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Preface

This manual describes the analog and mixed-signal aspects of the Cadence® Verilog®-AMS 
language. With Verilog-AMS, you can create and use modules that describe the high-level 
behavior and structure of analog, digital, and mixed-signal components and systems. The 
guidance given here is designed for users who are familiar with the development, design, and 
simulation of circuits and with high-level programming languages, such as C.

For information about the digital aspects of Verilog-AMS, the definitive source is IEEE 
Standard Hardware Description Language Based on the Verilog Hardware 
Description Language (IEEE Std 1364-1995), published by the IEEE. Cadence 
documents that describe digital Verilog include the NC Verilog Simulator Help and the 
Verilog-XL Reference.

The preface discusses the following:

■ Related Documents on page 20

■ Internet Mail Address on page 21

■ Typographic and Syntax Conventions on page 21
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Related Documents

For more information about Verilog-AMS and related products, consult the sources listed 
below.

■ Virtuoso AMS Designer Environment User Guide

■ Virtuoso AMS Designer Simulator User Guide

■ Virtuoso Analog Design Environment User Guide

■ Virtuoso Mixed-Signal Circuit Design Environment User Guide

■ NC-Verilog Simulator Help

■ NC-VHDL Simulator Help

■ SimVision Analysis Environment User Guide

■ Virtuoso Spectre Circuit Simulator Reference

■ Virtuoso Spectre Circuit Simulator User Guide

■ Verilog-A Debugging Tool User Guide

■ Cadence Verilog-A Language Reference

■ Cadence Hierarchy Editor User Guide

■ Component Description Format User Guide

■ IEEE Standard VHDL Language Reference Manual (Integrated with VHDL-AMS 
Changes), IEEE Std 1076.1. Available from IEEE.

■ Instance-Based View Switching Application Note

■ Cadence Library Manager User Guide

■ Signalscan Waves User Guide

■ Virtuoso Schematic Editor User Guide

■ Verilog-AMS Language Reference Manual. Available from Open Verilog 
International.

■ Verilog-XL Reference
December 2011 20 Product Version 11.1



Cadence Verilog-AMS Language Reference
Preface
Internet Mail Address

You can send product enhancement requests and report obscure problems to Customer 
Support. For current phone numbers and e-mail addresses, go to Cadence Online Support 
and click the Contact Us link on the Home page.

For help with obscure problems, please include the following in your e-mail:

■ The license server host ID

To determine what your server’s host ID is, use the Subscription Service of Cadence 
Online Support for assistance.

■ A description of the problem

■ The version of the Verilog-AMS product that you are using

The version of the Verilog-AMS product described here is 1.0.

■ Analog simulation control files, top-level modules and all included files including 
hardware design language (HDL) modules so that Customer Support can reproduce the 
problem

■ Output logs and error messages

Typographic and Syntax Conventions

Special typographical conventions are used to distinguish certain kinds of text in this 
document. The formal syntax used in this reference uses the definition operator, ::= , to 
define the more complex elements of the Verilog-AMS language in terms of less complex 
elements. 

■ Lowercase words represent syntactic categories. For example,

module_declaration

Some names begin with a part that indicates how the name is used. For example,

node_identifier

represents an identifier that is used to declare or reference a node.

■ Boldface words represent elements of the syntax that must be used exactly as 
presented. Such items include keywords, operators, and punctuation marks. For 
example,

endmodule
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■ Vertical bars indicate alternatives. You can choose to use any one of the items separated 
by the bars. For example,

attribute ::=
abstol

| access
| ddt_nature
| idt_nature
| units
| huge
| blowup
| identifier

■ Square brackets enclose optional items. For example,

input declaration ::=
input [ range ] list_of_port_identifiers ;

■ Braces enclose an item that can be repeated zero or more times. For example,

list_of_ports ::=
( port { , port } )

Code examples are displayed in constant-width font. 

/* This is an example of the font used for code.*/ 

Within the text, variables are in italic font, like this: allowed_errors.

Within the text, keywords, filenames, names of natures, and names of disciplines are set in 
constant-width font, like this: keyword, file_name, name_of_nature, 
name_of_discipline.

If a statement is too long to fit on one line, the remainder of the statement is indented on the 
next line, like this:

qgf = width*length*cfbb*(vgfs - wkf - qb/(2*cbb) - 
(vgbs - vfbb + qb/(2*cob))) + qgf_par ;

To distinguish Verilog-AMS modules from the contents of analog simulation control files, the 
latter are enclosed in boxes and include a comment line at the beginning identifying them as 
analog simulation control files.

// sample analog simulation control file
simulator lang=spectre
save top.src1:freq
save top.src1:amp
save top.src1:phase
save top.src1:voltageAsRealNumber
timeDom tran stop=1000u
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1
Modeling Concepts

This chapter introduces some important concepts basic to using the Cadence® Verilog®-AMS 
language, including

■ Verilog-AMS Language Overview on page 24

■ Describing a System on page 24

■ Analog Systems on page 25
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Verilog-AMS Language Overview

The Verilog®-AMS language lets you create and use modules that describe both the high-
level behavior and the structure of analog and mixed-signal systems and components. You 
describe the behavior of a component mathematically in terms of its ports and external 
parameters. You describe the structure of a component in terms of interconnected 
subcomponents. With the statements of Verilog-AMS, you can describe a wide range of 
systems, such as electrical, mechanical, fluid dynamic, and thermodynamic systems.

For analog aspects of the design, the simulator uses Kirchhoff’s Potential and Flow laws to 
develop a set of descriptive equations and then solves the equations with the Newton-
Raphson method. See Appendix A, “Nodal Analysis,” for additional information.

For information about the digital capabilities of Verilog-AMS, see the NC Verilog Simulator 
Help, the Verilog-XL Reference, and the IEEE Standard Hardware Description 
Language Based on the Verilog Hardware Description Language.

To introduce the algorithms underlying system simulation, the following sections describe

■ What a system is

■ How you specify the structure and behavior of a system

■ How the simulator develops a set of equations and solves them to simulate a system

Describing a System

A system is a collection of interconnected components that produces a response when acted 
upon by a stimulus. A hierarchical system is a system in which the components are also 
systems. A leaf component is a component that has no subcomponents. Each leaf 
component connects to zero or more nets. Each net connects to a signal which can traverse 
multiple levels of the hierarchy. The behavior of each component is defined in terms of the 
values of the nets to which it connects.

A signal is a hierarchical collection of nets which, because of port connections, are 
contiguous. If all the nets that make up a signal are in the discrete domain, the signal is a 
digital signal. If all the nets that make up a signal are in the continuous domain, the signal 
is an analog signal. A signal that consists of nets from both domains is called a mixed 
signal.

Similarly, a port whose connections are both analog is an analog port, a port whose 
connections are both digital is a digital port, and a port with one analog connection and one 
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digital connection is a mixed port. The components interconnect through ports and nets to 
build a hierarchy, as illustrated in the following figure.

Analog Systems

The information in the following sections applies to analog systems.

Nodes

A node is a point of physical connection between nets of continuous-time descriptions. Nodes 
obey conservation-law semantics.

Conservative Systems

A conservative system is one that obeys the laws of conservation described by Kirchhoff’s 
Potential and Flow laws. For additional information about these laws, see “Kirchhoff’s Laws” 
on page 248.

o1

o2

o3

i1

i2

X1

X2

Y1

Y2

Z1

Component

NetPort

System Terminology
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In a conservative system, each node has two values associated with it: the potential of the 
node and the flow out of the node. Each branch in a conservative system also has two 
associated values: the potential across the branch and the flow through the branch.

Reference Nodes

The potential of a single node is defined with respect to a reference node. The reference 
node, called ground in electrical systems, has a potential of zero. Any net of continuous 
discipline can be declared to be ground, and in this case, the node associated with the net is 
the global reference node in the circuit. For information about declaring a ground, see 
“Ground Nodes” on page 76.

Reference Directions

Each branch has a reference direction for the potential and flow. For example, consider the 
following schematic. With the reference direction shown, the potential in this schematic is 
positive whenever the potential of the terminal marked with a plus sign is larger than the 
potential of the terminal marked with a minus sign.

Verilog-AMS uses associated reference directions. Consequently, a positive flow is defined 
as one that enters the branch through the terminal marked with the plus sign and exits 
through the terminal marked with the minus sign.

Signal-Flow Systems

Unlike conservative systems, signal-flow systems associate only a single value with each 
node. Verilog-AMS supports signal-flow modeling.

Mixed Conservative and Signal-Flow Systems

With Verilog-AMS, you can model systems that contain a mixture of conservative nodes and 
signal-flow nodes. Verilog-AMS accommodates this mixing with semantics that can be used 
for both kinds of nodes. With Verilog-AMS you can model systems containing digital domain 
information too, so you can mix conservative analog, signal flow analog, and digital modeling 
in one mixed-signal system.

 +  -flow
potential
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Simulator Flow for Analog Systems

After you specify the structure and behavior of a system, you submit the description to the 
simulator. For analog systems, the simulator then uses Kirchhoff’s laws to develop equations 
that define the values and flows in the system. Because the equations are differential and 
nonlinear, the simulator does not solve them directly. Instead, the simulator uses an 
approximation and solves the equations iteratively at individual time points. The simulator 
controls the interval between the time points to ensure the accuracy of the approximation. 

At each time point, iteration continues until two convergence criteria are satisfied. The first 
criterion requires that the approximate solution on this iteration be close to the accepted 
solution on the previous iteration. The second criterion requires that Kirchhoff’s Flow Law be 
adequately satisfied. To indicate the required accuracy for these criteria, you specify 
tolerances. For a graphical representation of the analog iteration process, see the Simulator 
Flow for Analog Systems figure on page 28. For more details about how the simulator uses 
Kirchhoff’s laws, see “Simulating an Analog System” on page 249.
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Simulator Flow for Analog Systems
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Creating Modules

A module definition appears between the keywords module and endmodule or 
macromodule and endmodule. The following definition for a digital to analog converter 
illustrates the form of a module definition. 

See the following topics for information about creating and using modules in Cadence® 
Verilog®-AMS: 

■ Declaring Modules on page 30

■ Declaring the Module Interface on page 33

■ Specifying Supply Sensitivity Attributes on page 37

■ Defining Module Analog Behavior on page 42

■ Using Internal Nodes in Modules on page 47

■ Chapter 10, “Instantiating Modules and Primitives” 

This chapter contains detailed discussions about declaring and connecting ports and 
about instantiating modules. 

Interface declarations

module daconv(b0, b1, b2, b3, b4, b5, b6, b7, compSig);
input b0, b1, b2, b3, b4, b5, b6, b7;
output compSig;

logic b0, b1, b2, b3, b4, b5, b6, b7;
electrical compSig;

parameter real refVolt = 12.0;

analog 
begin

V(compSig) <+  (refVolt/256) *
(b0 + 2*(b1 + 2*(b2 + 2*(b3 +2*(b4 +2*
(b5 +2*(b6 +2*b7)))))));

end
endmodule

Behavioral description
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Declaring Modules

To declare a module, use this syntax.

module_declaration ::= 
module_keyword module_identifier [ ( list_of_ports ) ] ;  
[ module_items ]
endmodule 

module_keyword ::=
module

| macromodule

module_items ::=
{ module_item }

| analog_block

module_item ::= 
module_item_declaration

| parameter_override
| module_instantiation
| digital_continuous_assignment
| digital_gate_instantiation
| digital_udp_instantiation
| digital_specify_block
| digital_initial_construct
| digital_always_construct

module_item_declaration ::=
parameter_declaration

| aliasparam_declaration
| input_declaration
| output_declaration
| inout_declaration
| ground_declaration
| integer_declaration
| net_discipline_declaration
| real_declaration
| genvar_declaration
| branch_declaration
| analog_function_declaration
| digital_function_declaration
| digital_net_declaration
| digital_reg_declaration
| digital_time_declaration
| digital_realtime_declaration
| digital_event_declaration
| digital_task_declaration
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parameter_override ::=
defparam list_of_param_assignments ;

module_identifier The name of the module being declared.

list_of_ports An ordered list of the module’s ports. For details, see “Ports” on 
page 33.

module_items Declarations and definitions. 

Note: Note that you can have no more than one analog block in 
each module.

For information about Read 

Analog blocks “Defining Module Analog Behavior” on page 42

Parameter overrides “Overriding Parameter Values in Instances” on 
page 197

Module instantiation “Instantiating Verilog-AMS Modules” on page 192

Digital continuous assignments “Continuous Assignments” in the Verilog-XL 
Reference

Digital gate instantiations “Gate and Switch Declaration Syntax” in the 
Verilog-XL Reference

Digital udp instantiations “UDP Instances” in the Verilog-XL Reference

Digital specify blocks “Understanding Specify Blocks” in the Verilog-XL 
Reference

Digital initial constructs “initial Statement” in the Verilog-XL Reference

Digital always constructs “always Statement” in the Verilog-XL Reference

Parameter declarations “Parameters” on page 58

Input, output, and inout declarations “Port Direction” on page 34

Ground declarations “Ground Nodes” on page 76

Integer declarations “Integer Numbers” on page 56

Net discipline declarations “Net Disciplines” on page 74

Real declarations “Real Numbers” on page 56
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Genvar declarations “Genvars” on page 64

Branch declarations “Named Branches” on page 80

Analog function declarations “User-Defined Functions” on page 187

Digital function declarations “Functions and Function Calling” in the 
Verilog-XL Reference

Digital net declarations “Net and Register Declaration Syntax” in the 
Verilog-XL Reference

Digital reg declarations “Net and Register Declaration Syntax” in the 
Verilog-XL Reference

Digital time declarations “Integers and Times” in the Verilog-XL 
Reference

Digital realtime declarations “Real Numbers” in the Verilog-XL Reference 

Note: The simulator evaluates realtime and real 
declarations identically.

Digital event declarations “Event Control” in the Verilog-XL Reference

Digital task declarations “Tasks and Task Enabling” in the Verilog-XL 
Reference

For information about Read 
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Declaring the Module Interface

Use the module interface declarations to define 

■ Name of the module 

■ Ports of the module 

■ Parameters of the module 

For example, the module interface declaration

module res(p, n) ;
inout p, n ;
electrical p, n ;
parameter real r = 0 ;

declares a module named res, ports named p and n, and a parameter named r. 

