + C_s$, but can be much smaller. The amount of pulling can therefore be larger than for the Pierce circuit, with the advantage of a smaller value of critical transconductance (given by (6.10)), and the drawback of a larger dependency on C_D .

As for the Pierce circuit, the locus of $-Z_m(p)$ is also represented in Fig. 6.4. The critical condition for oscillation is at its intersection A with $Z_c(G_m)$.

The maximum value of negative resistance is easily obtained by inspection, since it is the radius of the circle:

$$|R_{n0}|_{max} = \frac{1}{2\omega C_D (nC_D / C_S - 1)}.$$
(6.13)

It is reached for $G_m = G_{mopt}$ given by

$$G_{mopt} = \frac{2\omega C_D}{nC_D/C_S - 1}.$$
(6.14)

Figure 6.4 Loci of $Z_c(G_m)$ and $-Z_m(p)$ for the circuit of Fig. 6.1(b); the limit case for $nC_S = C_D$ and the unstable case for $nC_S > C_D$ are represented in thinner lines.

The maximum negative resistance increases to infinity for the limit case $C_S = nC_D$. In practice, it is limited by the need to ensure some margin of security. This margin depends on the worst mismatch expected between C_D and C_S/n . This mismatch can be large, since the two capacitors do not have the same structure.

Let us define the maximum relative mismatch

$$\varepsilon_{max} \triangleq \frac{(nC_D/C_S)_{max} - (nC_D/C_S)_{min}}{(nC_D/C_S)_{max} + (nC_D/C_S)_{min}}.$$
(6.15)

Since the minimum value of nC_D/C_S must be larger or equal to unity, its nominal value must be at least $1/(1 - \varepsilon_{max})$ and its maximum value will be $(1 + \varepsilon_{max})/(1 - \varepsilon_{max})$. The maximum value of negative resistance will be in the range

$$\frac{1 - \varepsilon_{max}}{4\omega C_D \cdot \varepsilon_{max}} \le |R_{n0}|_{max} \le \infty, \tag{6.16}$$

with $C_D \ge C_P$.

Now, as was discussed for the Pierce circuit, the motional resistance R_m should be much smaller than the maximum negative resistance $|R_n|_{max}$, so that the point A corresponding to stable oscillation remains located at the top of the circle. The imaginary part is then $-1/\omega C_D$, which introduced in (3.10) gives

$$p_c = \frac{C_m}{2C_D},\tag{6.17}$$

the minimum of the range defined by (6.8).

By introducing this result in (6.10), the critical transconductance can be expressed as

$$G_{mcrit0} = \frac{\omega C_m}{2Qp_c^2}.$$
(6.18)

An inspection of Fig. 6.3 shows that the amplitudes at the gates and at the sources are simply related by $V_{in}/\Delta V_S = -Z_x/Z_S$, where Z_x is the parallel combination of Z_m and Z_D ($Z_x = Z_p$ if Z_D is just the lossless parallel capacitance C_D).

Now, at the critical condition for oscillation, $Z_x = Z_{c0}$. In the lossless case, Z_{c0} is given by (6.3). Hence, with G_{mcrit} given by (6.10):

$$\frac{V_{in}}{\Delta V_S} = -\frac{Z_{c0}}{Z_S} = n + j\frac{2\omega C_S}{G_{mcrit}} = n + j\frac{C_S}{C_D} \cdot \frac{QC_m}{C_D} = n + j\frac{C_S}{C_D} \cdot M_L.$$
 (6.19)

If C_D is not too large, the figure of merit M_L defined by (6.7) remains much larger than unity. Moreover, C_S/C_D is close to *n*. Hence, the voltage ratio $V_{in}/\Delta V_S$ is essentially imaginary and much larger than unity. But this is no longer true if C_D is made much larger than C_P to reduce the frequency pulling given by (6.17).

6.2.4 Effect of Losses

The lossy impedance at the drain can be expressed as

$$Z_D = \frac{1}{G_D + j\omega C_D}.$$
(6.20)

Its real part is then

$$\operatorname{Re}(Z_D) = \frac{G_D}{G_D^2 + (\omega C_D)^2} \underbrace{\cong \frac{G_D}{(\omega C_D)^2}}_{\text{for } G_D^2 \ll (\omega C_D)^2}.$$
(6.21)

Since most of the oscillatory current flows around the loop $Z_m Z_D$, this resistance comes in series with the motional resistance R_m (thereby reducing the quality factor Q). According to (6.10), this increases the critical transconductance by

$$\Delta G_{mcrit} = 2\omega^2 C_D^2 \operatorname{Re}(Z_D) \cong 2G_D.$$
(6.22)

With losses, the imaginary part of Z_D is

$$\operatorname{Im}(Z_D) = \frac{-1}{\omega C_D \left[1 + \left(\frac{G_D}{\omega C_D}\right)^2\right]}.$$
(6.23)

The effective value of C_D is thus increased, which increases the margin of stability imposed by (6.6). But it also has an effect of the frequency of oscillation, according to (6.17).

Losses associated with C_S at the oscillation frequency are best characterized by a series resistance R_S :

$$Z_S = R_S + \frac{1}{j\omega C_S}.$$
(6.24)

This resistance has no effect on the pulling, but half of it degenerates the transconductance of each transistor. Introducing (6.22), the critical transconductance with losses becomes

$$G_{mcrit} = \frac{G_{mcrit0}}{1 - nR_S G_{mcrit0}/2} + 2G_D.$$
(6.25)

6.2.5 Nonlinear Analysis

The most immediate way of biasing the active transistors is shown in Fig. 6.5 [25]. The two transistors are biased by separate current sources I_0 , and load resistors R fix the common mode drain voltage at $V_B - RI_0$. The value of these resistors should be high enough to limit the drain loss conductance $G_D = 1/2R$. Indeed, according to (6.22) they cause an increase of critical transconductance $\Delta G_{mcrit} = 1/R$.

Now, the AC drain voltage is produced by the drain current flowing through the parallel resonant circuit of impedance Z_p . At the frequency of oscillation Fig. 6.2 shows that for the usual case of $M_L \gg 1$

$$\omega C_D Z_p = M_L - jn C_D / C_S. \tag{6.26}$$

Hence, $|Z_p|$ is much larger than the impedance of C_D alone. Since the latter is further reduced for harmonic components of current produced by the

Figure 6.5 parallel resonance oscillator biased by current sources I_0 and resistors *R*.

transistors, these are virtually short-circuited, and the voltage V_{in} across it *remains approximately sinusoidal*.

The active part of the circuit can be seen as a differential pair with the source transconductance of each transistor degenerated by a series capacitance $2C_s$. The degeneration can be neglected if

$$G_{ms} = nG_m \ll 2\omega C_s. \tag{6.27}$$

By introducing the expression (6.10) of G_{mcrit0} , this condition becomes

$$\frac{G_m}{G_{mcrit0}} \cdot \frac{nC_D}{C_S} \ll M_L. \tag{6.28}$$

Thus, as long as the figure of merit M_L of the loaded resonator is sufficiently large, a *good approximation* is obtained by considering the circuit as a differential amplifier biased by a current source $2I_0$, and driven by the differential sinusoidal gate voltage V_{in} .

When the bias current I_0 exceeds a critical value I_{0crit} , the amplitude $|V_{in}|$ increases until it is limited by the nonlinear transfer function of this differential pair. A small values of V_{in} produces a small difference of drain currents $\Delta I_D = G_m V_{in}$ that mainly flows through the parallel resonator. Indeed, the small-signal transconductance of the differential pair is equal to the transconductance G_m of one of the transistors alone, and the critical condition of oscillation is obtained for $G_m = G_{mcrit}$.

When $|V_{in}|$ increases ΔI_D is distorted, and its fundamental component $\Delta I_{D(1)}$ is reduced. Stable oscillation is reached when $G_{m(1)} = G_{mcrit}$, where

 $G_{m(1)}$ is the transconductance of the differential pair for the fundamental frequency defined by

$$G_{m(1)} \triangleq |\Delta I_{D(1)}| / |V_{in}|. \tag{6.29}$$

If the transistors are in *weak inversion*, the transfer function of the differential pair is a hyperbolic tangent and the fundamental component of output current is given by

$$\Delta I_{D(1)} = 2I_0 \cdot \underbrace{\frac{1}{\pi} \int_0^{2\pi} \tanh\left(\frac{v_{in}}{2}\sin\phi\right)\sin\phi \cdot d\phi}_{f_w(v_{in})}, \qquad (6.30)$$

where v_{in} is the normalized value of the amplitude $|V_{in}|$ defined by

$$v_{in} \triangleq \frac{|V_{in}|}{nU_T}.$$
(6.31)

Introducing (6.30) in (6.29) gives at stable oscillation

$$G_{m(1)} = \frac{2I_0}{nU_T} \cdot \frac{f_w(v_{in})}{v_{in}} \equiv G_{mcrit} = \frac{I_{0critmin}}{nU_T},$$
(6.32)

or finally

$$\frac{I_0}{I_{0critmin}} = \frac{v_{in}}{2f_w(v_{in})}.$$
(6.33)

This result is plotted in Fig. 6.6.

If the transistors are in *strict strong inversion*, the transfer function of the differential pair biased by $2I_0$ can be calculated from (3.43). The dependency of the two drain currents on the differential input voltage V_{in} obtained from this calculation is

$$I_{D1} = I_0 (1 - m_{vd} \sqrt{2 - m_{vd}^2})$$
 and $I_{D2} = I_0 (1 + m_{vd} \sqrt{2 - m_{vd}^2}),$ (6.34)

where

$$m_{vd} \triangleq \frac{|V|_{in}}{2nU_T \sqrt{2IC}} = \frac{v_{in}}{2\sqrt{2IC}}, \le 1,$$
(6.35)

is the index of voltage modulation of the differential pair and $IC = I_0/I_{spec}$ is the inversion coefficient of the transistors at current I_0 . Notice that this inversion coefficient is *different* from its value $IC_0 = I_{0crit}/I_{spec}$ as soon as the amplitude is increased. But introducing IC_0 instead of *IC* does not result in a closed form solution.

The difference of drain currents is then

Figure 6.6 Amplitude limitation by a differential pair. These results are applicable to the parallel resonance oscillator if $|V_{in}| \gg |\Delta V_S|$ according to (6.19). Here, the curves for strong inversion correspond to a constant value of inversion coefficient *IC*, and not to a constant I_{spec} of the transistors.

$$\frac{\Delta I_D}{2I_0} = m_{vd} \sqrt{2 - m_{vd}^2}.$$
(6.36)

The fundamental component of output current is given by

$$\Delta I_{D(1)} = 2I_0 \cdot \underbrace{\frac{1}{\pi} \int_0^{2\pi} m_{vd} \sin^2 \phi \sqrt{2 - (m_{vd} \sin \phi)^2 \cdot d\phi}}_{f_s(m_{vd})}.$$
 (6.37)

Introducing again this result in (6.29) gives at stable oscillation

$$G_{m(1)} = \frac{2I_0}{nU_T} \cdot \frac{\mathbf{f}_s(m_{vd})}{v_{in}} \equiv G_{mcrit} = \frac{I_{0critmin}}{nU_T},$$
(6.38)

where $I_{0critmin}$ is the minimum critical current (that would be reached in weak inversion). Finally, knowing that $I_{0crit} = \sqrt{IC_0} \cdot I_{0critmin}$:

$$I_0 = \frac{v_{in}}{2f_s(\frac{v_{in}}{2\sqrt{2IC}})} I_{0critmin} = \frac{\sqrt{2}m_{vd}}{f_s(m_{vd})} \cdot \sqrt{\frac{IC}{IC_0}} I_{0crit}.$$
(6.39)

This result is also plotted in Fig. 6.6 for several values of inversion coefficient *IC*. Now, the parameter $IC = I_0/I_{spec}$ is *not constant* if the bias current I_0 is increased to increase the amplitude. Thus, the curves for strong inversion *do not* represent the variation of amplitude for a given value of I_{spec} . The design process should therefore be the following:

- select an amplitude v_i
- select an inversion coefficient IC
- obtain the value of I_0 from the graph and from $I_{0critmin} = nU_T G_{mcrit}$.
- calculate the required value of $I_{spec} = I_0/IC$.

Part of the curves are missing in the calculation due to the limit of validity of (6.36), but all curves finally merge at the limit value

$$|V_{in}|_{lim} = \frac{8nU_T I_0}{\pi I_{0critmin}} = \frac{8}{\pi} \cdot \frac{I_0}{G_{mcrit}}$$
(6.40)

corresponding to a square waveform of the drain currents.

Knowing the voltage amplitude $|V_{in}|$ across the resonator, the motional current can be calculated. For $R_m \ll 1/(\omega C_D)$ (hence for $M_L \gg 1$), $1/Z_m = -1/Z_c \cong -j\omega C_D$. The motional current is then

$$I_m = V_{in}/Z_m = -j\omega C_D V_{in}.$$
(6.41)

This result can be introduced in (2.23) and (2.24) to obtain the energy of mechanical oscillation and the power dissipated in the resonator:

$$E_m = \frac{C_D^2 |V_{in}|^2}{2C_m}$$
 and $P_m = \frac{\omega C_D^2 |V_{in}|^2}{2QC_m}$. (6.42)

In order to avoid clipping the sinusoidal drain voltage, the voltage drop RI_0 across the resistors should be larger than half the amplitude $|V_{in}| = k|V_{in}|_{lim}$, with $k \leq 1$ and $|V_{in}|_{lim}$ given by (6.40). The resistance produces a loss conductance $2G_D = 1/R$, which must be added to the lossless transconductance G_{mcrit0} according to (6.22). This gives the condition

$$R \ge \frac{1}{G_{mcrit0}} \left(\frac{4k}{\pi} - 1\right),\tag{6.43}$$

which is easily fulfilled, even with the maximum value of k = 1 (or $|V_{in}| = |V_{in}|_{lim}$). However, at this limit, the critical transconductance is increased by a factor close to 5 by the losses due to the resistor. To reduce these losses, the value of *R* must be increased much above this limit, at the cost of an increase of supply voltage V_B . In order to limit the excess of transconductance ΔG_{mcrit} to a small value $\alpha \cdot G_{mcrit0}$, the voltage drop across *R* must be increased to

$$RI_0 = \frac{\pi (1+\alpha)}{4\alpha} \cdot \frac{|V_{in}|_{lim}}{2}.$$
(6.44)

For example, for $\alpha = 0.1$, the voltage drop must be increased to 8.6 times the maximum amplitude $|V_{in}|_{lim}/2$, which requires a large value of supply voltage V_B . This can be avoided by using the practical implementations discussed in Section 6.2.7.

6.2.6 Phase Noise

6.2.6.1 Noise Current

The noise analysis of the basic lossless circuit of Fig. 6.1(b) can be carried out with the equivalent circuit of Fig. 6.7.

Figure 6.7 Equivalent circuit for the calculation of noise.