Module Name

To define the name for a module, put an identifier after the keyword module or 
macromodule. Ensure that the new module name is unique among other module, 
schematic, subcircuit, and model names, and any built-in Spectre® circuit simulator 
primitives. If your module has any ports, list them in parentheses following the identifier.

Ports

To declare the ports used in a module, use port declarations. To specify the type and direction 
of a port, use the related declarations described in this section.

list_of_ports ::= 
port { , port } 

port ::= 
port_expression

| .port identifier( [port_expression ])

port_expression ::=
port_identifier

| port_identifier [ constant_expression ] 
| port_identifier [ constant_range ] 

constant_range ::=
msb_constant_expression : lsb_constant_expression

For example, these code fragments illustrate possible port declarations.

module exam1 ; // Defines no ports

module exam2 (p, n) ; // Defines 2 simple ports
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Normally, you cannot use Q as the name of a port. However, if you need to use Q as a port 
name, you can use the special text macro identifier, VAMS_ELEC_DIS_ONLY, as follows.

`define VAMS_ELEC_DIS_ONLY
`include "disciplines.vams"

(module 1, which uses a port called Q)
(module 2, which use a port called Q)
...

`include "disciplines.vams"

(module 3, which uses an access function called Q)
(module 4, which uses an access function called Q)
...

This macro undefines the sections in the disciplines.vams file that use Q, making it 
available for you to use as a port name. Consequently, when you need to use Q as an access 
function again, you need to include the disciplines.vams file again.

module exam5 (.b(p), .d(n)) // Defines the ports b and d, which are
// connected to the signals p and n,
// respectively

Port Type

To declare the type of a port, use a net discipline declaration in the body of the module. If you 
do not declare the type of a port, you can use the port only in a structural description. In other 
words, you can pass the port to module instances, but you cannot access the port in a 
behavioral description. Net discipline declarations are described in “Net Disciplines” on 
page 74.

Ports declared as vectors must use identical ranges for the port type and port direction 
declarations.

Port Direction

You must declare the port direction for every port in the list of ports section of the module 
declaration. To declare the direction of a port, use one of the following three syntaxes.

input_declaration ::=
input [ range ] list_of_port_identifiers ;

output_declaration ::=
output [ range ] list_of_port_identifiers ;

inout_declaration ::=
inout [ range ] list_of_port_identifiers ;

range ::=
[ constant_expression : constant_expression ]
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input Declares that the signals on the port cannot be set, although they 
can be used in expressions.

output Declares that the signals on the port can be set, but they cannot 
be used in expressions.

inout Declares that the port is bidirectional. The signals on the port can 
be both set and used in expressions. inout is the default port 
direction.

Ports declared as vectors must use identical ranges for the port type and port direction 
declarations.

In this release of Verilog-AMS, 

■ The compiler does not enforce correct application of input, output, and inout.

■ You cannot use parameters to define constant_expression.

Port Declaration Example

Module daconv, described below, has nine ports. The compSig port is declared with a port 
direction of output, so that its value can be set. The other ports are declared with a port 
direction of input, so that their values can be read. The compSig port is declared as an 
analog port of the electrical discipline.

module daconv(b0, b1, b2, b3, b4, b5, b6, b7, compSig); // Declares nine ports
input b0, b1, b2, b3, b4, b5, b6, b7; // Declares ports as input
output compSig; // Declares port as output

logic b0, b1, b2, b3, b4, b5, b6, b7; // Declares type of digital ports
electrical compSig; // Declares type of analog port

parameter real refVolt = 12.0;

analog 
begin

V(compSig) <+  (refVolt/256) *(b0 + 2*(b1 + 2*(b2 + 2*(b3 +2*(b4 +2*
(b5 +2*(b6 +2*b7)))))));

end
endmodule
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Parameters

With parameter (and dynamicparam) declarations, you specify parameters that can be 
changed when a module is used as an instance in a design. Using parameters lets you 
customize each instance. 

For each parameter, you must specify a default value. You can also specify an optional type 
and an optional valid range. The following example illustrates how to declare parameters and 
variables in a module.

Module sdiode has a parameter, area, that defaults to 1. If area is not specified for an 
instance, it receives a value of 1. Similarly, the other parameters, is, n, cjo, m, phi, and tt, 
have specified default values too.

Module sdiode also defines three local variables: vd, id, and qd. 

For more information about parameter declarations, see “Parameters” on page 58.

Global module scope 
declarations and 
behavioral description

Module interface 
declarations

module sdiode(np, nn);
inout np, nn;
electrical np, nn;
parameter real area=1;
parameter real is=1e-14;
parameter real n=2;
parameter real cjo=0;
parameter real m=0.5;
parameter real phi=0.7;
parameter real tt=1p;

real vd, id, qd;

analog begin
vd = V(np, nn);
id = area*is*(exp(vd/(n*$vt)) - 1);
qd = tt*id + area*vd

*cjo/pow((1 - vd/phi), m);
I(np, nn) <+ id + ddt(qd);

end

endmodule

Parameters

Local variables
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Specifying Supply Sensitivity Attributes

Add the groundSensitivity and supplySensitivity attributes to a port or pin 
definition in a mattributesodule to make a connect module sensitive to supplies in the module 
to which it connects. 

sensitivity_attribute ::= 
(* [ integer groundSensitivity = "gSig_sensitive_to" ; ] 

[ integer supplySensitivity = "sSig_sensitive_to" ; ] *)

gSig_sensitive_to, sSig_sensitive_to 
Names of signals, typically global signals, to which you want a 
connect module to be sensitive. 

When you specify a supplySensitivity or a groundSensitivity attribute on a signal 
in a connect module, the declared signal (in the connect module) takes on the value of the 
supplySensitivity or groundSensitivity signal you specify. 

When you specify a supplySensitivity or the groundSensitivity attribute (or both) 
on a signal in an ordinary module, the value of the supplySensitivity or 
groundSensitivity signal overrides the value of the signal of the same name in the 
connect module to which the ordinary module connects. 

For example, you might use the groundSensitivity attribute in a connect module (such 
as l_to_e, below) as follows: 

connectmodule l_to_e(dval, aval);
...
electrical (* integer groundSensitivity = "global_pwr.pow1" ; *) gnd ;
...

endmodule

The default value of gnd in this connect module is the value of signal global_pwr.pow1. 
If module l_to_e connects to digital port d in ordinary module sample (below), the value of 
global_pwr.pow5, which appears in the groundSensitivity attribute for d, overrides 
the default value of gnd in the connect module. 

module sample(d);
output (* integer groundSensitivity = "global_pwr.pow5" ; *) d ;
...

endmodule

If port d does not have a groundSensitivity attribute, the value of gnd in the connect 
module retains its default value of global_pwr.pow1: 

module sample(d);
output d ;
...

endmodule
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Making a connect module sensitive to supplies in the connected digital port is more likely to 
produce the behavior you expect because: 

■ When a connect module converts analog signals to digital values, the decision to output 
a one or a zero depends on the relationship between the analog signal and a threshold 
value. The software determines the threshold value based on the supply values in the 
component that includes the connected digital port. 

■ When a connect module converts digital values to analog signals, the connect module 
needs to determine what voltage to produce for each digital input value. Again, that 
voltage depends on the supplies in the component that includes the connected digital 
port. 

The following basic principles apply to using these sensitivity attributes: 

■ The software inserts connect modules between a digital port and an analog net. When 
you use the groundSensitivity and supplySensitivity attributes, you make the 
connect module sensitive to the signals on the digital port, regardless of the port 
direction. 

■ There are two steps involved in establishing ground or supply sensitivity: Specifying the 
necessary attributes in the connect module and adding the corresponding attributes to 
the connected digital port definition in the ordinary module. 

Note: If the connected digital port is part of a schematic, you define the attributes on the 
connected pin on the schematic. 

■ You must use detailed discipline resolution or the sensitivity attributes have no effect. 

See the following topics for more information: 

■ Using the Sensitivity Attributes in a Chain of Buffers on page 39 

■ Using Sensitivity Attributes with Inherited Connections on page 41
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Using the Sensitivity Attributes in a Chain of Buffers

Consider a design containing three buffers, such as the following, where buffers ba1 and ba3 
are analog blocks with analog input and output pins, and buffer bd2 is a digital block with logic 
input and output pins: 

During elaboration, the software inserts connect modules across net n1 and the digital input 
port of buffer bd2, and across the digital output port of buffer bd2 and net n2. 

If you know this design has an operating voltage of 5.0 Volts, you might write an analog-to-
digital connect module with hard-coded thresholds, such as the following: 

‘include "disciplines.vams"
connectmodule elect2logic(aVal, dVal);

output dVal;
input aVal;
logic dVal;
electrical aVal;
reg temp;
always begin // Digital, do this always 
if(V(aVal) >  3.0)

#1 temp = 1; // Delay 1 time unit, drive output 1
else if (V(aVal) < 2.0)

#1 temp = 0; // or drive output 0, depending on aVal 
else

#1 temp = 1’bx;
end
assign dVal = temp; // Bind register to digital output 

endmodule

However, if the design can operate at 3.0 or 5.0 Volts depending on the supplies, you might 
use the supplySensitivity and groundSensitivity attributes to write a connect 
module that is sensitive to the supplies, such as the following: 

// Supply-sensitive connect module 
‘include "disciplines.vams"
connectmodule elect2logic(aVal, dVal);

output dVal;
input aVal;
logic dVal;
electrical aVal;
electrical (* integer supplySensitivity = "cds_globals.\\vdd! " ; *) \vdd! ;
electrical (* integer groundSensitivity = "cds_globals.\\vss! " ; *) \vss! ;
reg temp;
always begin // Do this always 
if(V(aVal) >  ((V(\vdd! ) - V(\vss! ))/2 + 0.5 ))

#1 temp = 1; // Delay 1 time unit, drive output 1 

ba3ba1
n1

bd2
n2

elect2logic
connect module

logic2elect
connect module

analog
block

analog
block
December 2011 39 Product Version 11.1



Cadence Verilog-AMS Language Reference
Creating Modules
else if (V(aVal) < ((V(\vdd! ) - V(\vss! ))/2 -0.5))
#1 temp = 0; // or drive output 0, depending on aVal 

else
#1 temp = 1’bx;

end
assign dVal = temp; // Bind register to digital output 

endmodule

The threshold values are functions of the supply and ground values. 

To specify the digital ports to which the connect module is sensitive, add 
groundSensitivity and supplySensitivity attributes to the connected digital port. In 
our example, the software inserts a connect module both at the input and at the output port 
of buffer bd2, so in the supply-sensitive module definition, you would add both sensitivity 
attributes to both ports of the buffer, like this: 

module bux2_5V (Z,A);
input

(* integer supplySensitivity="\\vdd! ";
integer groundSensitivity="\\vss! "; *)

A ;
output

(* integer supplySensitivity="\\vdd! ";
integer groundSensitivity="\\vss! "; *)

Z;
wire \vss! ;
wire \vdd! ;
analog begin

V(\vss! ) <+ 0.0 ;
V(\vdd! ) <+ 5.0 ;

end
buf #1 (Z,A);
specify

specparam
t_A_Z_rise = 0.1,
t_A_Z_fall = 0.1;
// Delays
(A +=> Z) = (t_A_Z_rise,t_A_Z_fall);

endspecify
endmodule
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Using Sensitivity Attributes with Inherited Connections

An inherited connection is a net expression associated with either a signal or a terminal. You 
use inherited connections to override specific global names in your design. For more 
information, see “Inherited Connections” in the Virtuoso Schematic Editor L User Guide. 

You can use inherited connections to set the values of signals on ports and use the supply 
sensitivity attributes to make a connect module sensitive to those values. By doing so, you 
can switch between different power supplies (that you set by inherited connections) and have 
connect modules that behave differently depending on the value of the supplies. 

For example, here is a buffer module with both supply sensitivity attributes on both the input 
and the output ports (A and Z). The signal name for each of the sensitivity attributes is an 
inherited connection (\\vdd! for supplySensitivity and \\vss! for 
groundSensitivity). The inh_conn_prop_name and inh_conn_def_value 
attributes on wires \vss! and \vdd! set the value of the inherited connections: 

module bux2 (Z,A);
input

(* integer supplySensitivity="\\vdd! ";
integer groundSensitivity="\\vss! "; *)

A ;
output

(* integer supplySensitivity="\\vdd! ";
integer groundSensitivity="\\vss! "; *)

Z;
wire

(* integer inh_conn_prop_name="lSup"; // if set, specifies value for \vss! 
integer inh_conn_def_value="cds_globals.\\vss! "; *)

\vss! ; // \vss! has default value cds_globals.\\vss!
wire

(* integer inh_conn_prop_name="hSup"; // if set, specifies value for \vdd! 
integer inh_conn_def_value="cds_globals.\\vdd! "; *)

\vdd! ; // \vdd! has default value cds_globals.\\vdd!
buf #1 (Z,A);
‘ifdef functional
‘else
specify

specparam
t_A_Z_rise = 0.1,
t_A_Z_fall = 0.1;
// Delays
(A +=> Z) = (t_A_Z_rise,t_A_Z_fall);

endspecify
‘endif
endmodule

You can compare this buffer module with module bux2_5V in the previous section, where 
the \vss! and \vdd! net values do not depend on inherited connections: 

wire \vss! ;
wire \vdd! ;
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The supply-sensitive connect module is the same as the one that appears in the previous 
section. 

Defining Module Analog Behavior

To define the analog (continuous time) behavioral characteristics of a module, you create an 
analog block. The simulator evaluates all the analog blocks in the various modules of a design 
as though the blocks are executing concurrently.

analog_block ::= 
analog analog_statement

analog_statement ::= 
analog_seq_block 

|analog_branch_contribution 
|analog_indirect_branch_assignment 
|analog_procedural_assignment 
|analog_conditional_statement 
|analog_for_statement 
|analog_case_statement 
|analog_event_controlled_statement 
|system_task_enable 
|statement 

statement ::= 
seq_block 

|procedural_assignment 
|conditional_statement 
|loop_statement 
|case_statement

analog_statement can appear only within the analog block.

statement can appear anywhere within the module, including within the analog block.

See “Sequential Block Statement” on page 87 for more information about 
analog_seq_block and seq_block. 