Although the circuit is physically symmetrical, the transconductance G_{m1} and G_{m2} of the transistors vary in opposite phase along each cycle of oscillation. Therefore, their values are not equal. Furthermore, the noise sources I_{n1} , I_{n2} , V_{nG1} and V_{nG1} are not correlated. Calculations with this circuit give the cyclostationary noise current flowing through C_D :

$$\alpha_{i}I_{n} = \frac{G_{m2}I_{n1} - G_{m1}I_{n2} + G_{m1}G_{m2}(V_{nG1} - V_{nG2})}{(G_{m1} + G_{m2}) + G_{m1}G_{m2}(n/C_{S} - 1/C_{D})/j\omega_{n}}.$$
(6.45)

According to (6.6), the equivalent capacitance

$$C_{eq} \triangleq \frac{1}{n/C_S - 1/C_D} = \frac{C_D}{nC_D/C_S - 1}$$
 (6.46)

is always positive for the stable circuit. The corresponding imaginary part in (6.45) is negligible if

$$\omega_n C_{eq} \gg G_{meq} = \frac{G_{m1} G_{m2}}{G_{m1} + G_{m2}}.$$
(6.47)

or, by using (6.46), (6.10) and (6.7)

$$\frac{\omega_n C_D}{n C_D / C_S - 1} \gg G_{meq} = \frac{G_{meq}}{G_{mcrit0}} \cdot \frac{2\omega C_D^2}{QC_m} = \frac{G_{meq}}{G_{mcrit0}} \cdot \frac{2\omega C_D}{M_L}.$$
 (6.48)

Hence, the imaginary part in (6.45) can be neglected for

$$\frac{\omega_n}{\omega} \gg \left(\frac{nC_D}{C_S} - 1\right) \cdot \frac{G_{meq}}{G_{mcrit0}} \cdot \frac{2}{M_L}.$$
(6.49)

The right hand term is normally much smaller than unity, therefore this condition is fulfilled even for noise frequencies ω_n much lower than the oscillation frequency ω . The expression (6.45) can then be approximated by

$$\alpha_{i}I_{n} = \frac{G_{m2}I_{n1} - G_{m1}I_{n2} + G_{m1}G_{m2}(V_{nG1} - V_{nG2})}{G_{m1} + G_{m2}}.$$
(6.50)

This approximation corresponds to a worst case, since the imaginary term would reduce the value of $\alpha_i I_n$.

Because of the capacitance C_S between the two sources, the transconductance of the differential amplifier is slightly reduced. Although this effect can be (and has been) neglected in the calculation of the amplitude, it creates a phase shift $\Delta \phi$ between the gate voltages and the drain currents. This phase shift is given by

$$\tan \Delta \phi = \frac{nG_{m1}G_{m2}}{\omega C_S(G_{m1} + G_{m2})}.$$
(6.51)

For small amplitudes, $G_{m1} = G_{m2} = G_{mcrit}$, thus

$$\tan \Delta \phi = \frac{nG_{mcrit}}{2\omega C_S} = \frac{nC_D}{C_S} \cdot \frac{1}{M_L} \cdot \frac{G_{mcrit}}{G_{mcrit0}},$$
(6.52)

where the last form has been obtained by introducing the expression (6.10) of G_{mcrit0} . This phase shift has a minimum value $\Delta \phi = \arctan(1/M_L)$ for $C_S = nC_D$ and $G_{mcrit0} = G_{mcrit0}$ (no loss in the circuit).

For large amplitudes, $\Delta \phi$ is variable along each cycle (which means that it participates to the distortion of the drain currents), but we will use the *approximation of a constant phase shift* given by (6.52), which is the maximum value of (6.51).

6.2.6.2 Phase Noise of the Linear Circuit

If the amplitude is very small, the circuit remains linear, and the phase noise can be calculated as explained in Section (3.7.1). The noise voltage V_n across C_D is obtained from (6.50) with $\alpha_i = 1$ (stationary noise), $V_{G1} = V_{G2} = 0$ (since the 1/f gate noise voltage cannot be transposed around the oscillation frequency) and $G_{m1} = G_{m2} = G_{mcrit}$:

$$V_n = \frac{I_{n1} - I_{n2}}{2j\omega C_D}.$$
 (6.53)

150

If the noise currents are solely the channel noise of the transistors, their spectra are given by (3.60). The noise spectrum of V_n can then be expressed as

$$S_{V_n^2} = 2kTn\gamma_t \frac{G_{mcrit}}{(\omega C_D)^2} = 4kTn\gamma_t R_m \cdot \frac{G_{mcrit}}{G_{mcrit0}},$$
(6.54)

where the second form has been obtained by introducing the expression (6.10) of the critical transconductance for the lossless circuit.

The small-amplitude noise excess factor due to the channel noise of the active transistors is then obtained by inspection of Fig. 3.7:

$$\gamma_0 = \frac{S_{V_n^2}}{4kTR_m} = n\gamma_t \frac{G_{mcrit}}{G_{mcrit0}},\tag{6.55}$$

where G_{mcrit}/G_{mcrit0} is the increase of critical transconductance due to possible losses.

6.2.6.3 Phase Noise due to White Channel Noise in the Nonlinear Time Variant Circuit

For a large amplitude of oscillation, the voltage V_{in} across C_D remains approximately sinusoidal but the drain currents are distorted. From (6.50) and (3.60), the spectrum of the cyclostationary noise current injected in C_D is then

$$\alpha_i^2 S_{I_n^2} = \frac{G_{m2}^2 S_{I_{nD1}^2} + G_{m1}^2 S_{I_{nD2}^2}}{(G_{m1} + G_{m2})^2} = 4kTn\gamma_t \frac{G_{m1}G_{m2}}{G_{m1} + G_{m2}}.$$
 (6.56)

Notice that the simplification in the second form is made possible by the introduction of the channel noise sources of the two transistors. This is possible since the values of α_i^2 corresponding to each source will be simply added in the calculation of $\overline{\Gamma_i^2}$.

Neglecting the effect of C_S , the drain currents in *weak inversion* can be expressed as

$$I_{D1} = \frac{2I_0}{1 + e^{v_{in}\sin\phi}} \quad \text{and} \quad I_{D2} = \frac{2I_0}{1 + e^{-v_{in}\sin\phi}}, \tag{6.57}$$

where v_{in} is the normalized voltage amplitude defined by (6.31) and $\phi = \omega t$. The corresponding transconductances in saturation are thus given by (3.54):

$$G_{m1} = \frac{2I_0}{nU_T(1 + e^{v_{in}\sin\phi})} \quad \text{and} \quad G_{m2} = \frac{2I_0}{nU_T(1 + e^{-v_{in}\sin\phi})}, \tag{6.58}$$

Using (6.33) to replace I_0 by $I_{0critmin}$, these expressions can be introduced in (6.56), which gives

$$\alpha_i^2 S_{I_n^2} = \underbrace{2\gamma_t q I_{0critmin} \cdot \frac{v_{in}}{2f_w(v_{in})}}_{S_{I_n^2}} \cdot \underbrace{\frac{4}{2 + e^{v_{in}\sin\phi} + e^{-v_{in}\sin\phi}}}_{\alpha_i^2}.$$
(6.59)

According to (3.34), the mean squared RMS value of the effective impulse sensitivity function (ISF) is thus, for *weak inversion*

$$\overline{\Gamma_i^2} = \overline{\cos^2\left(\phi + \Delta\phi\right)\alpha_i^2} = \frac{1}{2\pi} \int_0^{2\pi} \frac{4\cos^2\left(\phi + \Delta\phi\right)}{2 + e^{\nu_{in}\sin\phi} + e^{-\nu_{in}\sin\phi}} d\phi, \qquad (6.60)$$

where $\Delta \phi$ is the phase shift approximated by (6.52). The phase noise spectrum is then obtained by introducing the above values of $S_{I_n^2}$ and $\overline{\Gamma_i^2}$ in (3.33), which results in

$$S_{\phi_n^2} = S_{\phi_n^2 0} \cdot \frac{v_{in}}{\mathbf{f}_{\mathbf{w}}(v_{in})} \cdot \overline{\Gamma_i^2}, \tag{6.61}$$

where

$$S_{\phi_n^2 0} = \frac{\gamma_t q I_{0critmin}}{2(C_D |V_{in}|)^2 \Delta \omega^2} \cdot \left(\frac{C_m}{C_D}\right)^2, \tag{6.62}$$

or, by introducing (3.54), (6.10) and (2.3), and knowing that $C_D V_{in} = I_m / \omega$:

$$S_{\phi_n^2 0} = \frac{\gamma_t n k T \,\omega^2}{|I_m|^2 Q^2 R_m \Delta \,\omega^2} \cdot \frac{G_{mcrit}}{G_{mcrit0}}.$$
(6.63)

Comparing this result with (3.29) gives the expression (6.55) of the noise excess factor γ_0 for small amplitudes, which was obtained from the linear model.

For larger amplitudes, according to (6.61), the noise excess factor is

$$\gamma = \gamma_0 \cdot \frac{v_{in}}{f_w(v_{in})} \cdot \overline{\Gamma_i^2}.$$
(6.64)

This result is plotted in Fig. 6.8 for $\Delta \phi = 0$ and $\Delta \phi = 0.4$.

As can be seen, in weak inversion γ remains constant with the amplitude if $\Delta \phi = 0$. If $\Delta \phi \neq 0$, it decreases when the amplitude increases, but only slightly even for a large phase shift $\Delta \phi = 0.4$.

In *strict strong inversion* the two drain currents are given by (6.34). The transconductance variations can thus be obtained by introducing these currents in (3.56), which gives

Figure 6.8 Variation of the noise excess factor with the drain-to-drain amplitude. The results for strong inversion are based on the approximation $IC = IC_0$.

$$G_{m1(2)} = \frac{\sqrt{I_0 I_{spec}}}{n U_T} \sqrt{1 \mp m_{vd} \sin \phi \sqrt{2 - (m_{vd} \sin \phi)^2}}.$$
 (6.65)

Thus, from (6.56):

$$\alpha_i^2 S_{I_n^2} = 2n\gamma_t kT \cdot \frac{\sqrt{I_0 I_{spec}}}{nU_T} \cdot \alpha_i^2, \qquad (6.66)$$

with

$$\alpha_i^2 = \frac{2}{\frac{1}{\sqrt{1 + m_{vd}\sin\phi\sqrt{2 - (m_{vd}\sin\phi)^2}} + \frac{1}{\sqrt{1 - m_{vd}\sin\phi\sqrt{2 - (m_{vd}\sin\phi)^2}}}}.$$
(6.67)

We do not have a closed form expression for the variation of I_0 with the amplitude of oscillation. Indeed, both m_{vd} and *IC* depend on I_0 in (6.39). We shall neglect these dependencies, and *approximate IC by IC*₀.

By using (6.39) to replace I_0 by I_{0crit} and (3.56) to express G_{mcrit} from I_{0crit} , (6.66) becomes

$$\alpha_{i}^{2}S_{I_{n}^{2}} = \underbrace{\underbrace{2nkT\gamma_{i}G_{mcrit}}_{S_{I_{n}^{2}}}\sqrt{\frac{\sqrt{2}m_{vd}}{f_{s}(m_{vd})}}}_{S_{I_{n}^{2}}}\alpha_{i}^{2}, \tag{6.68}$$

According to (3.34), the squared RMS value of the effective impulse sensitivity function (ISF) is

$$\overline{\Gamma_i^2} = \frac{1}{2\pi} \int_0^{2\pi} \cos^2\left(\phi + \Delta\phi\right) \alpha_i^2 \mathrm{d}\phi, \qquad (6.69)$$

where $\Delta \phi$ is the phase shift between gate voltage and drain current approximated by (6.52).

For small amplitudes, $S_{I_n^2} = S_{I_{n0}^2}$, $\alpha_i^2 = 1$ and therefore $\overline{\Gamma_i^2} = 0.5$. Introducing these values in (3.33) gives, as could be expected, the phase noise spectrum $S_{\phi_n^2 0}$ obtained for weak inversion and by given (6.63), and the noise excess factor γ_0 given by (6.55).

For large amplitudes:

$$\gamma = \gamma_0 \cdot 2\sqrt{\frac{\sqrt{2}m_{vd}}{\mathbf{f}_{\mathrm{s}}(m_{vd})}} \cdot \overline{\Gamma_i^2}.$$
(6.70)

This variation of γ is also plotted in Fig. 6.8 for various values of IC_0 , using the definition (6.35) of m_{vd} (with the approximation $IC = IC_0$).

These results do not include the additional noise due to the biasing circuitry and to losses. But they already include in γ_0 the increase of transconductance G_{mcrit}/G_{mcrit0} due to losses.

6.2.6.4 Phase Noise Due to 1/f Flicker Noise

According to the simple model introduced in Section (3.8), the flicker noise of each of the two transistors can be modelled by a noise voltage V_{nG} , with a spectral density given by (3.62).

The expression (6.45) of the noise current flowing through C_D shows that the function weighting the noise voltages V_{nG1} and V_{nG2} is symmetrical with respect to G_{m1} and G_{m2} . For this reason the mean value of the ISF given by (3.34) is zero. Hence, no 1/f noise is transferred around the oscillation frequency if the noise source is a bias independent noise voltage at the gates (which corresponds to a drain current noise spectral density proportional to the square of the transconductance).

But this model is an approximation. Let us introduce a more general model by defining a drain current noise spectral density

$$S_{I_{nD}^2 1/f} = \frac{F_a}{\omega_n} \left(\frac{G_m}{G_a}\right)^a,\tag{6.71}$$

where G_a is the value of G_m for which the spectrum density has the value F_a/ω_n . Considering the noise of transistor T_1 only, the resulting cyclostationary noise spectrum is then, from (6.50):

154

Low-Power Crystal and MEMS Oscillators

$$\alpha^2 S_{I_n^2} = \left(\frac{G_{m2}}{G_{m1} + G_{m2}}\right)^2 \frac{F_a}{\omega_n} \left(\frac{G_{m1}}{G_a}\right)^a.$$
(6.72)

In *weak inversion*, the transconductance is given by (6.58) or, by using (6.33) to replace I_0 by its critical value $I_{0critmin} = nU_T G_{mcrit}$:

$$G_{m1} = \frac{2G_{mcrit}}{1 + e^{v_{in}\sin\phi}} \cdot \frac{v_{in}}{2f_w(v_{in})} \text{ and } G_{m2} = \frac{2G_{mcrit}}{1 + e^{-v_{in}\sin\phi}} \cdot \frac{v_{in}}{2f_w(v_{in})}.$$
 (6.73)

Introducing these expressions in (6.72) yields

$$\alpha^{2}S_{I_{n}^{2}} = \underbrace{\frac{F_{a}}{\omega_{n}} \left(\frac{2G_{mcrit}}{G_{a}}\right)^{a} \left(\frac{v_{in}}{2f_{w}(v_{in})}\right)^{a}}_{K_{fi}/\omega_{n}} \underbrace{\frac{\left(1 + e^{v_{in}\sin\phi}\right)^{2-a}}{(2 + e^{v_{in}\sin\phi} + e^{-v_{in}\sin\phi})^{2}}}_{\alpha_{i}^{2}}, \quad (6.74)$$

where K_{fi}/ω_n is the power spectrum of a fictitious source of stationary flicker noise current.