In the analog block, you can code contribution statements that define relationships among 
analog signals in the module. For example, consider the following contribution statements:

V(n1, n2) <+ expression;
I(n1, n2) <+ expression;

where V(n1,n2) and I(n1,n2) represent potential and flow sources, respectively. You can 
define expression to be any combination of linear, nonlinear, algebraic, or differential 
expressions involving module signals, constants, and parameters.

The modules you write can contain at most a single analog block. When you use an analog 
block, you must place it after the interface declarations and local declarations.
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Because the description in the analog block is a continuous-time behavioral description, you 
must not use blocking event control statements, such as blocking delays, events, or waits, 
within the block.

The following module includes an analog block and initial and always blocks. These blocks 
work together within a single module to define an analog to digital converter.

module adc;
electrical vin;
parameter real a_amp = 5; // This parameter is used by analog.
parameter real d_volt_range = 5; // This parameter is used by digital.
real a_freq, a_phase;
real d_half_range;
real d_vin;
real a_vin
real d_vin_save;

reg [7:0] b;

integer ii;
integer d_fd;

initial begin
        b = 0;
        d_half_range = d_volt_range / 2;
        d_fd = $fopen("ms6.dat");
        $fstrobe(d_fd,"time\tb\td_vin\ta_vin\n");
        d_vin = 0;
end

always begin
        #1;
        d_vin =  V(vin); // Probes the voltage.
        d_vin_save = d_vin;

        for (ii=0; ii < 8; ii = ii + 1) begin // Converts the voltage into
// an 8-bit register.

                if (d_vin > d_half_range) begin
                        b[ii] = 1;
                d_vin = d_vin -  d_half_range;
                end else b[ii] = 0;
                d_vin = d_vin * 2;
        end

// Writes the digital output to a file.
        $fstrobe(d_fd,"%g\t%b\t%g\t%g",$abstime, b, d_vin_save, a_vin);
end

analog begin
      @(initial_step) begin
                a_freq = 10K;
      end

      // input
      a_phase = 2*‘M_PI*a_freq*$abstime;
      a_vin = a_amp*sin(a_phase);
      V(vin) <+ a_amp*sin(a_phase); // Creates a sinusoidal voltage source.
end

endmodule
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Defining Analog Behavior with Control Flow

You can also incorporate conditional control flow into a module. With control flow, you can 
define the behavior of a module in regions.

The following module, for example, describes a voltage deadband amplifier vdba. If the input 
voltage is greater than vin_high or less than vin_low, the amplifier is active. When the 
amplifier is active, the output is gain times the differential voltage between the input voltage 
and the edge of the deadband. When the input is in the deadband between vin_low and 
vin_high, the amplifier is quiescent and the output voltage is zero.

module vdba(in, out);
input in ;
output out ;
electrical in, out ;
parameter real vin_low = -2.0 ;
parameter real vin_high = 2.0 ;
parameter real gain = 1 from (0:inf) ;

analog begin
if (V(in) >= vin_high) begin

V(out) <+ gain*(V(in) - vin_high) ;
end else if (V(in) <= vin_low) begin

V(out) <+ gain*(V(in) - vin_low) ;
end else begin

V(out) <+ 0 ;
end

end

endmodule

slope = gain

voltage in

voltage out

vin_high

vin_low

dead band
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The following graph shows the response of the vdba module to a sinusoidal source.

Using Integration and Differentiation with Analog Signals

The relationships that you define among analog signals can include time domain 
differentiation and integration. Verilog-AMS provides a time derivative function, ddt, and two 
time integral functions, idt and idtmod, that you can use to define such relationships. For 
example, you might write a behavioral description for an inductor as follows.

module induc(p, n);
inout p, n;
electrical p, n;
parameter real L = 0;

analog
V(p, n) <+ ddt(L * I(p, n)) ;

endmodule

In module induc, the voltage across the external ports of the component is defined as equal 
to the time derivative of L times the current flowing between the ports.

To define a higher order derivative, you must use an internal node or signal. For example, 
module diff_2 defines internal node diff, and sets V(diff) equal to the derivative of 
V(in). Then the module sets V(out) equal to the derivative of V(diff), in effect taking the 
second order derivative of V(in). 

module diff_2(in, out) ;
input in ;
output out ;
electrical in, out ;
electrical diff ; // Defines an internal node.

analog begin
V(diff) <+ ddt(V(in)) ;

0.0e+00 5.0e-06 1.0e-05 1.5e-05 2.0e-05
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V(out) <+ ddt(V(diff)) ;
end

endmodule

For time domain integration, use the idt or idtmod functions, as illustrated in module 
integrator.

module integrator(in, out) ;
input in ;
output out ;
electrical in, out ;

analog begin
V(out) <+ idt(V(in), 0) ;

end

endmodule

Module integrator sets the output voltage to the integral of the input voltage. The second 
term in the idt function is the initial condition. 

For more information on… see…

ddt “Time Derivative Operator” on page 153 

idtmod “Circular Integrator Operator” on page 155 

idt “Time Integral Operator” on page 154 
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Using Internal Nodes in Modules

Using Verilog-AMS, you can implement complex designs in a variety of different ways. For 
example, you can define behavior in modules at the leaf level and use the top-level module 
to define the structure of the system. You can also define structure within modules by defining 
internal nodes. With internal nodes, you can directly define behavior in the module, or you can 
introduce internal nodes as a means of solving higher order differential equations that define 
the network. 

Using Internal Nodes in Behavioral Definitions

Consider the following RLC circuit.

Module rlc_behav uses an internal node n1 and the ports in, ref, and out, to define 
directly the behavioral characteristics of the RLC circuit. Notice how n1 does not appear in 
the list of ports for the module.

module rlc_behav(in, out, ref) ;
inout in, out, ref ;
electrical in, out, ref ;
parameter real R=1, L=1, C=1 ;

electrical n1 ;

analog begin
V(in, n1) <+ R*I(in, n1) ;
V(n1, out) <+ L*ddt(I(n1, out)) ;
I(out, ref) <+ C*ddt(V(out, ref)) ;

end

endmodule

in out

R L

C

ref

n1
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Using Internal Nodes in Higher Order Systems 

You can also represent the RLC circuit by its governing differential equations. The transfer 
function is given by

In the time domain, this becomes

If you set

you can write

Module rlc_high_order implements these descriptions.

module rlc_high_order(in, out, ref) ;
inout in, out, ref ;
electrical in, out, ref ;
parameter real R=1, L=1, C=1 ;

electrical n1 ;

analog begin
V(n1, ref) <+ ddt(V(out, ref)) ;
V(out, ref) <+ V(in) - (R*C*V(n1) - L*ddt(V(n1))*C ;

end

endmodule

H s( ) 1

LCs2 RCs 1+ +
----------------------------------------

Vout
Vin

------------= =

Vn1 V· out=
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3
Lexical Conventions

A Cadence® Verilog®-AMS source text file is a stream of lexical tokens arranged in free 
format. For information, see, in this chapter,

■ White Space on page 50

■ Comments on page 50

■ Identifiers on page 50

■ Numbers on page 52

■ Strings on page 54

See also

■ Operators for Analog Blocks on page 95

■ The information about strings in Displaying Results on page 174

■ Verilog-AMS Keywords on page 439
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White Space

White space consists of blanks, tabs, new-line characters, and form feeds. Verilog-AMS 
ignores these characters except in strings or when they separate other tokens. For example, 
this code fragment

$strobe("bit error rate = %f%%",
100.0 * errors / bits ) ;

is syntactically identical to:

$strobe("bit error rate = %f%%",100.0*errors/bits);

Comments

In Verilog-AMS, you can designate a comment in either of two ways.

■ A one-line comment starts with the two characters // (provided they are not part of a 
string) and ends with a new-line character. Within a one-line comment, the characters /
/, /*, and */ have no special meaning. A one-line comment can begin anywhere in the 
line.

// 
// This code fragment contains four one-line comments.
parameter real vos ; // vos is the offset voltage
//

■ A block comment starts with the two characters /* (provided they are not part of a string) 
and ends with the two characters */. Within a block comment, the characters /* and /
/ have no special meaning.

/*
* This is an example of a block comment. A block
comment can continue over several lines, making it
easy to add extended comments to your code.
*/

Identifiers

You use an identifier to give a unique name to an object, such as a variable declaration or a 
module, so that the object can be referenced from other places. There are two kinds of 
identifiers: ordinary identifiers and escaped names. Both kinds are case sensitive.
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Ordinary Identifiers

The first character of an ordinary identifier must be a letter or an underscore character (_), 
but the remaining characters can be any sequence of letters, digits, dollar signs ($), and the 
underscore. Examples include

unity_gain_bandwidth
holdValue
HoldTime
_bus$2

Escaped Names

Escaped names start with the backslash character (\) and end with white space. Neither the 
backslash character nor the terminating white space is part of the identifier. Therefore, the 
escaped name \pin2 is the same as the ordinary identifier pin2.

An escaped name can include any of the printable ASCII characters (the decimal values 33 
through 126 or the hexadecimal values 21 through 7E). Examples of escaped names include

\busa+index
\-clock
\!!!error-condition!!!
\net1\\net2
\{a,b}
\a*(b+c)

Scope Rules

In Verilog-AMS, each module, task, function, analog function, and named block that you 
define creates a new scope. Within a scope, an identifier can declare only one item. This rule 
means that within a scope you cannot declare two variables with the same name, nor can you 
give an instance the same name as a node connecting that instance. 

Any object referenced from a named block must be declared in one of the following places. 

■ Within the named block

■ Within a named block or module that is higher in the branch of the name tree

To find a referenced object, the simulator first searches the local scope. If the referenced 
object is not found in the local scope, the simulator moves up the name tree, searching 
through containing named blocks until the object is found or the module boundary is reached. 
If the module boundary is reached before the object is found, the simulator issues an error.
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Numbers

Verilog-AMS supports two basic literal data types for arithmetic operations: integer numbers 
and real numbers.

Integer Numbers

The syntax for an integer constant is

integer_number ::= 
[ sign ] unsign_num

| digital_octal_number
| digital_binary_number
| digital_hex_number

sign ::= 
+ | -

unsign_num ::=  
decimal_digit { _ | decimal_digit }

decimal_digit ::= 
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

For information about digital_octal_number, digital_binary_number, and 
digital_hex_number, see the “Numbers” section in the “Lexical Conventions” chapter, of 
the Verilog-XL Reference

The simulator ignores the underscore character ( _ ), so you can use it anywhere in a decimal 
number except as the first character. Using the underscore character can make long numbers 
more legible.

Examples of integer constants include

277195000
277_195_000 //Same as the previous number
-634 //A negative number
0005
’b100x11z0 //A binary number with unknowns

Real Numbers

The syntax for a real constant is

real_number ::=
[ sign ] unsign_num .unsign_num

| [ sign ] unsign_num [.unsign_num] e [ sign ] unsign_num
| [ sign ] unsign_num [.unsign_num] E [ sign ] unsign_num
| [ sign ] unsign_num [.unsign_num ] unit_letter

sign ::= 
+ | -
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unsign_num ::=  
decimal_digit { _ | decimal_digit }

decimal_digit ::= 
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

unit_letter ::=
T | G | M | K | k | m | u | n | p | f | a

unit_letter represents one of the scale factors listed in the following table. If you use 
unit_letter, you must not have any white space between the number and the letter. Be 
certain that you use the correct case for the unit_letter.

The simulator ignores the underscore character ( _ ), so you can use it anywhere in a real 
number except as the first character. Using the underscore character can make long numbers 
more legible.

Examples of real constants include

2.5K // 2500
1e-6 // 0.000001
-9.6e9
-1e-4
0.1u
50p // 50 * 10e-12
1.2G // 1.2 * 10e9
213_116.223_642

For information on converting real numbers to integer numbers, see “Converting Real 
Numbers to Integer Numbers” on page 57.

unit_letter Scale factor unit_letter Scale factor

T = 1012 k = 103

G = 109 m = 10-3

M = 106 u = 10-6

K = 103 n = 10-9

p = 10-12

f = 10-15

a = 10-18
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Strings

A string is a sequence of characters enclosed by quotation marks and contained on a single 
line. Strings used as operands in expressions and assignments are treated as unsigned 
integer constants represented by a sequence of 8-bit ASCII values, with one 8-bit ASCII value 
representing one character.

String variables, which are not supported in analog contexts, are variables of reg type with 
width equal to the number of characters in the string multiplied by 8. 

For example, to store the 12 characters of the string “Hello world!” requires a reg 8 * 12, or 
96 bits wide.

reg [8*12:1] stringvar ;
initial begin

stringvar = “Hello world!” ;
end

When a variable is larger than required to hold a value being assigned, the contents on the 
left are padded with zeros after the assignment. This is consistent with the padding that 
occurs during the assignment of nonstring values. If a string is larger than the destination 
string variable, the string is truncated to the left, and the leftmost characters are lost.

Strings can be manipulated using the Verilog HDL operators. The value being manipulated 
by the operator is the sequence of 8-bit ASCII values. For example,

module string_test; 
reg [8*14:1] stringvar;
initial begin
stringvar = "Hello world";
$display("%s is stored as %h", stringvar,stringvar);
stringvar = {stringvar,"!!!"}; 
$display("%s is stored as %h", stringvar,stringvar);
end
endmodule

The output is

Hello world is stored as 00000048656c6c6f20776f726c64
Hello world!!! is stored as 48656c6c6f20776f726c64212121
December 2011 54 Product Version 11.1



Cadence Verilog-AMS Language Reference
4
Data Types and Objects

The Cadence® Verilog®-AMS language defines these data types and objects. For information 
about how to use them, see the indicated locations.

■ Integer Numbers on page 56

■ Real Numbers on page 56

■ Parameters on page 58

■ Dynamic Parameters on page 62

■ Local Parameters on page 64

■ Genvars on page 64

■ Natures on page 65

■ Disciplines on page 68

■ Net Disciplines on page 74

■ Ground Nodes on page 76

■ Real Nets on page 77

■ Named Branches on page 80

■ Implicit Branches on page 81

■ Digital Nets and Registers

For information about digital nets and registers, see the “Registers and Nets” section, in 
the “Data Types” chapter of the Verilog-XL Reference.
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Integer Numbers

Use the integer declaration to declare variables of type integer.

integer_declaration ::=
integer list_of_identifiers ;

list_of_identifiers ::=
var_name { , var_name}

var_name ::=
variable_identifier

| array_identifier [ range ]

range ::=
upper_limit_const_exp : lower_limit_const_exp

In Verilog-AMS, you can declare an integer number in a range at least as great as -231 
(-2,147,483,648) to 231-1 (2,147,483,647). 