The average value of the effective ISF is thus

$$\overline{\Gamma_i} = \overline{\alpha_i \cos\left(\phi + \Delta\phi\right)} = \frac{1}{2\pi} \int_0^{2\pi} \frac{\left(1 + e^{v_{in}\sin\phi}\right)^{1-a/2} \cos\left(\phi + \Delta\phi\right)}{2 + e^{v_{in}\sin\phi} + e^{-v_{in}\sin\phi}} d\phi.$$
(6.75)

which is equal to zero for $\Delta \phi = 0$. Using the decomposition $\cos(\phi + \Delta \phi) = \cos \phi \cos \Delta \phi - \sin \phi \sin \Delta \phi$, the dependency on $\Delta \phi$ can be made more explicit:

$$\overline{\Gamma_i} = \frac{-\sin\Delta\phi}{2\pi} \int_0^{2\pi} \frac{\left(1 + e^{\nu_{in}\sin\phi}\right)^{1-a/2}\sin\phi}{2 + e^{\nu_{in}\sin\phi} + e^{-\nu_{in}\sin\phi}} d\phi.$$
(6.76)

For a very small amplitude $v_{in} \ll 1$, this ISF becomes

$$\overline{\Gamma_{i0}} = -\frac{1 - a/2}{2^{3 + a/2}} v_{in} \sin \Delta \phi.$$
(6.77)

Furthermore, for very small amplitudes $2f_w(v_{in}) = v_{in}$, thus from (6.74):

$$K_{fi0} = F_a \left(\frac{2G_{mcrit}}{G_a}\right)^a.$$
(6.78)

The phase noise spectrum for very small amplitude is then obtained by introducing (6.77) and (6.78) in (3.36) with $C_i = C_D$ and $V_i = V_{in}$, which gives

$$S_{\phi_n^2 0} = 2 \left(\frac{(1 - a/2)C_m \sin \Delta \phi}{8nU_T C_D^2} \right)^2 \frac{(G_{mcrit}/G_a)^a F_a}{\Delta \omega^3}, \tag{6.79}$$

where a factor 2 has been introduced to include the noise of the second transistor T₂. This result can be further simplified by using the expression (6.10) of the lossless critical transconductance $G_{mcrit0} = I_{0crit0}/(nU_T)$, which yields:

$$S_{\phi_n^2 0} = \left(\frac{(1-a/2)\omega\sin\Delta\phi}{QI_{0critmin0}}\right)^2 \frac{(G_{mcrit}/G_a)^a F_a}{8\Delta\omega^3},\tag{6.80}$$

where $I_{0critmin0}$ is the critical bias current for the lossless circuit. Notice that if the flicker noise of the transistor is characterized at the critical transconductance, then $G_a = G_{mcrit}$ and the expression is further simplified.

As could be expected, the phase noise cancels for a = 2, which corresponds to the model (3.62) that assumes a bias-independent noise voltage at the gate. This situation is approached when the transistors operate at the upper limit of weak inversion [18].

For large amplitudes, K_{fi0} is multiplied by $[v_{in}/(2f_w)]^a$ according to (6.74) and $\overline{\Gamma_{i0}}$ is replaced by $\overline{\Gamma_i}$ given by (6.76). Thus:

$$S_{\phi_n^2} = S_{\phi_n^2 0} \left(\frac{\overline{\Gamma_i}}{\overline{\Gamma_{i0}}}\right)^2 \left(\frac{v_{in}}{2f_w(v_{in})}\right)^a.$$
(6.81)

This variation is represented in Fig. 6.9 for several values of *a*.

Figure 6.9 Variation of the $1/\Delta\omega^3$ noise due to flicker noise with the amplitude (transistors in weak inversion). The noise spectrum for very small amplitudes $S_{\phi_n^2 0}$ is given by (6.80). The parameter *a* defined in (6.71) represents the dependency of the drain current flicker noise on the transconductance.

Now, it should be remembered that these results for flicker noise are based on the expression (6.50) of the cyclostationary noise, in which the imaginary part of the full expression (6.45) has been neglected. For frequencies ω_n that are to small to fulfill condition (6.49), the noise is reduced, thus the phase noise spectrum stops increasing with $1/\Delta\omega^3$.

6.2.7 Practical Implementations

To avoid the need to increase the supply voltage in order to reduce the losses, the parallel resonance oscillator can be biased as illustrated in Fig. 6.10(a). The biasing resistors are replaced by current sources I_0 and the common-

Figure 6.10 Practical biasing of the parallel resonance oscillator.

mode drain voltage of the active transistors T_a is controlled by a feedback loop through the biasing transistors T_b . The role of the resistors is to extract this common-mode voltage, hence their value can be very large without increasing the minimum supply voltage. At the DC bias point, the two transistors T_a and T_b in series are equivalent (by symmetry) to a single transistor having is gate connected to its drain. Hence, the common mode voltage is the gate voltage corresponding to a drain current equal to I_0 .

Now, transistors T_b are not saturated since they have the same gate voltage as T_a . According to (3.50) and (3.40), their drain (trans)conductance is proportional to the source transconductance of the active transistors:

$$G_{mdb} = K_s \cdot G_{msa}$$
 with $K_s \triangleq \frac{I_{specb}}{I_{speca}}$, (6.82)

since the drain voltage of T_b is the source voltage of T_a . This drain conductance corresponds to a loss conductance $G_S = G_{mdb}/2$ in parallel with C_S . But this loss conductance is now proportional to the transconductance $G_m = G_{msa}/n$ of the active transistors, with the consequence that the locus of $Z_c(G_m)$ is no longer a circle. This locus can be computed by introducing

$$1/Z_s = j\omega C_s + K_s n G_m/2 \tag{6.83}$$

in the expression (6.11) of the circuit impedance. The result is illustrated in Fig. 6.11 for two values of the ratio K_s of specific currents. As can be seen,

Figure 6.11 Normalized locus of circuit impedance $Z_c(G_m)$ for the oscillator of Fig. 6.10(a), with negligible losses due to resistors *R*. The locus for the lossless circuit is shown in dotted line.

the losses due the biasing transistors T_b are negligible for small values of the transconductance G_m , but the loci depart from the lossless case when G_m increases. For this particular (but typical) case with n = 1.3 and $C_s = C_D$, the maximum value of negative resistance is not reduced for $K_s = 0.01$, but it is reduced by about 50% for $K_s = 0.1$.

Now, for the calculation of the loci shown in Fig. 6.11 the value of resistor R was assumed to be very large. But to maintain a stable bias point this value has an upper limit. Indeed, because of the DC path provided by transistors

 T_b , the circuit can become bistable. The active transistor T_a has its source degenerated by the drain (trans)conductance of T_b given by (6.82), hence its equivalent gate transconductance at low frequencies is

$$G_{mequ} = \frac{G_{msa}G_{mdb}}{n(G_{msa} + G_{mdb})} = \frac{G_m}{1 + 1/K_s}.$$
(6.84)

Bistability is avoided if the voltage gain $G_{mequ}R$ of each branch is smaller than unity, which results in the following condition for stability of the bias point:

$$R < \frac{1+1/K_s}{G_{mmax}},\tag{6.85}$$

where G_{mmax} is gate transconductance of T_a alone obtained at the maximum value of bias current I_0 . Hence, K_s must be very small to limit the losses due to R, especially if $I_0 \gg I_{0crit}$ at start-up.

To avoid using resistors, the gates of the biasing transistors T_b can be connected as shown in Fig. 6.10(b) [25]. The DC bias point remains the same, since by symmetry the two drains are at the same (common mode) potential. But the transistors T_b are now active, with a gate transconductance G_{mb} . The circuit impedance *without* the parallel capacitance C_D becomes

$$Z_{c0} = \frac{1 + K_s + \frac{2}{nG_m Z_s}}{\frac{G_{mb}}{2} - \frac{1}{nZ_s} - \frac{K_s G_m}{2}}.$$
(6.86)

Now, the relationship between G_{mb} and the gate transconductance G_m of the main active transistors depends on their mode of operation. Knowing that T_a and T_b have the same gate voltage with T_a saturated, their components of drain current can be expressed as

$$I_{Rb} = K_s I_{Fa} = K_s I_0$$
 and $I_{Fb} = I_0 + I_{Rb} = (1 + K_s) I_0.$ (6.87)

If both transistors are in strong inversion, the corresponding values of gate transconductance are obtained from (3.53) and (3.51):

$$G_m = \frac{\sqrt{I_0 I_{speca}}}{nU_T} \quad \text{and} \quad G_{mb} = \frac{\sqrt{I_0 I_{specb}} \left(\sqrt{1 + K_s} - \sqrt{K_s}\right)}{nU_T}, \qquad (6.88)$$

and their ratio is

$$\frac{G_{mb}}{G_m} = \sqrt{K_s(1+K_s)} - K_s \quad \text{(in strong inversion)}. \tag{6.89}$$

This ratio tends to $\sqrt{K_s}$ for $K_s \ll 1$ and never exceeds 0.5.

The introduction of (6.89) in (6.86) gives $Z_{c0}(G_m)$, which can be combined with Z_D according to (6.11) to obtain the full circuit impedance $Z_c(G_m)$. The analytical result is too complicated to be expressed, but the numerical calculation can be carried out step by step. The result for the lossless case ($G_D = G_S = 0$) is plotted in full lines in Fig. 6.12(a) for two values of the ratio K_s of specific currents.

Figure 6.12 (a) Normalized locus of circuit impedance $Z_c(G_m \ge 0)$ for the oscillator of Fig. 6.10(b); full lines: for all transistors always in strong inversion; dotted lines: for all transistors always in weak inversion. The circular lossless locus for the basic circuit of Fig. 6.1(b) is shown in fine dotted line for comparison. (b) Variation of the real and imaginary parts with the normalized transconductance.

Compared to the circular locus of the basic circuit (shown in fine dotted line), the maximum negative resistance is reduced by the activity of the biasing transistors.

If the transistors are in weak inversion, the gate transconductance only depends on the total drain current that is the same for the two transistors, hence $G_{mb} \equiv G_m$. The degradation is increased due to the larger G_{mb} , as shown by the corresponding results in dotted lines. However, as can be seen in part (b) of the figure, as long as the negative resistance $R_n = -\text{Re}(Z_c)$ is much smaller than its maximum value, it always depends linearly on the transconductance with

$$R_n = -\frac{G_m}{2(\omega C_D)^2},\tag{6.90}$$

thereby resulting in the critical condition for oscillation G_{mcrit0} for the lossless circuit given by (6.10).

Furthermore, for $|R_n| \ll |R_n|_{max}$, the imaginary part remains close to -1, thus the expression (6.17) of the frequency pulling is not affected.

Now, the plots of Fig. 6.12 have been obtained by assuming the all transistors are always in weak or in strong inversion. In reality, all transistors are in weak inversion at very low currents (i.e. for very low values of the transconductance), and all transistors are in strong inversion for very high currents. The transition occurs at a level of current that depends on the specific currents I_{speca} and I_{specb} , according to the general equation (3.50) for the transconductance. No analytical expression of $Z_c(G_m)$ can be found in the general case.

Figure 6.13 (a) Normalized locus of circuit impedance $Z_c(G_m \ge 0)$ for the oscillator of Fig. 6.10(b) with transistors T_a in weak inversion and T_b in strong inversion characterized by parameter K_l (defined by (6.92)). Curves in dotted lines are for the asymptotic cases of all transistor in weak and in strong inversion. (b) Variation of the real and imaginary parts with the normalized transconductance.

To minimize the value of the critical bias current I_{0crit} , the active transistors T_a must be operated in weak inversion, whereas the biasing transistors T_b should be in strong inversion to reduce their transconductance. Their transconductance given by (6.88) can then be expressed as a function of the main transconductance $G_m = I_0/(nU_T)$:

Figure 6.14 Parallel resonance oscillator with amplitude regulation.

$$\frac{G_{mb}}{\omega C_D} = \sqrt{K_l} \cdot \sqrt{\frac{G_m}{\omega C_D}} \left(\sqrt{1 + K_s} - \sqrt{K_s}\right), \tag{6.91}$$

where K_l is a parameter defined by

$$K_l \triangleq \frac{I_{specb}}{\omega C_D n U_T} \tag{6.92}$$

that characterizes the level of the specific current.

This new expression of G_{mb} can again be combined with (6.86) and (6.11) to obtain $Z_c(G_m)$. An example with $K_s = 0.01$ and several values of K_l is illustrated in Fig. 6.13. The results are between the extreme cases of weak and strong inversion for both transistors.

The amplitude of oscillation can be regulated by delivering the bias current from the regulator discussed in Section (5.2). A more compact solution is depicted in Fig. 6.14 [25].

Two pairs of transistors matched to the main pairs $T_a - T_b$ have been added. The same current I_0 flows through all four branches. The common mode voltage of the main pairs is extracted by transistors T_{r1} and T_{r2} matched to their biasing transistor T_{cr} .

The pair $T_{a3} - T_{b3}$ is identical to the main pair. Hence, in absence of oscillation, all four gates nodes G_1 to G_4 are at the same potential. But the specific currents of the transistors of the fourth pair are K_w times larger than

those of the main pair, which must be compensated by a voltage drop RI_0 across resistor R.

If all pairs are in *weak inversion*, a stable solution without oscillation is reached as in the regulator of Section (5.2) for

$$I_0 = I_{0start} = \frac{U_T}{R} \ln K_w.$$
 (6.93)

If this current is larger than the critical current, the oscillation starts growing, but unlike for the single transistor of the Pierce oscillator, the common mode voltage remains essentially constant at constant I_0 . Hence no amplitude regulation would occur if the common mode would be extracted by linear resistors instead of transistors. But the nonlinearity of the transistor produces a voltage drop at the node G_4 given by (5.41) with $|V_2| = 0$ and $|V_1|$ replaced by $|V_{in}|/2$:

$$\Delta V_{G0} = -U_T \ln \left[I_{B0} (|V_{in}|/2U_T) \right].$$
(6.94)

The transfer function of the regulator is then obtained by adding $\Delta V_{G0}/n$ to $U_T \ln K_w$ in the expression (6.93) of the current, which yields:

$$\frac{I_0}{I_{0start}} = 1 - \frac{\ln\left[I_{B0}(|V_{in}|/2U_T)\right]}{n\ln K_w},$$
(6.95)

where $|V_{in}|$ is the gate to gate amplitude of oscillation. This function is plotted in Fig. 6.15 for several values of ratio K_w .

Figure 6.15 Regulation curves for the circuit of Fig. 6.14 with all transistors operated in weak inversion. The small drain voltage shift due to the distortion of drain current is neglected.

The loss conductance due to transistors T_r (for the fundamental frequency) can be obtained as discussed in Section 5.1.5, with $V_{in}/2$ across each transistor:

$$G_1 \equiv G_{(1)} = G_0 \frac{2I_{B1}(|V_{in}|/2U_T)}{|V_{in}|/2U_T}.$$
(6.96)

With the specific current of the biasing transistor $T_{cr} K_r$ -times larger than that of one of the transistors T_r , the small-signal value G_0 of this loss conductance is now

$$G_0 = \frac{I_0}{2K_r U_T}.$$
 (6.97)

6.3 Symmetrical Oscillator for Series Resonance

6.3.1 Basic Structure

The basic symmetrical oscillator circuit intended for series resonators is shown in Fig. 6.16(a). It is based on a *current stable* negative resistance circuit developed for vacuum tubes (Fig. 69e, page 82 of [15]). A version with bipolar transistors was used in early developments of electronic watches [26]. Each of the two cross-coupled transistors is biased by a cur-

Figure 6.16 Symmetrical oscillator for series resonator; (a) complete oscillator; (b) negative resistance circuit without bias sources; (c) small-signal general equivalent circuit.

rent source I_0 and is loaded by a resistor of value $R_L/2$. As long as the circuit remains symmetrical, the effect of all capacitors at the drains can be represented by a single load capacitance C_L between the two drains. The resonator connects the sources of the two transistors. The transistors are assumed to be in the same local substrate.