To declare an array, specify the upper and lower indexes of the range. Be sure that each index 
is a constant expression that evaluates to an integer value.

integer a[1:64] ; // Declares array of 64 integers
integer b, c, d[-20:0] ; // Declares 2 integers and an array

parameter integer max_size = 15 from [1:50] ;
integer cur_vector[1:max_size] ; 
/* If the max_size parameter is not overridden, the 
previous two statements declare an array of 15 integers. */

The standard attributes for descriptions and units can be used with integer declarations. For 
example,

(* desc="index number", units="index" *) integer indx;

Although the desc and units attributes are allowed, Cadence tools, in this release, do 
nothing with the information.

Important

Integers have different default initial values depending on how they are used. Integer 
variables whose values are assigned in an analog context default to an initial value 
of zero. Integer variables whose values are assigned in a digital context default to 
an initial value of x.

Real Numbers

Use the real declaration to declare variables of type real.

real_declaration ::=
real list_of_identifiers ;
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list_of_identifiers ::=
var_name { , var_name }

var_name ::=
variable_identifier

| array_identifier [ range ]

range ::=
upper_limit_const_exp : lower_limit_const_exp

In Verilog-AMS, you can declare real numbers in a range at least as great as 10-37 to 10+37. 
To declare an array of real numbers, specify the upper and lower indexes of the range. Be 
sure that each index is a constant expression that evaluates to an integer value. 

real a[1:64] ; // Declares array of 64 reals
real b, c, d[-20:0] ; // Declares 2 reals and an array of reals

parameter integer min_size = 1, max_size = 30 ;
real cur_vector[min_size:max_size] ; 
/* If the two parameters are not overridden, the 
previous two statements declare an array of 30 reals. */

Real variables have default initial values of zero.

The standard attributes for descriptions and units can be used with real declarations. For 
example,

(* desc="gate-source capacitance", units="F" *) real cgs;

Although the desc and units attributes are allowed, Cadence tools, in this release, do 
nothing with the information.

Converting Real Numbers to Integer Numbers

Verilog-AMS converts a real number to an integer number by rounding the real number to the 
nearest integer. If the real number is equally distant from the two nearest integers, 
Verilog-AMS converts the real number to the integer farthest from zero. The following code 
fragment illustrates what happens when real numbers are assigned to integer numbers.

integer intvalA, intvalB, intvalC ;
real realvalA, realvalB, realvalC ;

realvalA = -1.7 ;
intvalA = realvalA ; // intvalA is -2

realvalB = 1.5 ;
intvalB = realvalB ; // intvalB is 2

realvalC = -1.5 ;
intvalC = realvalC ; // intvalC is -2

If either operand in an expression is real, Verilog-AMS converts the other operand to real 
before applying the operator. This conversion process can result in a loss of information.

real realvar ;
realvar = 9.0 ;
realvar = 2/3 * realvar ; // realvar is 9.0, not 6.0
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In this example, both 2 and 3 are integers, so 1 is the result of the division. Verilog-AMS 
converts 1 to 1.0 before multiplying the converted number by 9.0. 

Parameters

Use the parameter declaration to specify the parameters of a module.

parameter_declaration ::=
parameter [opt_type] list_of_param_assignments ;

opt_type ::=
real

| integer

list_of_param_assignments ::=
declarator_init {, declarator_init }

declarator_init ::=
parameter_id = constant_exp { opt_value_range }

| parameter_array_init

opt_type is described in “Specifying a Parameter Type” on page 59. Note that for parameter 
arrays, however, you must specify a type.

opt_value_range is described in “Specifying Permissible Values” on page 60.

parameter_id is the name of a parameter being declared.

param_array_init is described in “Specifying Parameter Arrays” on page 61.

As specified in the syntax, the right-hand side of each declarator_init assignment 
must be a constant expression. You can include in the constant expression only constant 
numbers and previously defined parameters or dynamic parameters.

Parameters are constants, so you cannot change the value of a parameter at runtime. 
However, you can customize module instances by changing parameter values during 
compilation. See “Overriding Parameter Values in Instances” on page 197 for more 
information.

Consider the following code fragment. The parameter superior is defined by a constant 
expression that includes the parameter subord.

parameter integer subord = 8 ;
parameter integer superior = 3 * subord ;

In this example, changing the value of subord changes the value of superior too because 
the value of superior depends on the value of subord.

The standard attributes for descriptions and units can be used with parameter declarations. 
For example,
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(* desc="Resistance", units="ohms" *) parameter real res = 1.0 from [0:inf);

Although the desc and units attributes are allowed, Cadence tools, in this release, do 
nothing with the information.

For example, to run the ahdlLib.res cell in Monte Carlo, you modify the Verilog-A model 
to be something like this:

module res(vp, vn);
inout vp, vn;
electrical vp, vn;
(* cds_inherited_parameter *) parameter real monteres = 0;
parameter real r = 1k;
localparam real r_effective = r + monteres; // nominal resistance plus

// monte-carlo mismatch effect

analog
V(vp, vn) <+ (r_effective)*I(vp, vn);

endmodule

In this case, monteres is the mismatch parameter. It must be defined in a model deck as a 
parameters statement or be defined in the design variables section of the user interface.

You also need a statistics mismatch block in your model deck that describes the 
distribution for monteres. For example:

parameters monteres=10

statistics {
mismatch {

vary monteres dist=gauss std=5
}

}

Specifying a Parameter Type

You must specify a default for each parameter you define, but the parameter type specifier is 
optional (except that you must specify a type for parameter arrays). If you omit the parameter 
type specifier, Verilog-AMS determines the parameter type from the constant expression. If 
you do specify a type, and it conflicts with the type of the constant expression, your specified 
type takes precedence. 

Implicitly declared types and explicitly declared types can make parameter values look 
different when you examine their values. For example, you create a module testtype.

module testtype;
parameter  c= {3’b000, 3’b111}, f= 3.4;
parameter integer c1 = {3’b000, 3’b111}, f1 = 3.4;
endmodule

You then use Tcl commands to examine the values:
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ncsim> describe c
c..........parameter [5:0] = 6’h07
ncsim> describe c1
c1.........parameter (integer) = 7
ncsim> describe f
f..........parameter (real) = 3.4
ncsim> describe f1
f1.........parameter (integer) = 3

These results occur because c is a 6-bit value but c1 is a 32-bit value (because it is explicitly 
declared as an integer).

The three parameter declarations in the following examples all have the same effect. The first 
example illustrates a case where the type of the expression agrees with the type specified for 
the parameter.

parameter integer rate = 13 ;

The second example omits the parameter type, so Verilog-AMS derives it from the integer 
type of the expression.

parameter rate = 13 ;

In the third example, the expression type is real, which conflicts with the specified parameter 
type. The specified type, integer, takes precedence.

parameter integer rate = 13.0

In all three cases, rate is declared as an integer parameter with the value 13.

Specifying Permissible Values

Use the optional range specification to designate permissible values for a parameter. If you 
need to, you can specify more than one range.

opt_value_range ::=
from value_range_specifier

| exclude value_range_specifier
| exclude value_constant_expression

value_range_specifier ::=
start_paren expression1 : expression2 end_paren

start_paren ::=
[

| (

end_paren ::=
]

| )

expression1 ::=
constant_expression

| -inf
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expression2 ::=
constant_expression

| inf

Ensure that the first expression in each range specifier is smaller than the second expression. 
Use a bracket, either “[” for the lower bound or “]” for the upper, to include an end point in the 
range. Use a parenthesis, either “(” for the lower bound or “)” for the upper, to exclude an end 
point from the range. To indicate the value infinity in a range, use the keyword inf. To indicate 
negative infinity, use -inf.

For example, the following declaration gives the parameter cur_val the default of -15.0. The 
range specification allows cur_val to acquire values in the range -∞ < cur_val < 0. 

parameter real maxval = 0.0 ;
parameter real cur_val = -15.0 from (-inf:maxval) ;

The following declaration

parameter integer pos_val = 30 from (0:40] ;

gives the parameter pos_val the default of 30. The range specification for pos_val allows 
it to acquire values in the range 0 < pos_val <= 40. 

In addition to defining a range of permissible values for a parameter, you can use the keyword 
exclude to define certain values as illegal. 

parameter low = 10 ;
parameter high = 20 ;
parameter integer intval = 0 from [0:inf) exclude (low:high] exclude 5 ;

In this example, both a range of values, 10 < value <= 20, and the single value 5 are defined 
as illegal for the parameter intval.

Specifying Parameter Arrays

Use the parameter array initiation part of the parameter declaration (“Parameters” on 
page 58) to specify information for parameter arrays.

parameter_array_init ::=
parameter_array_id range = constant_param_arrayinit {opt_value_range}

range ::=
[ constant_expression : constant_expression ]

constant_param_arrayinit ::= 
{ param_arrayinit_element_list }

| ‘{ param_arrayinit_element_list }
| ‘{ replicator_element_list }

param_arrayinit_element_list ::=
constant_expression { , constant_expression }

replicator_element_list ::=  
| replicator_constant_expression {constant_expression}
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parameter_array_id is the name of a parameter array being declared.

opt_value_range is described in “Specifying Permissible Values” on page 60.

replicator_constant_expression is an integer constant with a value greater than 
zero that specifies the number of times the associated constant_expression is to be 
included in the element list. 

For example, parameter arrays might be declared and used as follows:

parameter integer
IVgc_length = 4;

parameter real
I_gc[1:IVgc_length] = ‘{4{0.00}};
V_gc[1:IVgc_length] = ‘{-5.00, -1.00,  5.00, 10.00};

Parameter arrays are subject to the following restrictions:

■ The type of a parameter array must be specified in the declaration.

■ An array assigned to an instance of a module must be of the exact size of the array 
bounds of that instance.

■ If the array size is changed via a parameter assignment, the parameter array must be 
assigned an array of the new size from the same module as the parameter assignment 
that changed the parameter array size.

Dynamic Parameters

Use the dynamicparam declaration to specify the parameters of a module.

parameter_declaration ::=
dynamicparam [opt_type] list_of_param_assignments ;

The use of dynamic parameters enables you to change the value of a parameter during 
simulation. It also allows you to reference global parameters without having their values 
passed down through the hierarchy. This is done by supporting OOMR parameter references 
in defparam value expressions and parameter default value expressions.

Following are some important points that must be kept in mind while using dynamic 
parameters in Verilog-AMS.

■ Dynamic parameters can be used at all places where normal parameters can be used. 
They are set exactly like normal parameters. In addition, dynamic parameters are 
evaluated as part of the normal parameter evaluation process as if they were normal 
parameters.
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■ In contrast to normal parameters, OOMR references to dynamic parameters are allowed 
in defparams.

Example:

module top();

dynamicparam myvar = 0.133;

Boo B1;

...

...

endmodule

module Boo

Foo F1;

defparam top.B1.F1.param1 = top.myvar*3; // defparam usage

endmodule

■ Although OOMR references are not allowed in parameter assignments, the same effect 
can be achieved by having a local defparam.

Example:

module Foo();

parameter param1 = 0;

defparam param1 = top.myvar*2; // equivalent to allowing defparams to default
// parameter values

endmodule

■ It is illegal for a dynamic parameter to affect design topology.

■ It is illegal for a parameter value that is dependent on dynamic parameters to affect 
design topology. A parameter is dependent on a dynamic parameter if the value of the 
dynamic parameter has an affect on the final computed value of that parameter.

■ It is illegal for a parameter value that is dependent on dynamic parameters to be 
referenced from a digital context.
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Local Parameters

Use the localparam declaration to specify the parameters of a module.

parameter_declaration ::=
localparam [opt_type] list_of_param_assignments ;

You cannot directly modify local parameters using ordered or named parameter value 
assignments or the defparam statement. 

Paramsets are subject to the following restrictions:

■ You cannot use the alter and altergroup statements when you use paramsets. 

■ You cannot store paramsets in the Cadence library.cell:view configurations (or “5x” 
configurations). 

Genvars

Use the genvar declaration to specify a list of integer-valued variables used to compose 
static expressions for use with behavioral loops.

genvar_declaration ::=
genvar genvar_identifier {, genvar_identifier}

Genvar variables can be assigned only in limited contexts, such as accessing analog signals 
within behavioral looping constructs. For example, in the following fragment, the genvar 
variable i can only be assigned within the control of the for loop. Assignments to the genvar 
variable i can consist of only expressions of static values, such as parameters, literals, and 
other genvar variables.

genvar i ;
analog begin

...
for (i = 0; i < 8; i = i + 1) begin

V(out[i]) <+ transition(value[i], td, tr) ;
end
...

end

The next example illustrates how genvar variables can be nested.

module gen_case(in,out);
input [0:1] in;
output [0:1] out;
electrical [0:1] in;
electrical [0:1] out;
genvar i, j;

analog begin
for( i=1 ; i<0 || i <= 4; i = i + 1 ) begin

for( j = 0 ; j < 4 ; j = j + 1 ) begin
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$strobe("%d %d", j, i);
end

end

for( j = 0; j < 2; j = j + 1 ) begin
V(out[j], in[j]) <+ I(out[j], in[j]);

end
end

endmodule

A genvar expression is an expression that consists of only literals and genvar variables. You 
can also use the $param_given function in genvar expressions.

Natures

Use the nature declaration to define a collection of attributes as a nature. The attributes of a 
nature characterize the analog quantities that are solved for during a simulation. Attributes 
define the units (such as meter, gram, and newton), access symbols and tolerances 
associated with an analog quantity, and can define other characteristics as well. After you 
define a nature, you can use it as part of the definition of disciplines and other natures.

nature_declaration ::=
nature nature_name
[ nature_descriptions ]
endnature

nature_name ::=
nature_identifier

nature_descriptions ::=
nature_description

| nature_description nature_descriptions

nature_description ::=
attribute = constant_expression ;

attribute ::=
abstol

| access
| ddt_nature
| idt_nature
| units
| identifier
| Cadence_specific_attribute

Cadence_specific_attribute ::=
huge

| blowup
| maxdelta

Each of your nature declarations must

■ Be named with a unique identifier

■ Include all the required attributes listed in Table 4-3 on page 67.

■ Be declared at the top level
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This requirement means that you cannot nest nature declarations inside other nature, 
discipline, or module declarations.

The Verilog-AMS language specification allows you to define a nature in two ways. One way 
is to define the nature directly by describing its attributes. A nature defined in this way is a 
base nature, one that is not derived from another already declared nature or discipline.

The other way you can define a nature is to derive it from another nature or a discipline. In 
this case, the new nature is called a derived nature.

Note: This release of Verilog-AMS does not support derived natures. 

Declaring a Base Nature

To declare a base nature, you define the attributes of the nature. For example, the following 
code declares the nature current by specifying five attributes. As required by the syntax, 
the expression associated with each attribute must be a constant expression.

nature Mycurrent
units = "A" ;
access = I ;
idt_nature = charge ;
abstol = 1e-12 ;
huge = 1e6 ;

endnature 

Verilog-AMS provides the predefined attributes described in the “Predefined Attributes” table. 
Cadence provides the additional attributes described in Table 4-2 on page 67. You can also 
declare user-defined attributes by declaring them just as you declare the predefined 
attributes. The Cadence AMS Designer simulator ignores user-defined attributes, but other 
simulators might recognize them. When you code user-defined attributes, be certain that the 
name of each attribute is unique in the nature you are defining. 

The following table describes the predefined attributes.

Table 4-1  Predefined Attributes

Attribute Description 

abstol Specifies a tolerance measure used by the simulator to determine when 
potential or flow calculations have converged. abstol specifies the 
maximum negligible value for signals associated with the nature. For 
more information, see “Convergence” on page 249.
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The next table describes the Cadence-specific attributes.

The next table specifies the requirements for the predefined and Cadence-specific attributes.

access Identifies the name of the access function for this nature. When this 
nature is bound to a potential value, access is the access function for 
the potential. Similarly, when this nature is bound to a flow value, 
access is the access function for the flow. Each access function must 
have a unique name. 

units Specifies the units to be used for the value accessed by the access 
function.

idt_nature Specifies a nature to apply when the idt or idtmod operators are used. 

Note: This release of Verilog-AMS ignores this attribute.

ddt_nature Specifies a nature to apply when the ddt operator is used. 

Note: This release of Verilog-AMS ignores this attribute.

Table 4-2  Cadence-Specific Attributes

Attribute Description 

huge Specifies the maximum change in signal value allowed during a single 
iteration. The simulator uses huge to facilitate convergence when signal 
values are very large. Default: 45.036e06

blowup Specifies the maximum allowed value for signals associated with the 
nature. If the signal exceeds this value, the simulator reports an error 
and stops running. Default: 1.0e09

maxdelta Specifies the maximum change allowed on a Newton-Raphson iteration. 
Default: 0.3

Table 4-3  Attribute Requirements

Attribute Required or optional? The constant expression must be 

abstol Required A real value

access Required for all base natures An identifier

Table 4-1  Predefined Attributes, continued

Attribute Description 
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Consider the following code fragment, which declares two base natures. 

nature Charge
abstol = 1e-14 ;
access = Q ;
units = "coul" ;
blowup = 1e8 ;

endnature

nature Current
abstol = 1e-12 ;
access = I ;
units = "A" ;

endnature

Both nature declarations specify all the required attributes: abstol, access, and units. In 
each case, abstol is assigned a real value, access is assigned an identifier, and units is 
assigned a string. 

The Charge declaration includes an optional Cadence-specific attribute called blowup that 
ends the simulation if the charge exceeds the specified value. 

Disciplines

Use the discipline declaration to specify the characteristics of a discipline. You can then use 
the discipline to declare nets and regs. You can also associate disciplines with ports, as 
discussed in Chapter 11, “Mixed-Signal Aspects of Verilog-AMS.” Cadence provides 
definitions of many commonly used disciplines in the disciplines.vams file installed in 
your_install_dir/tools/spectre/etc/ahdl.

discipline_declaration ::=
discipline discipline_identifier

units Required for all base natures A string

idt_nature Optional The name of a nature defined 
elsewhere

ddt_nature Optional The name of a nature defined 
elsewhere

huge Optional A real value

blowup Optional A real value

maxdelta Optional A real value

Table 4-3  Attribute Requirements

Attribute Required or optional? The constant expression must be 
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[ discipline_description { discipline_description } ]
enddiscipline

discipline_description ::=
nature_binding

| domain_binding

nature_binding ::=
potential nature_identifier ;

| flow nature_identifier ;

domain_binding ::=
domain continuous ;

| domain discrete ;

You must declare a discipline at the top level. In other words, you cannot nest a discipline 
declaration inside other discipline, nature, or module declarations. Discipline identifiers have 
global scope, so you can use discipline identifiers to associate nets with disciplines (declare 
nets) inside any module.

Binding Natures with Potential and Flow

The disciplines that you declare can bind

■ One nature with potential

■ One nature with potential and a different nature with flow

■ Nothing with either potential or flow

A declaration of this latter form defines an empty discipline.

The following examples illustrate each of these forms.

The first example defines a single binding, one between potential and the nature Voltage. 
A discipline with a single binding is called a signal-flow discipline.

discipline voltage
potential Voltage ; // A signal-flow discipline must be bound to potential.

enddiscipline

The next declaration, for the electrical discipline, defines two bindings. Such a 
declaration is called a conservative discipline.

discipline electrical
potential Voltage ;
flow Current ;

enddiscipline

When you define a conservative discipline, you must be sure that the nature bound to 
potential is different from the nature bound to flow.
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The third declaration defines an empty discipline. If you do not explicitly specify a domain for 
an empty discipline, the domain is determined by the connectivity of the net.

discipline neutral
enddiscipline

discipline interconnect
domain continuous

enddiscipline

In addition to declaring empty disciplines, you can also use a Verilog-AMS predefined empty 
discipline called wire. 

Important

A wire in Verilog-AMS has no specified domain, so do not assume that it is digital.

Use an empty discipline when you want to let the components connected to a net determine 
which potential and flow natures are used for the net.

Binding Domains with Disciplines

The domain binding of a discipline indicates whether the signal value is an analog signal to 
be represented in continuous time or a digital signal to be represented in discrete time. The 
default domain is continuous for disciplines that are not empty. Signals in the continuous 
domain always have real values. Signals in the discrete domain can have real, integer, or 
binary (0, 1, x, or z) values.

The following example illustrates how to define a discipline for an analog signal. Because the 
default value for domain is continuous, the domain line in this example could be omitted.

discipline electrical
domain continuous ;
potential Voltage ;
flow Current ;

enddiscipline

The next example defines a discipline for a digital signal.

discipline logic
domain discrete ;

enddiscipline

Disciplines and Domains of Wires and Undeclared Nets

Nets that do not have declared disciplines are evaluated as though they have empty 
disciplines. The effective domain of such nets is determined by how the nets are used.
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■ If the net is referenced in the digital context behavioral code or if its net type is other than 
wire, then the domain of the net is assumed to be discrete.

■ If the net is bound only to ports and either has no declared net type or has a net type of 
wire, then the net has no domain binding.

Discipline Precedence

Disciplines can be declared in several ways and if more than one of these ways applies to a 
single net, discipline conflicts can arise. Verilog-AMS resolves conflicts with the following 
precedence.

Compatibility of Disciplines

Certain operations in Verilog-AMS, such as declaring branches, are allowed only if the 
disciplines involved are compatible. Apply the following rules to determine whether any two 
disciplines are compatible.

■ Any discipline is compatible with itself.

■ An empty discipline is compatible with all disciplines.

■ Disciplines with the discrete domain attribute and the same signal value type, such as 
bit, real, or integer, are compatible.

Kind of Discipline Declaration Precedence

A declaration from a module other than the module to which the net 
belongs using an out-of-module reference. For example,

module example1 ;
electrical example2.net ;

endmodule

Highest
precedence

A local declaration of a net in the module to which it belongs. For example,

module example2 ;
electrical net ;

endmodule

`default_discipline used with qualifier only.

`default_discipline logic trireg ;

`default_discipline without qualifier or scope.

`default_discipline logic ;

Lowest
precedence
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■ Disciplines with different domain attributes are incompatible.

■ Other kinds of continuous disciplines are compatible or not compatible, as determined 
by following paths through Figure 4-1 on page 72.

Figure 4-1  Analog Discipline Compatibility

Consider the following declarations.

nature Voltage
access = V ;
units = "V" ;

Start

Potential 

Potential 

Flow 

Flow
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abstol = 1u ;
endnature

nature Current
access = I ;
units = "A" ;
abstol = 1p ;

endnature

discipline emptydis
enddiscipline

discipline electrical
potential Voltage ;
flow Current ;

enddiscipline

discipline sig_flow_v
potential Voltage ;

enddiscipline

To determine whether the electrical and sig_flow_v disciplines are compatible, follow 
through the discipline compatibility chart:

1. Both electrical and sig_flow_v have defined natures for potential. Take the Yes 
branch.

2. In fact, electrical and sig_flow_v have the same nature for potential. Take the 
Yes branch.

3. electrical has a defined nature for flow, but sig_flow_v does not. Take the No 
branch to the Disciplines are compatible end point.

Now add these declarations to the previous lists.

nature Position
access = x ;
units = "m" ;
abstol = 1u ;

endnature

nature Force
access = F ;
units = "N" ;
abstol = 1n ;

endnature

discipline mechanical
potential Position ;
flow force ;

enddiscipline

The electrical and mechanical disciplines are not compatible.

1. Both disciplines have defined natures for potential. Take the Yes branch.

2. The Position nature is not the same as the Voltage nature. Take the No branch to 
the Disciplines not compatible end point. 
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Net Disciplines

Use the net discipline declaration to associate nets and regs with previously defined 
disciplines.

net_discipline_declaration ::=
discipline_identifier [range] list_of_nets ;

| wire [range] list_of_nets ;

range ::=
[ msb_expr : lsb_expr ]

list_of_nets ::=
net_type

| net_type , list_of_nets

msb_expr ::=
constant_expr

lsb_expression ::=
constant_expr

net_type ::=
net_identifier [range] [= constant_expr | constant_array_expr]

The standard attribute for descriptions can be used with net discipline declarations. For 
example,

(* desc="drain terminal" *) electrical d;

Although the desc attribute is allowed, Cadence tools, in this release, do nothing with the 
information.

The initializers specified with the equals sign in the net_type can be used only when the 
discipline_identifier is a continuous discipline. The solver uses the initializer, if 
provided, as a nodeset value for the potential of the net. A null value in the 
constant_array_expr means that no nodeset value is being specified for that element 
of the bus. The initializers cannot include out-of-module references.

A net declared without a range is called a scalar net. A net declared with a range is called a 
vector net. In this release of Verilog-AMS, you cannot use parameters to define range limits.

magnetic inductor1, inductor2 ; //Declares two scalar nets
electrical [1:10] node1 ; //Declares a vector net
wire [3:0] connect1, connect2 ; //Declares two vector nets
electrical [0:4] bus = {2.3,4.5,,6.0} ; //Declares vector net with nodeset values

The following example is illegal because a range, if defined, must be the first item after the 
discipline identifier and then applies to all of the listed net identifiers.

electrical AVDD, AVSS, BGAVSS, PD, SUB, [6:1] TRIM ; // Illegal

Note: Cadence recommends that you specify the direction of a port before you specify the 
discipline. For example, in the following example the directions for out and in are specified 
before the electrical discipline declaration.
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Consider the following declarations.

discipline emptydis
enddiscipline

module comp1 (out, in, unknown1, unknown2) ;
output out ;
input in ;
electrical out, in ;
emptydis unknown1 ; // Declared with an empty discipline
analog

V(out) <+ 2 * V(in)
endmodule

Module comp1 has four ports: out, in, unknown1, and unknown2. The module declares 
out and in as electrical ports and uses them in the analog block. The port unknown1 
is declared with an empty discipline and cannot be used in the analog block because there 
is no way to access its signals. However, unknown1 can be used in the list of ports, where it 
inherits natures from the ports of module instances that connect to it.

Because unknown2 appears in the list of ports without being declared in the body of the 
module, Verilog-AMS implicitly declares unknown2 as a scalar port with the default discipline. 
The default discipline type is wire, unless you use the `default_discipline compiler 
directive to specify a different discipline. (For more information, see “Setting a Default 
Discrete Discipline for Signals” on page 240.)

Now consider a different example.

module five_inputs( portbus );
input [0:5] portbus;
electrical [0:5] portbus;
real x;
analog begin 

generate i ( 0,4 )
V(portbus[i]) <+ 0.0;

end
endmodule

The five_inputs module uses a port bus. Only one port name, portbus, appears in the 
list of ports but inside the module portbus is defined with a range.

Modules comp1 and five_inputs illustrate the two ways you can use nets in a module.

■ You can define the ports of a module by giving a list of nets on the module statement.

■ You can describe the behavior of a module by declaring and using nets within the body 
of the module construct.

As you might expect, if you want to describe a conservative system, you must use 
conservative disciplines to define nets. If you want to describe a signal-flow or mixed 
signal-flow and conservative system, you can define nets with signal-flow disciplines.
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As a result of port connections of analog nets, a single node can be bound to a number of 
nets of different disciplines. 

Current contributions to a node that is bound only to disciplines that have only potential 
natures, are illegal. The potential of such a node is the sum of all potential contributions, but 
flow for such a node is not defined.

Nets of signal flow disciplines in modules must not be bound to inout ports and you must not 
contribute potential to input ports.

To access the abstol associated with a nets’s potential or flow natures, use the form 

net.potential.abstol

or

net.flow.abstol

For an example, see “Cross Event” on page 113.

Ground Nodes

Use the ground declaration to declare global reference nodes.

ground_declaration ::=
ground list_of_nets ;

You use the ground declaration to specify an already declared net of continuous discipline. 
The node associated with that net then becomes the global reference node in the circuit. If 
used in behavioral code, the net must be used in only the differential source and probe forms. 
This requirement means that a form like V(gnd) is illegal but a form like V(in, gnd) is legal.