6.3.2 Linear Analysis

6.3.2.1 Circuit Impedance in the General Case

To calculate the small-signal circuit impedance Z_c , the circuit may be represented as in Fig. 6.16(b), after removing the biasing elements. Capacitance C_p is the capacitance C_0 of the quartz resonator considered as a dipole defined by (2.1), augmented by the parasitic capacitors in the circuit.

At frequencies for which the capacitors can be neglected, the circuit impedance is easily calculated to be

$$Z_c|_{\omega=0} = \frac{2 - G_m R_L}{G_{ms}} = \frac{1}{n} (2/G_m - R_L), \qquad (6.98)$$

where G_{ms} is the source transconductance, which is *n* times larger than the gate transconductance G_m , according to (3.55). Hence, unlike the Pierce oscillator, this circuit provides a DC negative resistance. It becomes DC unstable, that is bi-stable, when it is connected to a resistor of value smaller than this negative resistance.

But it can also become AC unstable, i.e. an oscillator, when it is connected to the sole capacitance C_P . The AC circuit impedance Z_{c0} without C_P is given by

$$Z_{c0} = \frac{2 - G_m Z_L}{G_{ms}} = \frac{1}{n} (2/G_m - Z_L), \qquad (6.99)$$

where the load impedance Z_L including C_L can be expressed as

$$Z_L = \frac{R_L - j\omega C_L R_L^2}{1 + (\omega C_L R_L)^2}.$$
 (6.100)

Thus

$$Z_{c0} = \frac{2}{nG_m} - \frac{R_L/n}{1 + (\omega C_L R_L)^2} + j \frac{\omega C_L R_L^2/n}{1 + (\omega C_L R_L)^2}.$$
 (6.101)

When C_P is connected, an oscillation can occur at the frequency for which $\text{Im}(Z_{C0}) = 1/(\omega C_P)$, that is for

6 Alternative Architectures

$$\omega^2 = \frac{1}{C_L R_L^2 (C_P / n - C_L)}.$$
(6.102)

this frequency does not exist if

$$C_L > C_P/n, \tag{6.103}$$

which is a *sufficient* condition to avoid this parasitic oscillation. But this condition is not absolutely necessary, since the real part of Z_{c0} in (6.101) must be negative at the frequency given by (6.102). This requirement gives the following *necessary* condition for no parasitic oscillation:

$$C_L > \frac{C_P}{n} \left(1 - \frac{2}{R_L G_m} \right), \tag{6.104}$$

which is reduced to (6.103) for $R_L G_m \gg 1$.

Figure 6.17 Loci of circuit impedance Z_c/R_L for $\omega R_L C_P = 0.3$ and n = 1.3. Notice that $C_L/C_P = 0$ will produce a parasitic oscillation whereas $C_L/C_P = 1/n$ corresponds to the sufficient condition (6.103) for no parasitic oscillation.

Adding the impedance Z_p of the parallel capacitor C_p (with possible losses) in parallel with Z_{c0} gives the overall circuit impedance

$$Z_c = \frac{Z_P (2 - G_m Z_L)}{2 + G_m (n Z_P - Z_L)},$$
(6.105)

166

which corresponds to the equivalent circuit of Fig. 6.16(c). It is a bilinear function of the transconductance G_m . The corresponding circle in the complex plane is plotted in Fig. 6.17 for particular values of $\omega R_L C_P$ and slope factor *n*, and for various values of the capacitance ratio C_L/C_P .

6.3.2.2 Particular Case with $C_L = C_P/n$

The analytic expressions of the real and imaginary parts of Z_c are complicated, but they can be simplified for the particular (and realistic) case for which the sufficient condition (6.103) is just fulfilled, i.e. for $C_L = C_P/n$. All the following derivations will be made with this assumption.

The results are then

$$\operatorname{Re}(Z_c) = \frac{1}{\omega C_P} \cdot \frac{AB(2B + 2/B - A)}{4 + (2B - A)^2}$$
(6.106)

$$\operatorname{Im}(Z_c) = \frac{1}{\omega C_P} \cdot \frac{4(AB - B^2 - 1)}{4 + (2B - A)^2},$$
(6.107)

where

$$A \triangleq \frac{G_m}{\omega C_L} = \frac{nG_m}{\omega C_P}$$
 and $B \triangleq \omega C_L R_L = \omega C_P R_L/n.$ (6.108)

The locus of the normalized circuit impedance for positive values of transconductance G_m is plotted in Fig. 6.18 for various values of *B* (thus of R_L for $\omega C_P/n$ constant). This locus is a circle of radius $(1+B^2)/2$ that is always centered on the imaginary axis.

For $G_m = 0$ the transistors are not active and the impedance is that of the parallel capacitance C_p .

The value of transconductance needed to obtain a negative resistance is obtained from (6.106):

$$G_m > G_{mlim} = \frac{2(1+B^2)}{R_L} = \frac{2\omega C_P}{n}(B+1/B).$$
 (6.109)

The imaginary part of Z_c at the limit of negative resistance (for $\text{Re}(Z_c) = 0$) is

$$\mathrm{Im}(Z_c)_{lim} = \mathrm{Im}(Z_c)|_{\mathrm{Re}(Z_c)=0} = \frac{B^2}{\omega C_P} = BR_L/n.$$
(6.110)

Eliminating *B* between these two equations gives

Figure 6.18 Locus of the normalized circuit impedance $\omega C_p Z_c$ for several values of $B = \omega C_p R_L / n$. The locus of $-Z_m(p)$ for a particular value of motional resistance R_m is represented in dotted line.

$$G_{mlim} = \frac{2\omega C_P}{n} \left(\sqrt{\omega C_P \text{Im}(Z_c)_{lim}} + \frac{1}{\sqrt{\omega C_P \text{Im}(Z_c)_{lim}}} \right).$$
(6.111)

If the maximum value of negative resistance $(-R_n)_{max}$ is much larger than the motional resistance R_m of the resonator (as depicted in dotted line in Fig. 6.18), that is if

$$B \gg \omega C_P R_m = 1/M_D \tag{6.112}$$

(with M_D defined by (2.22)), then the imaginary part of Z_c can be approximated by (6.110). According to (4.3), the amount of frequency pulling at the critical condition for oscillation is then

$$p_c \cong -\frac{C_m}{2C_P} B^2. \tag{6.113}$$

The comparison with (4.21) shows that C_P/B^2 plays the same role as $C_s + C_3$ in the Pierce oscillator. But *B* depends on a resistance, which is usually much less precise and stable with the temperature than a capacitor in an integrated circuit. Another important difference is that p_c is now negative: the frequency of oscillation is *lower* than the mechanical resonant frequency of the resonator.

For G_m very large, (6.106) gives:

$$Z_c|_{G_m=\infty} = -\frac{B}{\omega C_P} = -R_L/n. \tag{6.114}$$

This is the maximum possible value of negative resistance that can be obtained for $B \le 1$. But for B > 1, a larger negative resistance can be obtained, corresponding to the radius $(1 + B^2)/2$ of the circle, as can be observed in Fig. 6.18:

$$(-R_n)_{max} = \frac{1+B^2}{2\omega C_P} = \frac{B+1/B}{2n}R_L \quad (\text{for } B > 1)$$
 (6.115)

for a value G_{mopt} of the transconductance given by

$$G_{mopt} = \frac{\omega C_P}{n} \cdot \frac{2(B^2 + 1)}{B - 1}.$$
 (6.116)

For $G_m > G_{mopt}$, the slope of the locus becomes negative, and no stable solution exists, as was the case for solution B in Fig. 4.4. Therefore, the only useful range of transconductance for B > 1 is between G_{mlim} given by (6.109) and G_{mopt} .

The critical transconductance for oscillation is the value of G_m for which $\operatorname{Re}(Z_c) = R_n = -R_m$. It is obtained by solving (6.106) with respect to $A = nG_m/(\omega C_P)$. This gives:

$$G_{mcrit} = \frac{\omega C_P}{n} \cdot \frac{1 + B^2 - 2B\omega C_P R_m + \sqrt{(1 + B^2)^2 - (2\omega C_P R_m)^2}}{B - \omega C_P R_m}.$$
 (6.117)

This critical transconductance can also be expressed as

$$G_{mcrit} = G_{mlim} + \Delta G_m(R_m). \tag{6.118}$$

For $R_m \ll (-R_n)_{max}$, ΔG_m can be approximated linearly by

$$\Delta G_m \cong \frac{2\omega^2 C_P^2}{nB^2} R_m = \frac{2nR_m}{R_L^2} = \frac{\omega C_P}{n} \cdot \frac{1}{Q|p_c|}, \qquad (6.119)$$

where $|p_c|$ has been obtained from (6.113). The combination of (6.118), (6.109) and (6.119) gives an approximation of the critical transconductance

$$G_{mcrit} \cong \frac{2\omega C_P}{n} \left(B + \frac{1}{B} + \frac{1}{2Q|p_c|} \right). \tag{6.120}$$

It is worth noticing that, as long as $Q|p_c|$ is sufficiently large, it has no effect on the critical transconductance:

$$G_{mcrit} = G_{mlim} = \frac{2\omega C_P}{n} (B + 1/B) \quad \text{for} \quad 2Q|p_c| \gg \frac{B}{1 + B^2}.$$
 (6.121)

Unlike for the Pierce oscillator (see (4.26)), the critical transconductance is not reduced by a large value of quality factor Q. But it still depends on p_c through the design parameter B (i.e. through the choice of load resistance R_L).

The dependency of the various important values discussed above on the parameter B is plotted in Fig. 6.19.

Figure 6.19 Normalized values of G_{mlim} , $-R_n/\Delta G_m$, $\text{Im}(Z_c)$ at G_{mlim} (thus for $R_n = 0$), $(-R_n)_{max}$ and G_{mopt} as functions of parameter *B*.

For a fixed value of parallel capacitance C_P , the limit value G_{mlim} of the transconductance has a minimum for B = 1:

$$G_{mlim_{min}} = 4\omega C_P / n = 4/R_L$$
 for $B = 1.$ (6.122)

For B > 1 the imaginary part of Z_c increases dramatically, thereby increasing the amount of frequency pulling given by (6.113). The only reason to choose B > 1 would thus be to produce a very large value of negative resistance, at the cost of an increase transconductance and an increase of p_c .

As already pointed out, B = 1 corresponds to a minimum value of limit transconductance G_{mlim} . The corresponding locus of $Z_c(G_m)$ is illustrated in Fig. 6.20(a) with the real and imaginary parts in Fig. 6.20(b).

The exact critical transconductance given by (6.117) becomes

$$G_{mcrit}|_{B=1} = \frac{2\omega C_P}{n} \left(1 + \sqrt{\frac{1 + \omega C_P R_m}{1 - \omega C_P R_m}} \right), \tag{6.123}$$

Figure 6.20 Normalized circuit impedance $\omega C_P Z_c$ for $C_L = C_P/n$ and minimum limit transconductance (B = 1). The approximation (6.120) of $G_{mcrit}(R_n)$ is also shown in dotted line.

Figure 6.21 Normalized circuit impedance $\omega C_P Z_c$ for $C_L = C_P / n$ and B = 0.5.

and the exact amount of frequency pulling obtained by introducing (6.107) in (4.3) with B = 1 is

$$p_c|_{B=1} = -\frac{C_m}{2C_P}\sqrt{1-(\omega C_P R_m)^2}.$$
 (6.124)

For B < 1, The maximum negative resistance is decreased according to (6.114). The imaginary part of Z_c decreases rapidly with B (thereby decreasing the amount of frequency pulling p_c), at the cost of an increase of the

necessary value of transconductance. But this increase can be small for a large reduction of $|p_c|$. For example, choosing B = 0.5 results in just a 25% increase of G_{mlim} whereas p_c is decreased by a factor 4. This particular case in illustrated in Fig. 6.21.

6.3.2.3 Relative Oscillation Currents

At the critical condition for oscillation, the frequency pulling is approximately given by (6.113). Thus the motional impedance expressed by (2.8) becomes

$$Z_m|_{p=p_c} = R_m - j \frac{B^2}{\omega C_P} = R_m (1 - j M_D B^2), \qquad (6.125)$$

where M_D is the factor of merit defined by (2.22).

The AC component of drain current I_1 is split between the motional current I_m and the current I_p through the parallel capacitance C_p according to

$$\frac{I_P}{I_m} = j\omega C_P Z_m = B^2 + \frac{j}{M_D} \cong B^2,$$
 (6.126)

and the AC component of drain current I_1 is related the motional current I_m by

$$\frac{I_1}{I_m} = 1 + j\omega C_p Z_m = (1 + B^2) + \frac{j}{M_D} \cong (1 + B^2).$$
(6.127)

6.3.3 Nonlinear Analysis

As soon as the transconductance G_m exceeds the critical value given by (6.117) (or by its approximation (6.120)), the amplitude of oscillation grows. The drain current of each transistor can then be expressed as

$$I_D = I_0 + I_1, (6.128)$$

where I_0 is the DC component imposed by the biasing current source, and I_1 is the AC oscillatory current.

According to (6.126), if $B \ll 1$ and $M_D \gg 1$ most of the AC current I_1 flowing through the transistors is the motional current of the resonator. Hence I_1 remains *approximately sinusoidal*. Therefore the gate voltage remains also sinusoidal, but the source voltage V_S is distorted by the nonlinear transfer function of the transistors. The effective transconductance is reduced and more bias current I_0 is needed to further increase I_1 , until it reaches its maximum value equal to I_0 (100% modulation of bias current I_0).

The variation of the amplitude of oscillation with the bias current can be obtained by an approach similar to that used for the Pierce oscillator in Section 4.3.3. However, the source of the transistor is not grounded and the drain current is modulated by gate and source voltage variations. According to (3.40), the drain current in saturation depends on a control voltage

$$V_c \triangleq V_G - V_{T0} - nV_S \tag{6.129}$$

of normalized amplitude

$$v_c \triangleq \frac{|V_c|}{nU_T} \tag{6.130}$$

The corresponding transconductance is equal to the gate transconductance at the same value of current:

$$\frac{\mathrm{d}I_D}{\mathrm{d}V_c} = \frac{\mathrm{d}I_D}{\mathrm{d}V_G} = G_m \tag{6.131}$$

Let us assume that the AC component of drain current is *perfectly sinusoidal*, with

$$I_D = I_0 (1 + m_i \sin \Phi), \tag{6.132}$$

where

$$m_i \triangleq |I_1|/I_0 \tag{6.133}$$

is the index of current modulation.

The value of G_m for the fundamental frequency can be expressed as

$$G_{m(1)} = \frac{|I_1|}{|V_{c(1)}|} = \frac{m_i I_0}{n U_T v_{c(1)}},$$
(6.134)

where $|V_{c(1)}|$ is the amplitude of the fundamental component of V_c and $v_{c(1)}$ its value normalized to nU_T . Stable oscillation is obtained when $G_{m(1)}$ equals the critical value of G_m

$$G_{mcrit} = \frac{I_{0critmin}}{nU_T},\tag{6.135}$$

where $I_{0critmin}$ is the minimum possible value of I_0 needed to produce G_{mcrit} (that is in weak inversion). Equating (6.134) with (6.135) yields

$$\frac{I_0}{I_{0critmin}} = \frac{v_{c(1)}}{m_i}.$$
(6.136)

In *weak inversion*, the saturation drain current $I_D = I_F$ given by (3.42) can be rewritten

$$I_D = I_{spec} \exp(v_c)$$
 or $v_c = \ln \frac{I_D}{I_{spec}} = \ln \frac{I_0}{I_{spec}} + \ln(1 + m_i \sin \phi)$ (6.137)

The fundamental component of v_c is thus given by

$$v_{c(1)} = \frac{1}{\pi} \int_0^{2\pi} \ln\left(1 + m_i \sin \Phi\right) \sin \Phi \cdot d\Phi.$$
 (6.138)

Introducing this result in (6.136) yields the relation between the bias current I_0 in weak inversion and the index of modulation m_i . It is plotted in Fig. 6.22.

Figure 6.22 Index of current modulation as a function of the bias current. The parameter IC_0 is the inversion coefficient at the critical bias current I_{0crit} . Circles are simulation results of $|I_m|/I_0$ in weak inversion, showing that, except for $B \ll 1$, the distortion of the drain current cannot be neglected when saturation is approached.

In *strong inversion*, the saturation drain current $I_D = I_F$ given by (3.43) can be written

$$I_D = I_{spec} \left(\frac{v_c}{2}\right)^2 \quad \text{or } v_c = 2\sqrt{\frac{I_D}{I_{spec}}}.$$
(6.139)

As for the Pierce circuit, the level of inversion can be characterized by the inversion coefficient at the critical current for oscillation:

Low-Power Crystal and MEMS Oscillators

$$IC_0 \triangleq \frac{I_{0crit}}{I_{spec}} \tag{6.140}$$

The fundamental component of v_c can then be expressed as

$$v_{c(1)} = \sqrt{\frac{I_0}{I_{0crit}}IC_0} \cdot \mathbf{h}_s(m_i), \qquad (6.141)$$

with

$$\mathbf{h}_s(m_i) = \frac{2}{\pi} \int_0^{2\pi} \sqrt{(1 + m_i \sin \Phi)} \cdot \sin \Phi \cdot \mathrm{d}\Phi \qquad (6.142)$$

According to (3.56), the critical current in strong inversion is related to its minimum value (reached in weak inversion) by

$$I_{0crit} = I_{0critmin}\sqrt{IC_0},\tag{6.143}$$

therefore (6.141) becomes

$$v_{c(1)} = \sqrt{\frac{I_0}{I_{0critmin}}} \cdot \sqrt[4]{IC_0} \cdot \mathbf{h}_s(m_i), \qquad (6.144)$$

Introducing this result in (6.136) and solving for $I_0/I_{0critmin}$ gives finally

$$\frac{I_0}{I_{0critmin}} = \sqrt{IC_0} \cdot \left(\frac{\mathbf{h}_s(m_i)}{m_i}\right)^2,\tag{6.145}$$

which is plotted in Fig. 6.22 for several values of IC_0 . As can be seen in this figure, $|I_1|$ saturates to the value I_0 for $I_0 > \sqrt{2}I_{0crit}$ (slightly more in weak inversion). But a part of I_1 flows through the load capacitor C_L and the voltage amplitude at the drain is limited to

$$|V_{D(1)}| = \frac{R_L I_0}{2\sqrt{1+B^2}}.$$
(6.146)

Similarly, a part of I_1 is diverted from the resonator itself to flow through the parallel capacitor C_P , according to (6.127).

But it must be remembered that this calculation of the amplitude is only an *crude approximation*, since it is based on the assumption that the AC component I_1 of drain current is perfectly sinusoidal. In reality, when the source voltage is distorted, harmonic components of current can flow through the parallel capacitance C_P and the drain current is distorted.

In practice, except for $B \ll 1$, nonlinear effects cannot be neglected when $|I_1|$ reaches its assumed saturation value I_0 . This is illustrated by the simulation results of $|I_m|/I_0$ (for $|R_n| \ll R_L$) represented by circles in Fig. 6.22.

According to (6.127), $|I_m| \cong |I_1|$ for the values of *B* used in the simulation (negligible current in C_P). It should therefore saturate at I_0 . However, when saturation is approached, the drain current tends to become a square wave of amplitude I_0 , therefore the maximum value of its fundamental components tends to $4/\pi \cdot I_0$.

For values of *B* approaching unity, nonlinear effects must be analyzed by the general technique introduced in Chapter 3. An example of such an analysis is depicted in Fig. 6.23 for the case of B = 1 (with C_L slightly larger than C_P/n). From (6.109), the minimum transconductance producing a negative

Figure 6.23 Measurement of $Z_{c(1)}(|I_c|)$ in a simulated circuit with B = 1. The bias current I_0 is kept constant at a value much larger than its limit for negative resistance.

resistance is $2 \mu A/V$, which corresponds to a limit bias current $I_{0lim} = 63 \text{ nA}$. With $I_0 = 200 \text{ nA}$ applied in this example, the negative resistance is reduced abruptly when the sinusoidal current $|I_c|$ reaches 127 nA, corresponding to its saturation value. Compared to the linear case, the imaginary part of $Z_{c(1)}$ is reduced by about 10%.

The variations of $\text{Im}(Z_{c(1)})$ with the normalized bias current I_0/I_{0lim} for $\text{Re}(Z_{c(1)}) \cong 0$ has been simulated for the same circuit, by connecting it to a motional impedance with $R_m = 0$. The result is shown in dotted line in Fig. 6.24.

For $I_0 < 7I_{0lim}$, the reduction of $|Z_{c(1)}|$ is smaller than 10%. With the motional capacitance $C_m = 2.1$ fF of Example 1 in Table 4.1, this would cor-

Figure 6.24 Measurements of $Z_{c(1)}(I_0)$ and $|I_c|(I_0)$ in the simulated circuit of Fig. 6.23(b).

respond to a maximum variation of frequency pulling of $3.5 \cdot 10^{-5}$. It starts changing more drastically for larger values of I_0 .

The same figure shows the variation of the sinusoidal current $|I_c| = |I_m|$ with the bias current. The ratio $|I_c|/I_0$ reaches a first plateau that is about $4/\pi$ higher than what would be calculated by (6.127) for a sinusoidal drain current of amplitude $|I_1| = I_0$, before further increasing.

6.3.4 Phase Noise

6.3.4.1 Noise Voltage

The effect of the channel noise can be analyzed by means of the equivalent circuit of Fig. 6.25. Besides the channel noise sources I_{nD1} and I_{nD1} of the two transistors, the thermal noise current I_{nR} of the load resistance is included. Calculations on this circuit for the limit case $C_P = nC_L$ yields the cyclostationary noise voltage across the motional impedance Z_m :

$$\alpha_{\nu}V_{n} = \frac{1}{n} \cdot \frac{R_{L}I_{nR} + (1+jB_{n})(I_{nD1}/G_{m1} - I_{nD2}/G_{m2})}{(1-xB_{n}^{2}) + jxB_{n}},$$
(6.147)

where B_n is the value of *B* defined in (6.108) with ω replaced by ω_n , the frequency at which the noise is considered. The local variable *x* is defined by

$$x \triangleq \frac{1}{R_L} \left(\frac{1}{G_{m1}} + \frac{1}{G_{m2}} \right) \tag{6.148}$$

Figure 6.25 Equivalent circuit for noise calculation of the series resonance oscillator.

It varies periodically along each cycle of oscillation.

Using the expression (3.60) of the spectrum of I_{nD} , the spectrum of this cyclostationary voltage is then

$$\alpha_{\nu}^{2}S_{V_{n}^{2}} = \frac{4kTR_{L}}{n^{2}} \cdot \frac{1 + (1 + B_{n}^{2})n\gamma_{t}x}{B_{n}^{2}x^{2} + (1 - B_{n}^{2}x)^{2}},$$
(6.149)

6.3.4.2 Phase Noise of the Linear Circuit

For very small amplitudes, the circuit remains linear and only noise frequencies close to the oscillation frequency have to be considered, thus $\alpha_v = 1$, $G_{m1} = G_{m2} = G_{mcrit}$ and $B_n = B$. After approximating G_{mcrit} by G_{mlim} given by (6.109), the voltage noise spectral density becomes

$$S_{V_{n0}^2} = 4kTR_L \frac{1+n\gamma_t}{n^2} (1+B^2).$$
(6.150)

According to Fig. 3.7, the phase noise excess factor at very small amplitudes is obtained after division of the thermal noise spectrum of R_m :

$$\gamma_0 = \frac{1 + n\gamma_t}{n^2} (1 + B^2) \frac{R_L}{R_m},\tag{6.151}$$

showing that γ_0 is minimum for B small and for R_L close to R_m .

6.3.4.3 Phase Noise due to White Noise in the Nonlinear Time Variant Circuit

The calculation of phase noise for large amplitudes is made complicated by the fact that the spectrum of the cyclostationary noise voltage expressed by (6.149) depends on B_n , i.e. on the frequency ω_n at which the noise is considered. Furthermore, this spectrum depends on the value of x that varies along each cycle with G_{m1} and G_{m2} , according to (6.148). This variation is illustrated by Fig. 6.26.

Figure 6.26 Spectrum of the cyclostationary noise for various values of *x*.

To render the problem tractable analytically, we shall assume that the spectrum remains constant at its value at the oscillation frequency by replacing B_n by B. As can be seen in the figure, this approximation is only valid for $\omega_n \ll \omega/B$ and x not too large. This domain of validity includes noise frequencies above ω only if $B \ll 1$ and m_i not to close to unity (since the peaks of x tend to infinity when m_i approaches unity).

The spectrum (3.60) of the cyclostationary voltage is thus approximated by

$$\alpha_{\nu}^{2}S_{V_{n}^{2}} = \underbrace{\frac{4kTR_{L}}{n^{2}}}_{S_{V_{n}^{2}}} \cdot \underbrace{\frac{1 + (1 + B^{2})n\gamma_{t}x}{B^{2}x^{2} + (1 - B^{2}x)^{2}}}_{\alpha_{\nu}^{2}}, \qquad (6.152)$$

where S_{ν^2} is the spectrum of a fictitious noise voltage modulated by α_{ν} .

If the transistors operate in *weak inversion*, the transconductance is given by (3.54) and varies cyclically with the drain current according to (6.132):

6 Alternative Architectures

$$G_{m1,2} = \frac{I_0}{nU_T} (1 \pm m_i \sin \phi) = G_{mcrit} \cdot \frac{v_{c(1)}}{m_i} (1 \pm m_i \sin \phi), \qquad (6.153)$$

where the second form has been obtained by using (6.136) to replace I_0 by its critical value, with $v_{c(1)}$ given by (6.138).

As done previously, the critical transconductance G_{mcrit} can be approximated by the limit value G_{mlim} given by (6.109). The local variable x defined by (6.148) then becomes

$$x = \frac{1}{1+B^2} \cdot \frac{m_i}{v_{c(1)}} \cdot \frac{1}{1-m_i^2 sin^2 \phi}$$
(6.154)

and can be introduced into (6.152) to obtain α_v^2 . The mean square value of the effective impulse sensitivity function is then given by

$$\overline{\Gamma_{\nu}^{2}} = \overline{\alpha_{\nu}^{2} \cos^{2}(\phi + \Delta\phi)} = \frac{1}{2\pi} \int_{0}^{2\pi} \alpha_{\nu}^{2} \cos^{2}(\phi + \Delta\phi) d\phi, \qquad (6.155)$$

where $\Delta \phi$ is the phase shift between the current I_1 through the transistor and the motional current I_m . Indeed, the peaks of the noise voltage modulation function α_{ν} coincide with the peaks of current through the transistors. Thus, from (6.127)

$$\tan \Delta \phi = \frac{1}{M_D (1+B^2)} \tag{6.156}$$

Now, $S_{V_n^2}$ in (6.152) is independent of the current modulation index m_i . Therefore, according to (3.31), the spectral density of the phase noise due to the circuit is proportional to $\overline{\Gamma_v^2}$. Thus the variation of the phase noise excess factor γ is

$$\frac{\gamma}{\gamma_0} = \frac{\overline{\Gamma_v^2}}{\overline{\Gamma_v^2}/|_{m_i=0}}.$$
(6.157)

Results obtained by introducing (6.154) and (6.152) in (6.155) are plotted in Fig. 6.27 for two values of the normalized bandwidth *B*. They show that the noise excess factor remains approximately constant with the index of modulation.

It must be reminded that the approximation by a white noise voltage spectrum $(B_n = B \text{ in } (6.149))$ is only valid for $B \ll 1$. Otherwise, if the modulation factor approaches unity, G_{m1} or G_{m2} becomes very small in the peaks of oscillation and x defined by (6.148) becomes very large. As illustrated by Fig. 6.26, the noise is then no longer white but is concentrated at low frequencies.

180

Figure 6.27 Variation of the phase noise excess factor with the amplitude of oscillation, with transistors operated in weak inversion. These results are calculated with the *approximation* of a white noise voltage spectrum across the motional impedance of the resonator.

6.3.4.4 Phase Noise due to the Flicker Noise of the Active Transistors

As for the parallel resonance oscillator, a bias independent voltage source of flicker noise at the gate (as in the simple model defined by (3.62)) produces no phase noise, due to the symmetry of the circuit. Let us use again the more general model (6.71) for a flicker noise drain current. For the noise of transistor T_1 only, the spectral density of cyclostationary noise voltage across the motional impedance given by (6.147) becomes

$$\alpha_{\nu}^{2}S_{V_{n}^{2}} = \frac{(1+B_{n}^{2})}{(1-xB_{n}^{2})^{2}+x^{2}B_{n}^{2}} \cdot \frac{F_{a}(G_{m1}/G_{a})^{a}}{\omega_{n}n^{2}G_{m1}^{2}}.$$
(6.158)

For low-frequency flicker noise, $B_n = \omega_n/\omega \ll 1$. Furthermore $xB_n \ll 1$, except when *x* defined by (6.148) becomes very large in the peaks of oscillation (G_{m1} or G_{m2} very small). Therefore, (6.158) can be simplified to

$$\alpha_{\nu}^{2}S_{V_{n}^{2}} = \frac{F_{a}G_{m1}^{a-2}}{\omega_{n}n^{2}G_{a}^{a}}.$$
(6.159)

In *weak inversion*, the variation of G_{m1} along each cycle is given by (6.153), hence

$$\alpha_{v}^{2}S_{V_{n}^{2}} = \underbrace{\frac{F_{a}G_{mcrit}^{a-2}}{\omega_{n}n^{2}G_{a}^{a}} \cdot \left(\frac{v_{c(1)}}{m_{i}}\right)^{a-2}}_{\frac{1}{2} \cdot \frac{K_{fv}}{\omega_{n}}} \cdot \underbrace{(1 + m_{i}\sin\phi)^{a-2}}_{\alpha_{v}^{2}}.$$
(6.160)

The spectrum of the fictitious flicker noise voltage modulated by α_v is thus characterized by

6 Alternative Architectures

$$K_{fv} = 2F_a \cdot \left(\frac{G_{mcrit}}{G_a}\right)^a \cdot \frac{1}{n^2 G_{mcrit}^2} \cdot \left(\frac{v_{c(1)}}{m_i}\right)^{a-2},\tag{6.161}$$

where a factor 2 has been introduced to account for the noise of the second transistor.