For example,

module loadedsrc(out);
output out;
electrical out;
electrical gnd; // Declare a net of continuous discipline.
ground gnd; // Declare the ground.
parameter real srcval = 5.0;
resistor #(.r(10K)) r1(out,gnd);
analog begin

V(out) <+ V(in,gnd)*2; // Probe the voltage difference 
// between in and gnd.

end
endmodule
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Real Nets

Use the real net declaration to declare a data type that represents a real-valued physical 
connection between structural entities.

real_net_declaration ::=
wreal list_of_nets ;

In the following example, the real variable, stim, connects to the wreal net, in: 

module foo(in, out);
input in;
output out;
wreal in; // Declares in as a wreal net.
electrical out;
analog begin

V(out) <+ in; 
end
endmodule

module top();
real stim; // Declares stim as a real variable.
wreal wr_stim;
assign wr_stim = stim;
electrical load;
foo f1(wr_stim, load); // Connects stim to in.
always begin

#1 stim = stim + 0.1;
end 
endmodule // top

See also the following topics: 

■ Arrays of Real Nets on page 78 

■ Real Nets with More than One Driver on page 78 
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Arrays of Real Nets

To declare an array of real nets, specify the upper and lower indexes of the range. Be sure 
that each index is a constant expression that evaluates to an integer value. For example: 

wreal w[3:2]; // Declares w as a wreal array. 

The software supports full usage of part-selects of wreal arrays, including part-selects which 
refer to only a part of the full array.

Real Nets with More than One Driver

The Cadence implementation of the Verilog-AMS language supports more than one driver on 
a wreal net and the following states for wreal values: 

Note: Any wreal net that has no driver has a value of 0.0. 

These state values are global values such that you can reference them in your Verilog-AMS 
code. For example: 

module foo(x);
inout x;
wreal x;
integer error_cnt;
real result;

initial error_cnt = 0;
always @(x)
begin

if(x === `wrealZState)
result = 1.234;

if(x === `wrealXState)
error_cnt = error_cnt + 1;

end
assign x = result;

endmodule

Here is another example comparing a real value (aout) to `wrealZState: 

State Description

wrealZState High-impedance state equivalent to the hiZ discrete logic state 

wrealXState Unknown state equivalent to the X state in discrete logic 

Note: The software sets the value of a wreal net to this state 
(wrealXState) if it cannot determine the resolved value of the 
net. 
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module dac (out, in, clk);
parameter integer bits = 8 from [1:24]; // resolution (bits)
parameter real fullscale = 1.0; // output range is from 0 to fullscale (V)

output out;
wreal out;
input [0:bits-1] in;
input clk;
logic in, clk;

real result, aout;

real bitvalue;
integer i;

always @(posedge clk) begin 
bitvalue = fullscale;
// aout = 0.0;
aout = `wrealZState;
for (i=bits-1; i>=0; i=i-1) begin

bitvalue = bitvalue / 2;
if (in[i])
if (aout === `wrealZState) <--- this line

aout = bitvalue;
else

aout = aout + bitvalue;
end
result = aout;

end

assign out = result;

endmodule

Note: You cannot redefine the values of these state values. 

The program uses these the wrealZState and wrealXState state values to determine the 
resolved value of a wreal net with more than one driver. You can use the 
-wreal_resolution command-line option to select the wreal resolution function you 
want to use. If you do not use the -wreal_resolution command-line option to specify a 
resolution function, or if you specify -wreal_resolution default, the program uses the 
default resolution algorithm, which is as follows: 

Conditions Resolution

All drivers are driving wrealZState Drive the receivers using wrealZState 

Exactly one driver is not driving 
wrealZState 

Drive the receivers using the only 
non-wrealZState value 

More than one driver is not driving 
wrealZState 

Drive the receivers using wrealXState and 
issue a runtime error message 
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See “Selecting a wreal Resolution Function” in the Virtuoso® AMS Designer Simulator 
User Guide for other resolution functions you can specify. 

See also the following topics in the Virtuoso AMS Designer Simulator User Guide: 

■ “Connecting VHDL and VHDL-AMS Blocks to Verilog and Verilog-AMS Blocks” 

■ “Connecting Verilog-AMS wreal Signals to Analog Signals“ 

■ “Resolving Disciplines for Verilog-AMS wreal Nets“ 

■ “Using wreal Nets at Mixed-Language Boundaries“ 

Named Branches

Use the branch declaration to declare a path between two nets of continuous discipline. 
Cadence recommends that you use named branches, especially when debugging with Tcl 
commands because, for example, it is easier to type value branch1 than it is to type value 
\vect1[5] vec2[1] and then compute the difference between the returned value. 

branch_declaration ::=
branch list_of_branches ;

list_of_branches ::=
terminals list_of_branch_identifiers

terminals ::=
( scalar_net_identifier )

| ( scalar_net_identifier , scalar_net_identifier )

list_of_branch_identifiers ::=
branch_identifier

| branch_identifier , list_of_branch_identifiers

scalar_net_identifier must be either a scalar net or a single element of a vector net.

You can declare branches only in a module. You must not combine explicit and implicit branch 
declarations for a single branch. For more information, see “Implicit Branches” on page 81.

The scalar nets that the branch declaration associates with a branch are called the branch 
terminals. If you specify only one net, Verilog-AMS assumes that the other is ground. The 
branch terminals must have compatible disciplines. For more information, see “Compatibility 
of Disciplines” on page 71.

Consider the following declarations. 

Any driver is driving wrealXState Drive the receivers using wrealXState 

Conditions Resolution
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voltage [5:0] vec1 ; // Declares a vector net
voltage [1:6] vec2 ; // Declares a vector net
voltage sca1 ; // Declares a scalar net
voltage sca2 ; // Declares a scalar net
branch (vec1[5],vec2[1]) branch1, (sca1,sca2) branch2 ;

branch1 is legally declared because each branch terminal is a single element of a vector 
net. The second branch, branch2, is also legally declared because nodes sca1 and sca2 
are both scalar nets. 

Implicit Branches

As Cadence recommends, you can refer to a named branch with only a single identifier. 
Alternatively, you might find it more convenient or clearer to refer to branches by their branch 
terminals. Most of the examples in this reference, including the following example, use this 
form of implicit branch declaration. You must not, however, combine named and implicit 
branch declarations for a single branch.

module diode (a, c) ;
inout a, c ;
electrical a, c ;
parameter real rs=0, is=1e-14, tf=0, cjo=0, phi=0.7 ;
parameter real kf=0, af=1, ef=1 ;

analog begin
I(a, c) <+ is*(limexp((V(a, c)-rs*I(a, a))/$vt) - 1);
I(a, c) <+ white_noise(2* `P_Q * I(a, c)) ;
I(a, c) <+ flicker_noise(kf*pow(abs(I(a, c)),af),ef);

end
endmodule

The previous example using implicit branches is equivalent to the following example using 
named branches. 

module diode (a, c) ;
inout a, c ;
electrical a, c ;
branch (a,c) diode, (a,a) anode ; // Declare named branches
parameter real rs=0, is=1e-14, tf=0, cjo=0, phi=0.7 ;
parameter real kf=0, af=1, ef=1 ;

analog begin
I(diode) <+ is*(limexp((V(diode)-rs*I(anode))/$vt) - 1);
I(diode) <+ white_noise(2* `P_Q * I(diode)) ;
I(diode) <+ flicker_noise(kf*pow(abs(I(diode)),af),ef);

end
endmodule
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Statements for the Analog Block

This chapter describes the assignment statements and the procedural control constructs and 
statements that the Cadence® Verilog®-AMS language supports within the analog block. For 
information, see the indicated locations. The constructs and statements discussed include

■ Procedural Assignment Statements in the Analog Block on page 84

■ Branch Contribution Statement on page 84

■ Indirect Branch Assignment Statement on page 86

■ Sequential Block Statement on page 87

■ Conditional Statement on page 88

■ Case Statement on page 88

■ Loop statements, including 

❑ Repeat Statement on page 89

❑ While Statement on page 90

❑ For Statement on page 90

■ Generate Statement on page 91

Verilog-AMS also supports statements for use in digital contexts. For more information, see 
the “Assignments” and “Behavioral Modeling” chapters, in the Verilog-XL Reference.

Assignment Statements

There are several kinds of assignment statements in Verilog-AMS: the procedural assignment 
statement, the branch contribution statement, and the indirect branch assignment statement 
are available for analog modeling. You use the procedural assignment statement to modify 
integer and real variables and you use the branch contribution and indirect branch 
assignment statements to modify branch values such as potential and flow.
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In addition, Verilog-AMS supports the continuous assignment statement and the procedural 
assignment statement for digital modeling. Continuous assignment statements can be used 
only outside of the initial, always, and analog blocks. For more information on these 
statements, see the “Assignments” chapter, in the Verilog-XL Reference.

Procedural Assignment Statements in the Analog Block

Use the procedural assignment statement to modify integer and real variables. 

procedural_assignment ::=
lexpr = expression ;

lexpr ::=
integer_identifier

| real_identifier
| array_element

array_element ::=
integer_identifier [ constant_expression ]

| real_identifier [ constant_expression ]

The left-hand operand of the procedural assignment used in analog blocks must be a 
modifiable integer or real variable or an element of an integer or real array. The type of the 
left-hand operand determines the type of the assignment.

The right-hand operand can be any arbitrary scalar expression constituted from legal 
operands and operators. 

In the following code fragment, the variable phase is assigned a real value. The value must 
be real because phase is defined as a real variable. 

real phase ;
analog begin

phase = idt( gain*V(in) ) ;

You can also use procedural assignment statements to modify array values. For example, if 
r is declared as

real r[0:3], sum ;

you can make assignments such as

r[0] = 10.1 ;
r[1] = 11.1 ;
r[2] = 12.1 ;
r[3] = 13.1 ;
sum = r[0] + r[1] + r[2] + r[3] ;

Branch Contribution Statement

Use the branch contribution statement to modify signal values. 
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branch_contribution ::=
bvalue <+ expression ;

bvalue ::=
access_identifier ( analog_signal_list )

analog_signal_list ::=
branch_identifier

| node_or_port_identifier
| node_or_port_identifier , node_or_port_identifier

bvalue specifies a source branch signal. bvalue must consist of an access function 
applied to a branch. expression can be linear, nonlinear, or dynamic. 

Branch contribution statements must be placed within the analog block.

As discussed in the following list, the branch contribution statement differs in important ways 
from the procedural assignment statement.

■ You can use the procedural assignment statement only for variables, whereas you can 
use the branch contribution statement only for access functions.

■ Using the procedural assignment statement to assign a number to a variable overrides 
the number previously contained in that variable. Using the branch contribution 
statement, however, adds to any previous contribution. (Contributions to flow can be 
viewed as adding new flow sources in parallel with previous flow sources. Contributions 
to value can be viewed as adding new value sources in series with previous value 
sources.)

Evaluation of a Branch Contribution Statement

For source branch contributions, the simulator evaluates the branch contribution statement 
as follows:

1. The simulator evaluates the right-hand operand.

2. The simulator adds the value of the right-hand operand to any previously retained value 
for the branch.

3. At the end of the evaluation of the analog block, the simulator assigns the summed value 
to the source branch.

For example, given a pair of nodes declared with the electrical discipline, the code 
fragment

V(n1, n2) <+ expr1 ;
V(n1, n2) <+ expr2 ;

is equivalent to

V(n1, n2) <+ expr1 + expr2 ;
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Creating a Switch Branch

Important

When you contribute a flow to a branch that already has a value retained for 
potential, the simulator discards the value for potential and converts the branch to a 
flow source. Conversely, when you contribute a potential to a branch that already 
has a value retained for flow, the simulator discards the value for flow and converts 
the branch to a potential source. Branches converted from flow sources to potential 
sources, and vice versa, are known as switch branches. For additional information, 
see “Switch Branches” on page 255.

Indirect Branch Assignment Statement

Use the indirect branch assignment statement when it is difficult to separate the target from 
the equation.

indirect_branch_assignment ::=
target : equation ;

target ::=
bvalue

equation ::=
nexpr == expression

nexpr ::=
bvalue

| ddt ( bvalue )
| idt ( bvalue )
| idtmod ( bvalue )

An indirect branch assignment has this format:

V(out) : V(in) == 0 ;

Read this as “find V(out)such that V(in) is zero.” This example says that out should be 
driven with a voltage source and the voltage should be such that the given equation is 
satisfied. Any branches referenced in the equation are only probed and not driven, so in this 
example, V(in) acts as a voltage probe.

Indirect branch assignments can be used only within the analog block.

The next example models an ideal operational amplifier with infinite gain. The indirect 
assignment statement says “find V(out) such that V(pin, nin) is zero.”

module opamp (out, pin, nin) ;
output out ;
input pin, nin ;
voltage out, pin, nin ;
analog
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V(out) : V(pin, nin) == 0 ; // Indirect assignment
endmodule

Indirect assignments are incompatible with assignments made with the branch contribution 
statement. If you indirectly assign a value to a branch, you cannot then contribute to the 
branch by using the branch contribution statement.

Sequential Block Statement

Use a sequential block when you want to group two or more statements together so that they 
act like a single statement. 

seq_block ::=
begin [ : block_identifier { block_item_declaration } ]

{ statement }
end

block_item_declaration ::=
parameter_declaration
integer_declaration

| real_declaration

For information on statement, see “Defining Module Analog Behavior” on page 42.

The statements included in a sequential block run sequentially.

If you add a block identifier, you can also declare local variables for use within the block. All 
the local variables you declare are static. In other words, a unique location exists for each 
local variable, and entering or leaving the block does not affect the value of a local variable.

The following code fragment uses two named blocks, declaring a local variable in each of 
them. Although the variables have the same name, the simulator handles them separately 
because each variable is local to its own block. 

integer j ;
...

for ( j = 0 ; j < 10 ; j=j+1 ) begin
if ( j%2 ) begin : odd

integer j ; // Declares a local variable
j = j+1 ;
$display ("Odd numbers counted so far = %d" , j ) ;

end else begin : even
integer j ; // Declares a local variable
j = j+1 ;
$display ("Even numbers counted so far = %d" , j ) ;

end
end

Each named block defines a new scope. For additional information, see “Scope Rules” on 
page 51.
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Conditional Statement

Use the conditional statement to run a statement under the control of specified conditions.

conditional_statement ::=
if ( expression ) statement1
[ else statement2 ]

If expression evaluates to a nonzero number (true), the simulator executes 
statement1. If expression evaluates to zero (false) and the else statement is present, 
the simulator skips statement1 and executes statement2.

If expression consists entirely of genvar expressions, literal numerical constants, 
parameters, or the analysis function, statement1 and statement2 can include analog 
operators.