The average value of the effective ISF is

$$\overline{\Gamma_{\nu}} = \overline{\alpha_{\nu}\cos\left(\phi + \Delta\phi\right)} = \frac{1}{2\pi} \int_{0}^{2\pi} (1 + m_{i}\sin\phi)^{a/2 - 1}\cos\left(\phi + \Delta\phi\right) \mathrm{d}\phi,$$
(6.162)

with $\Delta \phi$ given by (6.156). After decomposing $\cos(\phi + \Delta \phi)$, (6.162) becomes

$$\overline{\Gamma_{\nu}} = \frac{-\sin\Delta\phi}{2\pi} \int_0^{2\pi} (1 + m_i \sin\phi)^{a/2 - 1} \sin\phi d\phi.$$
(6.163)

Before introducing (6.161) and (6.163) in (3.35) to obtain the phase noise spectrum due to the flicker noise of the transistors, the motional current can be expressed as a function of the current modulation index m_i . By using (6.127) and (6.136):

$$I_m \cong \frac{I_1}{1+B^2} = \frac{m_i I_0}{1+B^2} = \frac{m_i I_{0critmin}}{1+B^2} \cdot \frac{v_{c(1)}}{m_i}.$$
 (6.164)

The phase noise spectrum obtained from (3.35) is then

$$S_{\phi_n^2} = \frac{2F_a}{\Delta\omega^3} \left(\frac{G_{mcrit}}{G_a}\right)^a \left(\frac{\omega^2 C_m (1+B^2) \sin \Delta\phi}{n I_{0critmin} G_{mcrit}}\right)^2 \cdot \left(\frac{v_{c(1)}}{m_i}\right)^{a-4} \left[\frac{\int_0^{2\pi} (1+m_i \sin \phi)^{a/2-1} \sin \phi d\phi}{2\pi m_i}\right]^2, \quad (6.165)$$

where $v_{c(1)}$ is given by (6.138).

The first line of this expression is independent of the amplitude, whereas the second line takes the value $(a-2)^2/16$ for $m_i = 0$. The spectral density for very small amplitudes is thus

$$S_{\phi_n^2 0} = \frac{2F_a}{\Delta\omega^3} \left(\frac{G_{mcrit}}{G_a}\right)^a \left(\frac{(a-2)\omega^2 C_m (1+B^2)\sin\Delta\phi}{4nI_{0critmin}G_{mcrit}}\right)^2, \quad (6.166)$$

or after replacing $I_{0critmin}$ by G_{mcrit} approximated by G_{mlim} (given by (6.109)):

$$S_{\phi_n^{20}} \cong \frac{2F_a}{\Delta\omega^3} \left(\frac{G_{mcrit}}{G_a}\right)^a \left(\frac{(a-2)\omega^2 C_m R_L^2 \sin \Delta\phi}{16n^2 U_T (1+B^2)}\right)^2.$$
(6.167)

Figure 6.28 Variation of the $1/\Delta\omega^3$ phase noise (due to flicker noise) with the index of current modulation m_i , for various values of the exponent *a* of the transistor flicker noise current spectrum described by (6.71).

The variation with m_i of the $1/\Delta\omega^3$ noise phase spectrum described by (6.165) is plotted in Fig. 6.28. It must be remembered that these results are calculated for $xB_n \ll 1$, i.e. for flicker noise frequencies of the transistors

$$\omega_n \ll \frac{1}{C_L(1/G_{m1} + 1/G_{m2})}.$$
(6.168)

They are therefore not valid for m_i very close to unity. As can be seen, the $1/\Delta\omega^3$ noise does not depart significantly from its value for small amplitudes expressed by (6.166) or (6.167).

6.3.5 Practical Implementation

Complementary oscillatory signals can be extracted at the drains of the active transistors by simple voltage followers. If no resistors are available, they can be replaced by a non-saturated P-channel transistors T_R associated with a bias transistor T_B , as shown in Fig. 6.29, both operated in *strong inversion*. If the maximum current $I = 2I_0$ is sufficiently smaller than its saturation value I_{sat} given by

$$I_{sat} = I_B \cdot \frac{I_{specR}}{I_{specB}},\tag{6.169}$$

then the current *I* remains an approximately linear function of the voltage *V* across T_R , with a slope equal to the source transconductance G_{msR} . Intro-

Figure 6.29 Implementation of the load resistor $R_L/2$ by means of transistor T_R ; (a) circuit; (b) I - V function.

ducing (6.169) in the expression (3.56) of the source transconductance then yields

$$R_L = 2/G_{msR} = \frac{2U_T}{I_{specR}} \sqrt{\frac{I_{specB}}{I_B}}.$$
(6.170)

The drain voltage amplitude could be regulated, for example by the scheme developed for the Pierce oscillator and described in Section 5.2. But the simulated example of Fig. 6.23 shows that the nonlinear effects on the imaginary part (and thus on the frequency) are already limited for B = 1. They are further reduced for lower values of B, so that amplitude regulation is not really necessary. Anyway, an amplitude regulator would not drastically reduce the current consumption, since the negative resistance increases rapidly with the bias current as soon as the limit transconductance is reached, as can be observed in Fig. 6.20(b).

This circuit is by nature a current-mode oscillator, and the signal is best extracted as a current (or two complementary currents), as depicted in Fig. 6.30. The P-channel transistors T_3 and T_4 of the output mirrors are in series with the load resistors. Thus, in the small-signal analysis, the inverse of the transconductance G_{mp} of the P-channel transistors must be added to $R_L/2$. But this transconductance depends on the bias current I_0 and thus changes with the transconductance G_m of the N-channel active transistors T_1 and T_2 . The circuit impedance Z_c is therefore no longer a bilinear function of G_m and its locus is *no longer a circle*.

Still, the essential characteristics of the basic circuit can be maintained if $G_{mp} \gg G_m$. Since the same current flows through both transistors, (3.56) shows that this can only be obtained if the active N-channel transistors operate in strong inversion with specific current much smaller than that of the P-channel input transistors of the mirrors, i.e. if

$$I_{spec1,2} \ll I_0 \text{ and } I_{spec1,2} \ll I_{spec3,4}.$$
 (6.171)

These conditions can be fulfilled without reducing $I_{spec1,2}$ too much if the mirrors operate in weak inversion (i.e with $I_{spec3,4} > I_0$).

Figure 6.30 Extraction of the oscillatory signals by current mirrors.

If all transistors are in weak inversion, then, according to (3.54), their transconductance are almost equal (with just a small difference due to different values of *n* for P-channel and N-channel devices). The transconductance G_{mp} of the P-channel devices can no longer be neglected.

Let us assume that $G_{mp} \equiv G_m$. Since $1/G_{mp}$ is connected in series with $R_L/2$, R_L must be replaced by $R_L + 2/G_m$ in (6.98). Then $Z_c|_{\omega=0} = -R_L$. A DC negative resistance would be obtained for an infinitely small value of transconductance. But a finite transconductance is needed to obtain an AC negative resistance. The analysis of Section 6.3.2 can be modified by replacing *B* by

$$B \Rightarrow \omega C_L(R_L + 2/G_m) = B + 2/A.$$
(6.172)

From (6.106), the real part of the impedance $\text{Re}(Z_c)$ then changes sign for

$$2(B+2/A) + \frac{2}{(B+2/A)} - A = 0.$$
 (6.173)

This is a third order equation in A, but a second order equation in B. Solving it for B gives:

$$B = \frac{1}{4} \left(A - \frac{8}{A} \pm \sqrt{A^2 - 16} \right). \tag{6.174}$$

This result is plotted as A(B) in Fig. 6.31(a). The minimum transconductance producing a negative resistance is the same as for the basic circuit of Fig. 6.16 $(G_{mlim} = 4\omega C_L)$, but it is reached for B = 0.5 instead of B = 1. The imaginary part of Z_c at this limit is obtained by applying the substitution (6.172) in (6.110). The result is plotted in Fig. 6.31(b).

Figure 6.31 (a) Limit transconductance for negative resistance. (b) $\text{Im}(Z_c)$ at this limit for the circuit of Fig. 6.30 with $G_{mp} = G_m$. The corresponding curves for the basic circuit of Fig. 6.16 (equations (6.106) and (6.110)) are shown in dotted lines.

The relation between the limit transconductance for a negative resistance G_{mlim} and the imaginary part of the circuit impedance at this limit is given by (6.111). It does not depend on *B*. It is thus the same for the modified circuit as for the basic circuit, as illustrated by the example of points P and Q on the curves.

As already pointed out, Z_c is no longer a bilinear function of G_m . As an example, the locus of $Z_c(G_m)$ calculated for B = 0.5 (minimum of G_{mlim}) is plotted in Fig. 6.32. The locus is now a spiral that is decentered with respect to the imaginary axis. Compared to the locus of the basic circuit with B = 1, the slope is no longer zero on the imaginary axis. This will result in a larger dependency of the frequency pulling on the quality factor and on nonlinear effects.

Another variant of the basic circuit is illustrated in Fig. 6.33. The load resistors of Fig. 6.30 have been eliminated and replaced by the transconductance G_{mp} of the P-channel transistors. The necessary voltage gain is obtained by choosing

$$G_{mp} = G_m / K_t, \tag{6.175}$$

where K_t is a constant factor sufficiently larger than unity. This is not possible in weak inversion but, according to (3.56), it can be obtained in *strong inversion* by sizing the transistors so that

Figure 6.32 Locus of $Z_c(G_m)$ for the circuit of Fig. 6.30 with $G_{mp} = G_m$ and B = 0.5. The locus for the basic circuit of Fig. 6.16 with B = 1 is shown in dotted line for comparison.

Figure 6.33 Implementation without resistors.

$$\frac{I_{spec}}{n^2}|_{P-\text{channel}} = \frac{1}{K_t^2} \cdot \frac{I_{spec}}{n^2}|_{N-\text{channel}} \text{ or } \frac{\beta}{n}|_{P-\text{channel}} = \frac{1}{K_t^2} \cdot \frac{\beta}{n}|_{N-\text{channel}}.$$
(6.176)

The factor K_t will not be very precise and will depend on temperature and process variations, since P-channel and N-channel transistors are not well matched. In practice, a value of K_t^2 ranging between 2 and 4 will be obtained

for identical dimensions of N-channel and P-channel devices, due to the difference of mobility between electrons and holes.

With this scheme, the original load resistance $R_L/2$ is replaced by K_t/G_m thus, according to (6.108):

$$B = \frac{2K_t \omega C_L}{G_m} = \frac{2K_t}{A},\tag{6.177}$$

which, introduced in (6.106) and (6.107) gives

$$\operatorname{Re}(Z_c) = \frac{1}{\omega C_P} \cdot \frac{2K_t (4K_t/A + A/K_t - A)}{4 + (4K_t/A - A)^2}$$
(6.178)

$$\operatorname{Im}(Z_c) = \frac{1}{\omega C_P} \cdot \frac{4(2K_t - 4K_t^2/A^2 - 1)}{4 + (4K_t/A - A)^2},$$
(6.179)

with the normalized transconductance A defined by (6.108). The locus of $Z_c(G_m)$ is plotted in Fig. 6.34(a) for several values of the transconductance ratio K_t . It is again a spiral, but $|Z_c|$ tend to zero when G_m tends to infinity.

Figure 6.34 (a) Locus of $Z_c(G_m)$ for the circuit of Fig. 6.33 for several values of $K_t = G_m/G_{mp}$. The locus for the circuit of Fig. 6.30 with $G_{mp} = G_m$ and B = 0.5 is shown in dotted line for comparison. (b) Real and imaginary parts of Z_c for $K_t = 2$.

No negative resistance is possible for $K_t \leq 1$. The slope at $\text{Re}(Z_c = 0)$ is further worsened, as indicated by the comparison with the locus of Fig. 6.32, repeated here in dotted line.

Part (b) of the figure shows the variations of the real and imaginary parts of the circuit impedance with the transconductance, for $K_t = 2$. Compared to Fig. 6.20(b) for the basic circuit, the maximum of negative resistance is already reached for a small excess of transconductance G_m/G_{mlim} , and the imaginary part is strongly dependent of G_m .

Using (6.178), the limit transconductance for a negative resistance (i.e. for $\text{Re}(Z_c) = 0$ is

$$G_{mlim} = \frac{2K_t}{\sqrt{K_t - 1}} \cdot \frac{\omega C_P}{n}.$$
(6.180)

As shown in the plot of Fig. 6.35, it has a minimum at $K_t = 2$. It increases rapidly below $K_t = 1.5$ but only slowly above its minimum.

Figure 6.35 Variation of the limit transconductance with the transconductance ratio K_t .

The imaginary part of the circuit impedance for $G_m = G_{mlim}$ is obtained by introducing (6.177) and (6.180) in (6.110)

$$Im(Z_c)_{lim} = Im(Z_c)|_{Re(Z_c)=0} = \frac{K_t - 1}{\omega C_P}.$$
 (6.181)

This can be verified in Fig. 6.34.

Nonlinear effects in the modified circuits are difficult to express analytically, since the active devices and their loads are both nonlinear. Results of a simulation of the transistors-only circuit of Fig. 6.33 for $\text{Re}(Z_{c(1)}) = 0$ are plotted in Fig. 6.36.

As could be expected from the shape of the impedance locus, $\text{Im}(Z_{c(1)} = |Z_{c(1)}|$ (since $\text{Re}(Z_{c(1)}=0)$ is very dependent on the bias current: nonlinearities have a much larger effect on the frequency of oscillation than in the basic circuit (see Fig. 6.24).

Figure 6.36 Measurements of $Z_{c(1)}(I_0)$ and $|I_c|/I_0$ in a simulation of the modified circuit of Fig. 6.33 for $\text{Re}(Z_{c(1)})=0$ with $K_t = 2.2$.

6.4 Van den Homberg Oscillator

6.4.1 Principle and Linear Analysis

A good example of an oscillator based on an operational transconductance amplifier (OTA) is illustrated in Fig. 6.37 [27]. The main purpose of this

Figure 6.37 Principle of the oscillator proposed by van den Homberg.

structure is to provide a single pin oscillator (one side of the quartz grounded) with grounded capacitors only. The input V_{in} of the OTA is the difference of voltages across the two capacitors C_a (that include the electrical capacitor C_0 of the resonator defined by (2.1)) and C_b . It delivers two separate output currents. The first one is proportional to V_{in} by a transconductance G_m and produces a positive feedback. The second one, with a proportional transconductance $K_g G_m$ creates a negative feedback.

Assuming an ideal OTA and replacing the capacitances by more general impedances Z_a and Z_b including possible losses, the small-signal circuit impedance is

$$Z_{c} = \frac{Z_{a} + K_{g}G_{m}Z_{a}Z_{b}}{1 + G_{m}(K_{g}Z_{b} - Z_{a})},$$
(6.182)

which is again a bilinear function of the transconductance G_m . The locus of $Z_c(G_m)$ is thus once more a circle. Without the motional impedance Z_m , the circuit must be stable, hence the real part of the poles of Z_c must be negative.

With lossless capacitors, the condition for stability becomes

$$C_b < K_g C_a, \tag{6.183}$$

meaning that the negative feedback gain $K_g G_m / (\omega C_b)$ must be larger than the positive feedback gain $G_m / (\omega C_a)$. The circular locus is centered on the imaginary axis as depicted in Fig. 6.38.

Figure 6.38 Locus of the circuit impedance for the oscillator of Fig. 6.37 with an ideal OTA and lossless capacitors.

The real part of Z_c is

$$\operatorname{Re}(Z_c) = \frac{-G_m}{(\omega C_a)^2 + G_m^2 (K_g C_a / C_b - 1)^2},$$
(6.184)

and provides a maximum value of negative resistance

$$|R_{n0}|_{max} = \frac{1}{2\omega C_a (K_g C_a / C_b - 1)} \text{ for } G_m = G_{mopt} = \frac{\omega C_a}{K_g C_a / C_b - 1}, \quad (6.185)$$

with $C_a \geq C_P$.

For $R_m \ll |R_{n0}|_{max}$ (margin factor $K_m \gg 1$), the frequency pulling at the critical condition for oscillation is simply, from (4.3)

$$p_c \cong \frac{C_m}{2C_a},\tag{6.186}$$

and the term in G_m^2 in the denominator of (6.184) can be neglected. Thus, from (3.9), the critical transconductance for the lossless circuit can be approximated by

$$G_{mcrit0} \cong \omega^2 C_a^2 R_m = \frac{\omega C_a^2}{QC_m} = \frac{\omega C_m}{4Qp_c^2}$$
(6.187)

The locus of $Z_c(G_m)$ resembles that for the Pierce oscillator depicted in Fig. 4.6. Here, C_a plays the role of $C_3 + C_s$ and C_3 is replaced by $C_a - C_b/K_g$. The latter could in principle be made as large as wanted, thereby increasing the value of $|R_{n0}|_{max}$. In practice, it is limited by the need to satisfy the stability condition (6.183) in the worst case of mismatch, as for the parallel resonance oscillator of Section 6.2.

Using (6.16), the maximum value of negative resistance is therefore in the range

$$\frac{1 - \varepsilon_{max}}{4\omega C_a \cdot \varepsilon_{max}} \le |R_{n0}|_{max} \le \infty, \tag{6.188}$$

where ε is given by (6.15) with nC_D/C_S replaced by K_gC_a/C_b .

Since C_a in this circuit includes not only the electrical capacitor C_0 of the resonator, but also the overall interconnection capacitance to ground, a good matching with C_b cannot be ensured. Furthermore, since the transconductance ratio K_g must be obtained by a ratio of drain currents, it will be affected by a random error that increases when the inversion decreases. For these reasons, the practical value of $|R_{n0}|_{max}$ is not larger than for the basic Pierce oscillator.

The comparison of (6.187) with (4.26) shows that the critical transconductance for a given amount of frequency pulling p_c is four times smaller than for the Pierce oscillator. But this does not necessarily result in a reduction of power consumption, since the OTA consumes much more current than a single transistor to produce the same transconductance.

At the critical condition for oscillation, the transconductance is given by (6.187) and the voltages across the capacitors are related to the differential input voltage of the OTA by

$$V_b = -j \frac{K_g C_a}{C_b} \cdot \frac{C_a}{Q C_m} V_{in} \quad \text{and} \quad V_a = V_b + V_{in}. \tag{6.189}$$

The value of $K_g C_a/C_b$ is not much larger than unity to maximize the radius of the circular locus of Fig. 6.38. The value of V_b/V_{in} therefore depends essentially on $QC_m/C_a = 2Qp_c$. This value is often much larger than unity, resulting in $|V_b| \ll |V_{in}|$ and $|V_a| \cong |V_{in}|$.

6.4.2 Practical Implementation and Nonlinear Behavior

A full circuit implementation of the principle explained by Fig. 6.37 is shown in Fig. 6.39 [27]. The two feedback loops are implemented by adequate com-

Figure 6.39 Circuit implementation of the oscillator of Fig. 6.37.

binations of P-channel and N-channel current mirrors. The DC bias current of each branch is I_0 , except in the output stage driving C_b where it is $K_g I_0$. Thus, the total current is $(4 + K_g)I_0$, plus the current flowing through the bias resistors R_1 and R_2 . The ratio of these resistances is chosen for best centering of the output oscillatory signal, and their value must be sufficiently large to minimize the loss conductance G_a across C_a .

Some power could be saved by reducing the bias current in some branches. But this would increase the noise excess factor γ defined in Section 3.7 and the phase noise would be increased.

When the oscillation grows, the amplitude is limited by the nonlinear behavior of the input differential pair. Thus its dependency on the bias current I_0 is given by (6.33) if the pair is in weak inversion, or by (6.39) if it is in strong inversion. These results are plotted in Fig. 6.6.

As for the other oscillator schemes, the bias current may be adjusted to the desired amplitude by means of a regulating loop.

6.5 Comparison of Oscillators

	1	2 3		4		
	Pierce	van den Homberg	narallel	series resonance		
Section	4 and 5	6.4	6.2	6.3		
branches	1	5	2	2		
	G	G	6			
p_c	$\frac{C_m}{2(C_s+C_3)}$	$\frac{C_m}{2C_a}$	$\frac{C_m}{2C_D}$	$-\frac{C_m B^2}{2C_p}$		
n	<u> </u>	C_m	C_m	$\sim - \frac{C_m}{C_m} $		
Pcmax	$\sim 2C_p$	$\overline{2C_P}$	$\overline{2C_P}$	\gg $^{-}$ $2C_{p}$		
G _{mcrit0}	$\frac{\omega C_m}{Q p_c^2}$	$\frac{\omega C_m}{4Qp_c^2}$	$\frac{\omega C_m}{2Qp_c^2}$	$\frac{2\omega C_P}{n} \left(\frac{B^2 + 1}{B} + \frac{1}{2Q p_c }\right)$		
I _{critmin}	$\frac{\omega C_m n U_T}{(2) Q p_c^2}$	$\frac{5\omega C_m n U_T}{4Q p_c^2}$	$\frac{\omega C_m n U_T}{Q p_c^2}$	$4\omega C_P U_T \left(\frac{B^2 + 1}{B} + \frac{1}{2Q p_c }\right)$		
amplitude	Fig. 4.17	Fig. 6.6	Fig. 6.6	Fig. 6.22		
γ_0	$n\gamma_t \frac{C_1 G_{mcrit}}{C_2 G_{mcrit0}}$	-	$n\gamma_t rac{G_{mcrit}}{G_{mcrit0}}$	$\frac{1+n\gamma_L}{n^2}(1+B^2)\frac{R_L}{R_m}$		

The main results obtained for the different types of oscillators are summarized in Table 6.1 for comparison.

 Table 6.1 Comparison of oscillators.

The number of branches has an impact on the total current I since a current proportional to I_0 flows through each branch.

The amount of pulling p_c at the critical condition for oscillation is a measure of how much the frequency of oscillation differs from the mechanical resonant frequency of the resonator. Since p_c depends on electrical parameters that may vary with temperature and supply voltage, a large value can be expected to degrade the inherent frequency stability of the resonator, as was discussed in Section 4.3.5. The maximum possible pulling characterizes the limit of tunability of the oscillator.

The critical transconductance G_{mcrit} depends on the requirement on p_c , and on the various parameters of the resonator. The minimum current $I_{0critmin}$ needed to obtain this transconductance is obtained in weak inversion and the minimum critical total current $I_{critmin}$ is proportional to $I_{0critmin}$ through the number of branches. Somewhat larger values are needed to obtain a usable amplitude.

Calculations have shown that the phase noise excess factor γ does not change very much with the amplitude of oscillation. Its value γ_0 at small amplitude is therefore used in the comparison. The effect of the noise coming from the bias current is not included.

6.5.1 Pierce Oscillator (1)

It is the most simple structure since the basic circuit (Fig. 4.1) requires a single active transistor. The current can be minimized by using the current-controlled CMOS implementation of Fig. 5.25, but the simple implementation with a CMOS inverter (Fig. 5.21) has many drawback, and should be avoided. The two functional capacitors C_1 and C_2 are grounded in the grounded source implementations (Fig. 5.1), but the resonator is not. The resonator may be grounded by using the grounded-drain implementation (Fig. 5.27), but C_1 is then floating.

Oscillation is only possible if the total impedance $Z_3 + Z_m$ between gate and drain is inductive. Therefore, according to the condition (4.16), the figure of merit *M* defined by (2.9) must be larger than 2. This condition should be satisfied with a large margin to maximize the frequency stability, but this margin is reduced in the grounded-drain implementation. The motional impedance Z_m is also inductive at stable oscillation, thus the pulling p_c given by (4.21) is always positive. It may be reduced by increasing C_s , the series connection of the two functional capacitors C_1 and C_2 . The maximum pulling is limited by C_p , the electrical capacitance C_0 of the resonator augmented by unavoidable parasitic capacitors.

The critical transconductance of the lossless circuit G_{mcrit0} is related to p_c by (4.26) and is minimum for $C_1 = C_2$. The minimum critical total current is simply nU_TG_{mcrit0} . It may be reduced by a factor 2 by replacing the single transistor by a complementary pair.

The amplitude of oscillation depends on $I_0/I_{0critmin}$ according to Fig. 4.17. A current $I \ge 2.8I_{critmin}$ is needed to obtain an amplitude $|V_1| = 5nU_T$ at the gate.

The noise excess factor γ_0 is minimum for $C_1 = C_2$. It increases with the increase of critical transconductance G_{mcrit}/G_{mcrit0} due to lossy components, but the noise associated with these components is not included.

6.5.2 Van den Homberg Oscillator (2)

This is the most complicated of the 4 schemes, since it requires a full double output operational transconductance amplifier (OTA), as illustrated in Fig. 6.37. Thus a minimum of 5 branches are needed with at least 5 internal nodes (Fig. 6.39). The poles related to these internal nodes should be made negligible, as was implicitly assumed in the analysis. The two functional capacitors C_a and C_b are grounded, as well as the resonator that is used as a dipole.

This circuit has no requirement on a minimum value of the figure of merit, but the condition for stability (6.183) must be fulfilled so that the negative feedback through C_b overrides the positive feedback through C_a . The circuit impedance Z_c is therefore always capacitive and thus the pulling p_c given by (6.186) always positive. It can be reduced by increasing C_a . Its maximum value p_{cmax} is obtained for $C_a = C_p$.

The minimum critical transconductance for a given value of p_c is close to one fourth of that of the Pierce circuit. However, the total critical current is about the same as the non-complementary implementation if the currents in the 5 branches are equal, as it should be to avoid increasing the noise.

The amplitude of oscillation is limited by the transfer function of the differential pair. Its dependency on $I/I_{critmin}$ is plotted in Fig. 6.6. A current $I \ge 2.5I_{critmin}$ is needed to obtain an amplitude $|V_{in}| = 5nU_T$ at the input of the OTA. According to (6.189), the amplitude $|V_a|$ across the resonator is always larger or equal to $|V_{in}|$.

The phase noise has not been evaluated for this oscillator, but its is expected to be increased by the larger number of active components.

6.5.3 Parallel Resonance Oscillator (3)

This is a symmetrical circuit which delivers complementary output voltages at the drain of the two transistors (Fig. 6.1(b)). It emulates a parallel resonator by using the parallel resonance of the motional impedance Z_m combined with the parallel capacitor C_P . The latter can be increased to a value C_D by an additional capacitor to reduce the pulling. This additional capacitor can be connected across the resonator, or it can be split in two grounded capacitor of double value. The sources of the transistor must be AC coupled by a capacitor C_S to avoid DC bistability. This capacitor can also be replaced by two grounded capacitors of value $2C_S$.

There is no condition on the maximum value of C_D (and thus on the minimum value of the figure of merit M_L defined by (6.7)). But to ensure AC stability at other frequencies then that of the resonator, the maximum value of C_S is limited by the condition (6.6). The impedance Z_c of the stable circuit is always capacitive, thus the pulling p_c given by (6.17) is always positive. Its minimum value is obtained when C_D is limited to $C_P \ge C_0$.

The minimum critical transconductance for the lossless circuit G_{mcrit0} is half that of the Pierce oscillator, but the minimum critical current $I_{critmin}$ is the same, since the bias current flows in 2 branches.

As long as the impedance of the capacitance C_s is negligible compared to their source transconductance (condition (6.28) fulfilled), the active transistors operate as a differential pair. The variation of the drain to drain (or gate to gate) voltage amplitude $|V_{in}|$ with $I/I_{critmin}$ is shown in Fig. 6.6 for weak inversion, and for strong inversion with a given value of inversion coefficient $IC = I_0/I_{spec}$ (thus not for a fixed value of specific current I_{spec} of the transistors).

The small-amplitude noise excess factor γ_0 is the same as that of the Pierce oscillator with $C_1 = C_2$.

6.5.4 Series Resonance Oscillator (4)

Whereas the first three oscillators above have comparable characteristics in spite of their different architectures, the series resonance oscillator depicted in Fig. 6.16 is very different in many aspects.

The function of the active devices of this symmetrical circuit is to change the sign of the load resistor R_L to obtain a negative resistance. Because of the capacitance C_P across the motional impedance Z_m of the resonator, a load capacitance C_L is needed to avoid parasitic oscillations. It must be sufficiently large to fulfill the condition (6.104), but not too large, since it would reduce the negative resistance. To simplify the analysis, all the derivations have been carried out with the assumption that the sufficient condition (6.103) is just fulfilled, i.e. $C_L = C_P/n$. The circuit impedance is always inductive (Re($Z_c > 0$), thus the pulling p_c is always negative; the frequency of oscillation is lower than the mechanical resonance frequency of the resonator. The pulling depends on the value of the load resistor R_L . But this load resistance is neither precise nor constant in an integrated circuit. The value of $|p_c|$ increases with B^2 , and its maximum is not limited. As expressed by (6.98) for the DC case, the transconductance G_m corresponds to a positive resistance is series with the negative resistance. It must therefore reach a limit value G_{mlim} given by (6.109) before some negative resistance is produced. This value is minimum for B = 1, that is for $|p_c| = C_m/2C_p$. It must be increased by a small amount ΔG_m given by (6.119) to obtain the critical transconductance. This amount remains negligible as long as $4Qp_c \gg 1$.

The amplitude of oscillation is best characterized by the index of modulation of the bias current I_0 by the oscillatory signal. Results based on the assumption of a perfectly sinusoidal current of amplitude $|I_1|$ are plotted in Fig. 6.22. Just a small excess of current of about 50% is sufficient to achieve 100% current modulation. Simulations show that for higher values of bias current, the drain current tends to a square wave.