The simulator always matches an else statement with the closest previous if that lacks an 
else. In the following code fragment, for example, the first else goes with the inner if, as 
shown by the indentation. 

if (index > 0)
if (i > j) // The next else belongs to this if

result = i ;
else // This else belongs to the previous if

result = j ;
else $strobe ("Index < 0"); // This else belongs to the first if

The following code fragment illustrates a particularly useful form of the if-else construct.

if ((value > 0)&&(value <= 1)) $strobe("Category A");
else if ((value > 1)&&(value <= 2)) $strobe("Category B");
else if ((value > 2)&&(value <= 3)) $strobe("Category C");
else if ((value > 3)&&(value <= 4)) $strobe("Category D"); 
else $strobe("Illegal value");

The simulator evaluates the expressions in order. If any one of them is true, the simulator runs 
the associated statement and ends the whole chain. The last else statement handles the 
default case, running if none of the other expressions is true.

Case Statement

Use the case construct to control which one of a series of statements runs.

case_statement ::=
case ( expression ) case_item { case_item } endcase

case_item ::=
test_expression { , test_expression } : statement

| default [ : ] statement
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The default statement is optional. Using more than one default statement in a case 
construct is illegal.

The simulator evaluates each test_expression in turn and compares it with 
expression. If there is a match, the statement associated with the matching 
test_expression runs. If none of the expressions in text_expression matches 
expression and if you coded a default case_item, the default statement runs. If all 
comparisons fail and you did not code a default case_item, none of the associated 
statements runs.

If expression and text_expression are genvar expressions, parameters, or the 
analysis function, statement can include analog operators; otherwise, statement 
cannot include analog operators.

The following code fragment determines what range value is in. For example, if value is 1.5 
the first comparison fails. The second test_expression evaluates to 1 (true), which 
matches the case expression, so the $strobe("Category B") statement runs.

real value ;
...

case (1)
((value > 0)&&(value <= 1)) : $strobe("Category A");
((value > 1)&&(value <= 2)) : $strobe("Category B");
((value > 2)&&(value <= 3)) : $strobe("Category C");
((value > 3)&&(value <= 4)) : $strobe("Category D");
value <= 0 , value >= 4 : $strobe("Out of range");
default $strobe("Error. Should never get here.");

endcase 

Repeat Statement

Use the repeat statement when you want a statement to run a fixed number of times.

repeat_statement ::=
repeat ( constant_expression ) statement

statement must not include any analog operators. For additional information, see “Analog 
Operators” on page 152.

The following example code repeats the loop exactly 10 times while summing the first 10 
digits. 

integer i, total ;
...

i = 0 ;
total = 0 ;
repeat (10) begin

i = i + 1 ;
total = total + i ;

end
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While Statement

Use the while statement when you want to be able to leave a loop when an expression is 
no longer valid.

while_statement ::=
while ( expression ) statement

The while loop evaluates expression at each entry into the loop. If expression is 
nonzero (true), statement runs. If expression starts out as zero (false), statement 
never runs.

statement must not include any analog operators. For additional information, see “Analog 
Operators” on page 152.

The following code fragment counts the number of random numbers generated before rand 
becomes zero.

integer rand, count ;
...

rand = abs($random % 10) ;
count = 0 ;
while (rand) begin

count = count + 1 ;
rand = abs($random % 10) ;

end ;
$strobe ("Count is %d", count) ;

For Statement

Use the for statement when you want a statement to run a fixed number of times.

for_statement ::=
for ( initial_assignment ; expression ; 

step_assignment ) statement

If initial_assignment, expression, and step_assignment are genvar 
expressions, the statement can include analog operators; otherwise, the statement must 
not include any analog operators. For additional information, see “Analog Operators” on 
page 152.

Use initial_assignment to initialize an integer loop control variable that controls the 
number of times the loop executes. The simulator evaluates expression at each entry into 
the loop. If expression evaluates to zero, the loop terminates. If expression evaluates 
to a nonzero value, the simulator first runs statement and then runs 
step_assignment. step_assignment is usually defined so that it modifies the loop 
control variable before the simulator evaluates expression again.
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For example, to sum the first 10 even numbers, the repeat loop given earlier could be 
rewritten as a for loop.

integer j, total ;
...

total = 0 ;
for ( j = 2; j < 22; j = j + 2 ) 

total = total + j ;

Generate Statement

Note: The generate statement is obsolete. To comply with current practice, use the 
genvar statement instead.

The generate statement is a looping construct that is unrolled at compile time. Use the 
generate statement to simplify your code or when you have a looping construct that 
contains analog operators. The generate statement can be used only within the analog 
block. The generate statement is supported only for backward compatibility.

generate_statement ::=
generate index_identifier ( start_expr , 
end_expr [ , incr_expr ] ) statement

start_expr ::=
constant_expression

end_expr ::=
constant_expression

incr_expr ::=
constant_expression

index_identifier is an identifier used in statement. When statement is unrolled, 
each occurrence of index_identifier found in statement is replaced by a constant. 
You must be certain that nothing inside statement modifies the index.

In the first unrolled instance of statement, the compiler replaces each occurrence of 
index_identifier by the value start_expr. In the second instance, the compiler 
replaces each index_identifier by the value start_expr plus incr_expr. In the 
third instance, the compiler replaces each index_identifier by the value 
start_expr plus twice the incr_expr. This process continues until the replacement 
value is greater than the value of end_expr.

If you do not specify incr_expr, it takes the value +1 if end_expr is greater than 
start_expr. If end_expr is less than start_expr, incr_expr takes the value -1 by 
default. 
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The values of the start_expr, end_expr, and incr_expr determine how the 
generate statement behaves.

As an example of using the generate statement, consider the following module, which 
implements an analog-to-digital converter.

`define BITS 4

module adc (in, out) ;
input in ;
output [0:`BITS - 1] out ;
electrical in ;
electrical [0:`BITS - 1] out ;
parameter fullscale = 1.0, tdelay = 0.0, trantime = 10n ;
real samp, half ;

analog begin
half = fullscale/2.0 ;
samp = V(in) ;
generate i (`BITS - 1,0) begin // default increment = -1

V(out[i]) <+ transition(samp > half, tdelay, trantime);
if (samp > half) samp = samp - half ;
samp = 2.0 * samp ;

end
end
endmodule

Module adc is equivalent to the following module coded without using the generate 
statement. 

`define BITS 4
module adc_unrolled (in, out) ;
input in ;
output [0:`BITS - 1] out ;
electrical in;
electrical [0:`BITS - 1] out ;
parameter fullscale = 1.0, tdelay = 0.0, trantime = 10n ;
real samp, half ;

analog begin
half = fullscale/2.0 ;
samp = V(in) ;
V(out[3]) <+ transition(samp > half, tdelay, trantime);
if (samp > half) samp = samp - half ;
samp = 2.0 * samp ;
V(out[2]) <+ transition(samp > half, tdelay, trantime);
if (samp > half) samp = samp - half ;

If And Then the generate 
statement

start_expr > end_expr incr_expr > 0 does not execute

start_expr < end_expr incr_expr < 0 does not execute

start_expr = end_expr executes once
December 2011 92 Product Version 11.1



Cadence Verilog-AMS Language Reference
Statements for the Analog Block
samp = 2.0 * samp ;
V(out[1]) <+ transition(samp > half, tdelay, trantime);
if (samp > half) samp = samp - half ;
samp = 2.0 * samp ;
V(out[0]) <+ transition(samp > half, tdelay, trantime);
if (samp > half) samp = samp - half ;
samp = 2.0 * samp ;

end
endmodule

Note: Because the generate statement is unrolled at compile time, you cannot use the 
SimVision debugging tool to examine the value of index_identifier or to evaluate 
expressions that contain index_identifier. For example, if index_identifier is 
i, you cannot use a debugging command like print i nor can you use a command like 
print{a[i]}.
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6
Operators for Analog Blocks

This chapter describes the operators that you can use in analog blocks and explains how to 
use them to form expressions. For basic definitions, see

■ Unary Operators on page 97

■ Binary Operators on page 99

■ Bitwise Operators on page 102

■ Ternary Operator on page 103

For information about precedence and short-circuiting, see

■ Operator Precedence on page 104

■ Expression Short-Circuiting on page 104

Verilog-AMS also supports additional operators for use in digital contexts. For more 
information, see the “Expressions” chapter, in the Verilog-XL Reference.
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Overview of Operators

An expression is a construct that combines operands with operators to produce a result that 
is a function of the values of the operands and the semantic meaning of the operators. Any 
legal operand is also an expression. You can use an expression anywhere Verilog-AMS 
requires a value.

A constant expression is an expression whose operands are constant numbers and 
previously defined parameters and whose operators all come from among the unary, binary, 
and ternary operators described in this chapter.

All of the operators (except ==, !=, ===, and !==), functions, and statements used in 
continuous contexts report an error if the expressions they operate on contain x or z bits.

The operators listed below, with the single exception of the conditional operator, associate 
from left to right. That means that when operators have the same precedence, the one 
farthest to the left is evaluated first. In this example

A + B - C

the simulator does the addition before it does the subtraction.

When operators have different precedence, the operator with the highest precedence (the 
smallest precedence number) is evaluated first. In this example

A + B / C

the division (which has a precedence of 2) is evaluated before the addition (which has a 
precedence of 3). For information on precedence, see “Operator Precedence” on page 104.

You can change the order of evaluation with parentheses. If you code

(A + B) / C

the addition is evaluated before the division.

The operators divide into three groups, according to the number of operands the operator 
requires. The groups are the unary operators, the binary operators, and the ternary operator.
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Unary Operators

The unary operators each require a single operand. The unary operators have the highest 
precedence of all the operators discussed in this chapter.

Unary Reduction Operators

The unary reduction operators perform bitwise operations on single operands and produce a 
single bit result. The reduction AND, reduction OR, and reduction XOR operators first apply the 
following logic tables between the first and second bits of the operand to calculate a result. 

Unary Operators

Operator Precedence Definition
Type of 
Operands 
Allowed

Example or Further 
Information

+ 1 Unary plus Integer, real I = +13; // I = 13
I = +(-13); // I = -13

- 1 Unary minus Integer, real R = -13.1; // R = -13.1
I = -(4-5); // I = 1

! 1 Logical 
negation

Integer, real I = !(1==1); // I = 0
I = !(1==2); // I = 1
I = !13.2; // I = 0
/*Result is zero for a non-
zero operand*/

~ 1 Bitwise unary 
negation

Integer See the Bitwise Unary Negation 
Operator figure on page 103.

& 1 Unary reduction 
AND

integer See “Unary Reduction 
Operators.”

~& 1 Unary reduction 
NAND

integer See “Unary Reduction 
Operators.”

| 1 Unary reduction 
OR

integer See “Unary Reduction 
Operators.”

~| 1 Unary reduction 
NOR

integer See “Unary Reduction 
Operators.”

^ 1 Unary reduction 
exclusive OR

integer See “Unary Reduction 
Operators.”

^~ or ~^ 1 Unary reduction 
exclusive NOR

integer See “Unary Reduction 
Operators.”
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Then for the second and subsequent steps, these operators apply the same logic table to the 
previous result and the next bit of the operand, continuing until there is a single bit result.

The reduction NAND, reduction NOR, and reduction XNOR operators are calculated in the same 
way, except that the result is inverted.

Reduction operators can be used in the initial and always blocks of modules but are not 
supported in the analog block of Verilog-AMS modules.

Unary Reduction AND Operator

& 0 1

0 0 0

1 0 1

Unary Reduction OR Operator

| 0 1

0 0 1

1 1 1

Unary Reduction Exclusive OR Operator

^ 0 1

0 0 1

1 1 0
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Binary Operators

The binary operators each require two operands.

Binary Operators

Operator Precedence Definition
Type of 
Operands 
Allowed

Example or Further 
Information

+ 3 a plus b Integer, real R = 10.0 + 3.1; // R = 13.1

- 3 a minus b Integer, real I = 10 - 13; // I = -3

* 2 a multiplied by 
b

Integer, real R = 2.2 * 2.0; // R = 4.4

/ 2 a divided by b Integer, real I = 9 / 4; // I = 2
R = 9.0 / 4; // R = 2.25

% 2 a modulo b Integer, real I = 10 % 5; // I = 0
I = -12 % 5; // I = -2
R = 10 % 3.75 // R = 2.5
/*The result takes sign of the
first operand.*/

< 5 a less than b; 
evaluates to 0 
or 1

Integer, real I = 5 < 7; // I = 1
I = 7 < 5; // I = 0

> 5 a greater than 
b; evaluates to 
0 or 1

Integer, real I = 5 > 7; // I = 0
I = 7 > 5; // I = 1

<= 5 a less than or 
equal to b; 
evaluates to 0 
or 1

Integer, real I = 5.0 <= 7.5; // I = 1
I = 5.0 <= 5.0; // I = 1
I = 5 <= 4; // I = 0

>= 5 a greater than 
or equal to b; 
evaluates to 0 
or 1

Integer, real I = 5.0 >= 7; // I = 0
I = 5.0 >= 5; // I = 1
I = 5.0 >= 4.8; // I = 1

== 6 a equal to b; 
evaluates to 0, 
1, or x (if any bit 
of a or b is x or 
z).

Integer, real I = 5.2 == 5.2; // I = 1
I = 5.2 == 5.0; // I = 0
I = 1 == 1'bx; // I = x
December 2011 99 Product Version 11.1



Cadence Verilog-AMS Language Reference
Operators for Analog Blocks
!= 6 a not equal to 
b; evaluates to 
0, 1, or x (if any 
bit of a or b is x 
or z).

Integer, real I = 5.2 != 5.2; // I = 0
I = 5.2 != 5.0; // I = 1

=== 6 case equality; x 
and z bits 
included; 
evaluates to 0 
or 1

integer I = 1 === 1'bx; // I = 0

!== 6 case inequality; 
X and Z bits 
included; 
evaluates to 0 
or 1

integer I = 1 !== 1'bx; // I = 1

&& 10 Logical AND; 
evaluates to 0 
or 1

Integer, real I = (1==1)&&(2==2); // I = 1
I = (1==2)&&(2==2); // I = 0
I = -13 && 1; // I = 1

|| 11 Logical OR; 
evaluates to 0 
or 1

Integer, real I = (1==2)||(2==2); // I = 1
I = (1==2)||(2==3); // I = 0
I = 13 || 0; // I = 1

& 7 Bitwise binary 
AND

Integer See the Bitwise Binary AND 
Operator figure on page 102.

| 9 Bitwise binary 
OR

Integer See the Bitwise Binary OR 
Operator figure on page 102.