The phase noise excess factor γ_0 is much larger than for oscillators 1 and 2 if the load resistance R_L is much larger than the motional resistance R_m . It increases rapidly for B > 1.

The performance of this oscillator (number 4) is compared with that of the three others in 4 numerical examples presented in Table 6.2.

parameter	Example a	Example b	Example c	Example d	Unit
Q	50000	5000	50000	500	
R_m	1.06	10.6	1.06	106	kΩ
M_D	50	5	50	0.5	
$ p_c _{max(1,2,3)}$	500	500	500	500	ppm
$ p_c $	100	100	10	5000	ppm
$I_{critmin(1,2,3)}$	1.27	12.7	127	-	μA
$I_{critmin(4)}$	5.46	7.22	16.1	7.21	μA
R_L	30.8	30.8	9.75	218	kΩ

Table 6.2 Numerical comparison of oscillators. The frequency is 1 MHz with C_m = 3 fF, C_0 = 2 pF, C_P = 3 pF, n = 1.3 and U_T = 26 mV.

Example a illustrates a standard case with a high value of quality factor Q and a frequency pulling of 100 ppm. The minimum critical current for the series resonance oscillator (4) is more than four times larger than for the three others.

In Example b, Q is only 5000. Oscillator 4 requires less current than the others.

In Example c, Q is large but the pulling is reduced to 10 ppm. The minimum critical current is now about 8 times smaller than for the other oscillators.

Knowing that the parameter *B* is related to $|p_c|$ by (6.113) (if condition (6.112) is fulfilled), the ratio of the minimum critical current for the series resonance oscillator to that of the 3 others can be expressed as

$$\frac{I_{critmin(4)}}{I_{critmin(1,2,3)}} = \frac{1}{n} \left(M_D B^5 + M_D B^3 + B^2 \right), \tag{6.190}$$

where M_D is the figure of merit of the dipole resonator defined by (2.22). This ratio is plotted in Fig. 6.40. This comparison curves shows that when

Figure 6.40 Relative total critical current of the series resonance oscillator. For the parts of the curves in interrupted line, the condition (6.112) is not fulfilled, thus $|p_c| < C_m B^2/2C_p$. Points a, b and c correspond to the first 3 examples of Table 6.2.

a very small pulling $|p_c|$ is required (to minimize de frequency dependence on electrical parameters), the series resonance oscillator requires much less current than the three others.

In Example d, the required pulling is very large and Q is very small. This is possible with oscillator 4 with just a small increase in current. The load resistance has a large value, and can be used to tune the oscillator in a wide frequency range. The voltage drop across $R_L/2$ is 414 mV at the critical

current, so about 600 mV for full current modulation; this is still compatible with low supply voltage.

The series resonance oscillator is thus interesting for its large tuning range capability, for minimizing the current when a very low value of pulling is required, and/or for low-Q resonators.

Bibliography

- W. G. Cady. "Method of Maintaining Electric Currents of Constant Frequency", US patent 1,472,583, filed May 28, 1921, issued Oct. 30, 1923.
- G. W. Pierce, "Piezoelectric Crystal Resonators and Crystal Oscillators Applied to the Precise Calibration of Wavemeters", Proc. American Academy of Arts and Sciences, vol. 59, October 1923, pp. 81-106.
- 3. G. W. Pierce, "Electrical System", US patent 2,133,642, filed Febr. 25, 1924, issued Oct. 18, 1938.
- W. A. Marrison and J.W. Horton, "Precision Determination of Frequency". I.R.E. Proc. vol. 16, pp. 137154 Feb., 1928.
- E. Vittoz, The Electronic Watch and Low-Power Circuits", IEEE Solid-State Circuits Society News, Vol. 13, No. 3, Summer 2008, pp.7-23.
- A. Hadjimiri and T. H. Lee, "A General Theory of Phase Noise in Electrical Oscillators", IEEE J. Solid-State Circuits, vol. 33, pp. 179-194, Febr. 1998. Corrections at page 928 of the same journal (June 1998).
- 7. V. Uzunoglu, *Semiconductor Network Analysis and Design*, McGraw Hill, 1964, p.245.
- 8. M.R. Spiegel, Complex Variables, Schaum Publishing Co, New York, 1964.
- 9. F.E. Terman, Radio Engineering HandBook, McGraw-Hill, 1943.
- E. Momosaki, "A Brief Review of Progress in Quartz Tuning Fork Resonators", Proceedings of the 1997 IEEE International Frequency Control Symposium, 1997, pp. 552-565, 28-30 May 1997.
- W. P. Mason, "A New Quartz Crystal Plate, Designated the GT, Which Produces a Very Constant Frequency Over a Wide Temperature Range", Proc. IRE, vol. 28, p. 220, May 1940.

- 12. J. Hermann,"A Novel Miniature ZT-Cut Resonator", Proc. of the 39th Annual Symposium on Frequency Control, 1085, pp. 375-380.
- 13. E. Vittoz, "Quartz Oscillators for Watches", invited paper, Proc. 10th International Congress of Chronometry, pp. 131-140, Geneva, 1979.
- E. Vittoz, M. Degrauwe and S. Bitz, "High-Performance Crystal Oscillator Circuits: Theory and Applications", IEEE J. Solid-State Circuits, vol. SC-23, pp. 774-783, June 1988.
- 15. H. J. Reich, *Functional Circuits and Oscillators*, Boston technical Publishers, Cambridge MS, 1965.
- D. B. Leeson, "A Simple Model of Feedback Oscillator Noise Spectrum", Proc. IEEE, Vol. 54, pp. 329-330, Febr. 1966.
- C. Enz, F. Krummenacher and E. Vittoz, "An Analytical MOS Transistor Model Valid in All Regions of Operation and Dedicated to Low-Voltage and Low-Current Applications", Analog Integrated Circuits and Signal Processing, Vol.8, pp. 83-114, 1995.
- 18. C. Enz and E. Vittoz, *Charge-Based MOS Transistor Modeling*, John Wiley and Sons, Chichester, 2006.
- 19. H. Oguey and S. Cserveny, "MOS Modelling at Low Current Density", Summer Course on Process and Device Modelling. ESAT-Leuven, June 1983.
- J. K. Clapp, "An inductive-Capacitive Oscillator of Unusual Frequency Stability", Proc. IRE, vol. 36, 1948, pp. 356-358.
- E. Vittoz and J. Fellrath, "CMOS Analog Integrated Circuits Based on Weak Inversion Operation", IEEE J. Solid-State Circuits, vol. SC-12, pp. 224-231, June 1977.
- D. A. Aebischer, H. J. Oguey and V. R. von Kaenel, "A 2.1MHz Crystal Oscillator Time Base With a Current Consumption under 500nA", IEEE J. Solid-State Circuits, vol. 32, pp. 999-1005, July 1997.
- 23. J.Santos and R. Meyer, "A One-Pin Oscillator for VLSI Circuits", IEEE J. Solid-State Circuits, vol. SC-19, pp. 228-236, April 1984.
- 24. J. Luescher, "Oscillator Circuit Including a Quartz Crystal Operating in Parallel Resonance", US patent 3,585,527, filed oct. 27, 1969, issued June 15, 1971.
- 25. D. Ruffieux, "A High-Stability, Ultra-Low-Power Differential Oscillator Circuit for Demanding Radio Applications", Proc. ESSCIRC'02, pp. 85-88, 2002.
- M. P. Forrer, "Survey of Circuitry for Watches", Proc. IEEE, vol. 60, pp.1047-1054, Sept. 1972.
- 27. J.A.T.M. van den Homberg, "A Universal 0.03-mm² One-Pin Crystal Oscillator in CMOS", IEEE J. Solid-State Circuits, vol. 34, pp. 956-961, July 1999.

Index

amplitude detector, 73 increase of, 62, 106 limitation, 27, 28, 58 of drain voltage, 94, 184 of gate voltage, 58, 61, 62, 65 of oscillation, 5, 61, 62, 65, 94, 146, 162 regulation, 73, 107, 122, 162 stability, 116, 117 regulator, 108 curve, 110, 121, 163 simplified, 117 stability, 5 bias current, 61, 145 critical, 61, 64, 108, 161 start-up, 109 bilinear function, 11, 43, 167 capacitance gate oxide, 37 load, 48 motional. 8 parallel, 8, 14 parasitic, 8 capacitive attenuator, 62 circuit impedance, 196 coupling, 22, 138 load, 123

transducer. 18 channel length modulation, 39 voltage, 39 channel noise excess factor, 40 circuit impedance, 24, 43, 70, 165, 166, 191 for the fundamental, 24, 31, 55, 69 locus of, 24, 26, 56, 125 locus of, 43, 46, 52, 56, 134, 141, 158, 160, 162, 167, 170, 172, 187, 188, 191 real and imaginary parts, 167, 170, 172 coupling coefficient, 9, 18 electromechanical, 9 factor, 14, 18, 21 critical condition for oscillation, 27, 43 current, 108, 126, 161 minimum, 61, 64, 147, 194 supply voltage, 125, 126 transconductance, 44, 49, 59, 139, 143, 169, 170, 194 current bias, 65 specific, 37, 162 cyclostationary noise, 33, 79, 81, 149, 151, 154, 157, 177, 179, 181

design
example, 89, 100, 117 process, 84 differential pair, 137 distortion of drain current, 174 of gate voltage, 57 drain current, 36 forward component of. 36 reverse component of, 36 duality, 30 dynamic behavior of bias, 95, 97 of oscillation amplitude, 97, 100 electromechanical coupling, 9 transducing property, 16 electrostatic transducer, 18 energy dissipation, 34 exchange of, 24, 34 kinetic, 15 mechanical, 7, 15, 68, 148 of oscillation, 33 potential, 15 thermal, 30 equivalent circuit of series resonance oscillator, 164 for small signal, 164 of parallel resonance oscillator, 140 for small signal, 140 of Pierce oscillator, 42 for small signal, 42 of quartz resonator, 8, 10 figure of merit, 18–20, 22, 47 of dipole resonator, 14 of loaded dipole resonator, 139 of resonator, 10, 14 frequency adjustment, 54 parallel resonance, 11-13 pulling, 10 resonant, 8, 16, 138 series resonance, 11-13

stability, 69 frequency pulling, 54, 139 at critical condition, 27, 44, 48, 142, 168, 171, 194 at stable oscillation, 26, 57 effect of losses on, 53 fundamental component of control voltage, 173, 174 of drain current, 59, 60, 63 of output current, 146, 147 of voltage, 24, 55 impedance motional, 8, 10 parallel, 11, 139 locus of, 11, 139 impulse sensitivity function (ISF), 33, 34, 79, 81-83, 152, 153, 180, 182 inversion coefficient. 37 at bias current, 146 at critical current, 63, 174 strong, 37, 38 weak, 37, 38 linear analysis, 42, 55, 139, 144, 165, 172, 190, 193 approximation, 27 circuit, 27 noise, 31, 33, 150, 178 function, 103 impedance, 10 range of operation, 27 resistive element, 102 load capacitance, 48 resistance, 188

resistor, 165

capacitor, 46

effect of, 52, 54, 75, 143

on frequency pulling, 53

circuit, 46, 51, 55, 84, 139

losses, 43, 163

lossless

mechanical energy of oscillation, 15, 68, 148 power dissipation, 15, 68, 148 MEM resonators, 18, 22 mode activity, 72 contour. 17 flexural, 16 fundamental. 10 of oscillation, 7 overtone, 10 thickness, 17 torsional, 17 unwanted, 71, 128 wanted, 10 modulation index of current, 173, 174, 180 of differential pair, 146 of gate voltage, 81 MOS transistor drain current, 36 EKV model, 36, 40, 55 intrinsic voltage gain, 39 saturation, 37 slope factor, 37 specific current, 37 threshold voltage, 37, 94 transfer function, 58 transfer parameter, 37 motional capacitance, 8 current, 9, 15 impedance, 8, 24, 30, 41, 68 locus of, 43, 141 inductance, 8 resistance, 8 negative resistance, 41, 43, 44, 47, 52, 56, 137 current stable, 164 maximum, 47, 141, 142, 158, 160, 168, 191 voltage stable, 138 noise channel noise, 39

cyclostationary, 33, 79, 81, 149, 151, 154, 157, 177, 179, 181 excess factor, 31, 77, 78, 80, 83, 151, 152, 154, 195 flicker, 35, 81-83, 154, 157, 181, 183 model, 40 of bias current, 83 phase noise, 31, 35, 36, 77, 84, 149, 157, 177, 183 thermal. 35 white, 34, 35, 77-79, 81, 150, 154, 178.180 nonlinear analysis, 55, 77, 144, 148, 172, 177 effects, 25, 55, 65, 69, 176, 189 simulation of, 56, 125, 176 example, 55 transfer function, 58, 65 oscillation amplitude, 24, 61, 62, 65, 146 critical condition for, 27, 43 energy, 15, 33 mode of, 8, 16 unwanted, 128 parasitic, 139, 166 signal extraction, 123, 185 stable, 25, 26, 31, 59 start-up of, 29 start-up of time constant, 29, 47 oscillator applications of, 1 basics on. 4 comparison of, 194, 200 current-mode, 184 parallel resonance, 196 Pierce, 2, 41, 91, 93, 135, 195 CMOS inverter, 124, 131 grounded drain, 132, 135 grounded source, 93, 131 quartz, 1 series resonance, 197 single pin, 132, 190 symmetrical

for parallel resonance, 137, 164 for series resonance, 164, 189 van den Homberg, 190, 193, 195 parallel resonance oscillator, 137, 164, 196 phase noise, 31, 34-36, 77, 84, 149, 157, 177, 183 shift, 79-81, 150, 154, 180 stability, 5, 31, 43, 50, 138 Pierce oscillator, 2, 41, 91, 93, 135, 195 CMOS inverter, 124, 131 current-controlled, 129, 131 simulation, 125 grounded drain, 132, 135 grounded source, 93, 131 practical implementation of parallel resonance oscillator, 157, 164 of Pierce oscillators, 93, 135 of series resonance oscillator, 183, 189 of van den Homberg oscillator, 193 quality factor, 8, 24, 33, 44, 46, 53, 57, 70, 72, 77, 84, 89 quartz crystal, 15 production, 2 quartz resonator, 7 cut AT, 17 CT, 17 GT, 17 equivalent circuit, 8 resonant frequency of, 8 types of, 15 resistor elimination, 120 implementation, 102

load, 165 resonance parallel, 11, 138 series. 11 resonant circuit parallel, 30 series. 8. 30 resonator dipole, 14 mechanical, 7 MEM, 18, 21, 22 quartz, 7 saturation drain voltage, 94 of MOS transistor, 37 series resonance oscillator, 164, 189, 197 strong inversion, 37, 63, 80, 82, 94, 146, 152 strict, 66, 88, 94, 146 thermodynamic voltage, 37 transconductance amplifier, 190 critical, 44, 49, 52, 59, 139, 143, 169, 170, 194 drain transconductance, 38 for the fundamental frequency, 59, 67, 146 gate transconductance, 38 in saturation, 39 limit for negative resistance, 167, 189 maximum, 49 optimum, 43, 46, 169 source transconductance, 38 van den Homberg oscillator, 190, 193, 195 weak inversion, 37, 60, 62, 64, 72, 79, 81, 86, 89, 94, 146, 151, 155