^ 8 Bitwise binary 
exclusive OR

Integer See the Bitwise Binary Exclusive 
OR Operator figure on page 102.

^~ 8 Bitwise binary 
exclusive NOR 
(Same as ~^)

Integer See the Bitwise Binary Exclusive 
NOR Operator figure on page 
102.

~^ 8 Bitwise binary 
exclusive NOR 
(Same as ^~)

Integer See the Bitwise Binary Exclusive 
NOR Operator figure on page 
102.

Binary Operators, continued

Operator Precedence Definition
Type of 
Operands 
Allowed

Example or Further 
Information
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<< 4 a shifted b bits 
left 

Integer I = 1 << 2; // I = 4
I = 2 << 2; // I = 8
I = 4 << 2; // I = 16

>> 4 a shifted b bits 
right

Integer I = 4 >> 2; // I = 1
I = 2 >> 2; // I = 0

or 11 Event OR Event 
expression

@(initial_step or
cross(V(vin)-1))

Binary Operators, continued

Operator Precedence Definition
Type of 
Operands 
Allowed

Example or Further 
Information
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Bitwise Operators

The bitwise operators evaluate to integer values. Each operator combines a bit in one 
operand with the corresponding bit in the other operand to calculate a result according to 
these logic tables.

Bi twise Binary AND Operator

& 0 1

0 0 0

1 0 1

Bitwise Binary OR Operator

| 0 1

0 0 1

1 1 1

Bitwise Binary Exclusive OR Operator

^ 0 1

0 0 1

1 1 0

Bitwise Binary Exclusive NOR Operator

^~ or ~^ 0 1

0 1 0

1 0 1
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Ternary Operator

There is only one ternary operator, the conditional operator. The conditional operator has the 
lowest precedence of all the operators listed in this chapter.
 

A complete conditional operator expression looks like this:

conditional_expr ? true_expr : false_expr

If conditional_expr is true, the conditional operator evaluates to true_expr, 
otherwise to false_expr. 

The conditional operator is right associative.

This operator performs the same function as the if-else construct. For example, the 
contribution statement

V(out) <+ V(in) > 2.5 ? 0.0 : 5.0 ;

is equivalent to

If (V(in) > 2.5)
V(out) <+ 0.0 ;

else
V(out) <+ 5.0 ;

Bitwise Unary Negation Operator

~

0 1

1 0

Conditional Operator

Operator Precedence Definition
Type of 
Operands 
Allowed

Example or Further 
Information

?: 12 exp ? t_exp : 
f_exp

Valid 
expressions

I= 2==3 ? 1:0; // I = 0
R= 1==1 ? 1.0:0.0; // R=1.0
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Operator Precedence

The following table summarizes the precedence information for the unary, binary, and ternary 
operators. Operators at the top of the table have higher precedence than operators lower in 
the table.

Expression Short-Circuiting

Sometimes the simulator can determine the value of an expression containing logical AND 
( && ), logical OR ( || ), or bitwise AND ( &) without evaluating the entire expression. By 
taking advantage of such expressions, the simulator operates more efficiently.

integer varInt;
real varReal;

@(initial_step) 
begin

varInt = 123;
varReal = 7.890121212e2;

end

For this example, retString receives the value "Use Integer 123, string 456 and 
real 789.0 to create a string 123456789.0!"

Precedence Operators

1 + - ! ~ (unary) Highest precedence

2 * / %

3 + - (binary)

4 << >>

5 < <= > >=

6 == != === !==

7 &

8 ^ ~^ ^~

9 |

10 &&

11 ||

12 ?: (conditional operator) Lowest precedence
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7
Built-In Mathematical Functions

This chapter describes the mathematical functions provided by the Cadence® Verilog®-AMS 
language. These functions include

■ Standard Mathematical Functions on page 106

■ Trigonometric and Hyperbolic Functions on page 106

■ Controlling How Math Domain Errors Are Handled on page 107

Because the simulator uses differentiation to evaluate expressions, Cadence recommends 
that you use only mathematical expressions that are continuously differentiable. To prevent 
run-time domain errors, make sure that each argument is within a function’s domain.
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Standard Mathematical Functions

These are the standard mathematical functions supported by Verilog-AMS. The operands 
must be integers or real numbers.
 

Trigonometric and Hyperbolic Functions

These are the trigonometric and hyperbolic functions supported by Verilog-AMS. The 
operands must be integers or real numbers. The simulator converts operands to real numbers 
if necessary.

Function Description Domain Returned Value

abs(x) Absolute All x Integer, if x is integer; 
otherwise, real

ceil(x) Smallest integer larger 
than or equal to x

All x Integer

exp(x) Exponential. See also 
“Limited Exponential 
Function” on page 153.

Real

floor(x) Largest integer less than 
or equal to x

All x Integer

ln(x) Natural logarithm x > 0 Real

log(x) Decimal logarithm x > 0 Real

max(x,y) Maximum All x, all y Integer, if x and y are 
integers; otherwise, real

min(x,y) Minimum All x, all y Integer, if x and y are 
integers; otherwise, real

pow(x,y) Power of (xy) All y, if x > 0
y > 0, if x = 0
y integer, if x < 0

Real

sqrt(x) Square root x >= 0 Real
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The trigonometric and hyperbolic functions require operands specified in radians.

Controlling How Math Domain Errors Are Handled

To control how math domain errors are handled in Verilog-A modules, you can use the 
options ahdldomainerror parameter in a Spectre control file. (In Verilog-AMS code, this 
parameter can be used only in the analog block.) This parameter controls how domain (out-
of-range) errors in Verilog-A math functions such as log or atan are handled and 
determines what kind of message is issued when a domain error is found.

The ahdldomainerror parameter format is

Name options ahdldomainerror=value

where the syntax items are defined as follows.

Function Description Domain

sin(x) Sine All x

cos(x) Cosine All x

tan(x) Tangent
 , n is odd

asin(x) Arc-sine -1 <= x <= 1

acos(x) Arc-cosine -1 <= x <= 1

atan(x) Arc-tangent All x

atan2(x,y) Arc-tangent of x/y All x, all y

hypot(x,y) Sqrt(x2 + y2) All x, all y

sinh(x) Hyperbolic sine All x

cosh(x) Hyperbolic cosine All x

tanh(x) Hyperbolic tangent All x

asinh(x) Arc-hyperbolic sine All x

acosh(x) Arc-hyperbolic cosine x >= 1

atanh(x) Arc-hyperbolic tangent -1 <= x <= 1

x n
π
2
---⎝ ⎠

⎛ ⎞≠
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For example, you might have the following in a Spectre control file to ensure that simulation 
stops when a domain error occurs.

myoption options ahdldomainerror=error

Name The unique name you give to the options statement. The Spectre 
simulator uses this name to identify this statement in error or 
annotation messages

value

none If a domain error occurs, no message is issued. The simulation 
continues with the argument of the math function set to the nearest 
reasonable number to the invalid argument.

For example, if the `sqrt() function is passed a negative value, 
the argument is reset to 0.0.

warning If a domain error occurs, a warning message is issued. The 
simulation continues with the argument of the math function set to 
the nearest reasonable number to the invalid argument. This is the 
default.

For example, if the `sqrt() function is passed a negative value, 
the argument is reset to 0.0.

error If a domain error occurs, a message such as the following (which, 
in this example, indicates a problem with the `sqrt function) is 
issued.

Fatal error found by spectre during IC analysis, during 
transient analysis `mytran'.
"acosh.va" 20: r1: negative argument passed to `sqrt()'. 
(value passed was -1.000000)

The simulation then terminates.
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Detecting and Using Events

During a simulation, the simulator generates analog and digital events that you can use to 
control the behavior of your modules. The simulator generates some of these events 
automatically at various stages of the simulation. The simulator generates other events in 
accordance with criteria that you specify. Your modules can detect either kind of event and 
use the occurrences to determine whether specified statements run.

This chapter discusses the following kinds of events

■ Initial_step Event on page 111

■ Final_step Event on page 112

■ Cross Event on page 113

■ Above Event on page 114

■ Absdelta Event on page 116

■ Timer Event on page 117

The Cadence Verilog®-AMS language also supports events for digital contexts. For more 
information, see the “Event Control” section in the “Behavioral Modeling” chapter of the 
Verilog-XL Reference.
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Detecting and Using Events

Use the @ operator to run a statement under the control of particular events. 

event_control_statement ::=
@ ( event_expr ) statement ;

event_expr ::=
simple_event [ or event_expr ]

simple_event ::=
initial_step_event

| final_step_event
| cross_event
| timer_event
| expression_event
| named_event
| posedge_event
| negedge_event

statement is the statement controlled by event_expr. The statement must not be a 
contribution statement and must not contain any analog operators. The statement:

■ Cannot include expressions that use analog operators.

■ Cannot be a contribution statement.

simple_event is an event that you want to detect. The behavior depends on the context:

■ In the analog context, when, and only when, simple_event occurs, the simulator runs 
statement. Otherwise, statement is skipped. The kinds of simple events are 
described in the following sections.

■ In the digital context, processing of the block is prevented until the event expression 
evaluates to true.

If you want to detect more than one kind of event, you can use the event or operator. Any one 
of the events joined with the event or operator causes the simulator to run statement. The 
following fragment, for example, sets V(out) to zero or one at the beginning of the analysis 
and at any time V(sample) crosses the value 2.5.

analog begin
@(initial_step or cross(V(sample)-2.5, +1)) begin

vout = (V(in) > 2.5) ;
end
V(out) <+ vout ;

end

For information on See

initial_step_event “Initial_step Event” on page 111
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Initial_step Event

The simulator generates an initial_step event during the solution of the first point in specified 
analyses, or, if no analyses are specified, during the solution of the first point of every 
analysis. Use the initial_step event to perform an action that should occur only at the 
beginning of an analysis.

initial_step_event ::=
initial_step [ ( analysis_list ) ]

analysis_list ::=
analysis_name { , analysis_name }

analysis_name ::=
"analysis_identifier"

If the string in analysis_identifier matches the analysis being run, the simulator 
generates an initial_step event during the solution of the first point of that analysis. If you do 
not specify analysis_list, the simulator generates an initial_step event during the 
solution of the first point, or initial DC analysis, of every analysis.

In this release of Verilog-AMS, the initial_step event is supported for the ac, noise, tran, 
and dc sweep analyses.

The initial_step event is predefined, so you cannot redefine it in your model. 

You can detect initial_step events only from within the analog block.

final_step_event “Final_step Event” on page 112

cross_event “Cross Event” on page 113

above_event “Above Event” on page 114

timer_event “Timer Event” on page 117

expression_event “Event Control” in Chapter 8 of Verilog-XL 
Reference

named_event “Event Control” in Chapter 8 of Verilog-XL 
Reference

posedge_event “Event Control” in Chapter 8 of Verilog-XL 
Reference

negedge_event “Event Control” in Chapter 8 of Verilog-XL 
Reference

For information on See
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Final_step Event

The simulator generates a final_step event during the solution of the last point in specified 
analyses, or, if no analyses are specified, during the solution of the last point of every 
analysis. Use the final_step event to perform an action that should occur only at the end of 
an analysis.

final_step_event ::=
final_step [ ( analysis_list ) ]

analysis_list ::=
analysis_name { , analysis_name }

analysis_name ::=
"analysis_identifier"

If the string in analysis_identifier matches the analysis being run, the simulator 
generates a final_step event during the solution of the last point of that analysis. If you do not 
specify analysis_list, the simulator generates a final_step event during the solution of 
the last point of every analysis.

In this release of Verilog-AMS, the final_step event is supported for the ac, noise, tran, and 
dc sweep analyses.

The final_step event is predefined, so you cannot redefine it in your model. 

You can detect final_step events only from within the analog block.

You might use the final_step event to print out the results at the end of an analysis. For 
example, module bit_error_rate measures the bit-error of a signal and prints out the 
results at the end of the analysis. (This example also uses the timer event, which is discussed 
in “Timer Event” on page 117.)

module bit_error_rate (in, ref) ;
input in, ref ;
electrical in, ref ;
parameter real period=1, thresh=0.5 ;
integer bits, errors ;
analog begin

@(initial_step) begin
bits = 0 ;
errors = 0 ; // Initialize the variables

end
@(timer(0, period)) begin

if ((V(in) > thresh) != (V(ref) > thresh))
errors = errors + 1; // Check for errors each period

bits = bits + 1 ;
end
@(final_step)

$strobe("Bit error rate = %f%%", 100.0 * errors/bits );
end
endmodule
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Cross Event

According to criteria you set, the simulator can generate a cross event when an expression 
crosses zero in a specified direction. Use the cross function to specify which crossings 
generate a cross event. 

cross_function ::=
cross (expr1 [ , direction [ , time_tol [ , expr_tol ] ] ] )

direction ::= 
+1 | 0 | -1

time_tol ::=
expr2

expr_tol ::=
expr3

expr1 is the real expression whose zero crossing you want to detect.

direction is an integer expression set to indicate which zero crossings the simulator 
should detect.

time_tol is a constant expression with a positive value, which is the largest time interval 
that you consider negligible. The default value is 1.0s, which is large enough that the 
tolerance is almost always satisfied.

expr_tol is a constant expression with a positive value, which is the largest difference that 
you consider negligible. If you specify expr_tol, both it and time_tol must be satisfied. 
If you do not specify expr_tol, the simulator uses the default expr_tol value of 

1e-9 + reltol*max_value_of_the_signal

In addition to generating a cross event, the cross function also controls the time steps to 
accurately resolve each detected crossing. 

The cross function is subject to the restrictions listed in “Restrictions on Using Analog 
Operators” on page 152.

If you want to Then

Detect all zero crossings Do not specify direction, or set 
direction equal to 0

Detect only zero crossings where the 
value is increasing

Set direction equal to +1

Detect only zero crossings where the 
value is decreasing

Set direction equal to -1
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The following example illustrates how you might use the cross function and event. The 
cross function generates a cross event each time the sample voltage increases through the 
value 2.5. expr_tol is specified as the abstol associated with the potential nature of the 
net sample.

module samphold (in, out, sample) ;
output out ;
input in, sample ;
electrical in, out, sample ;
real hold ;

analog begin
@(cross(V(sample)-2.5, +1, 0.01n, sample.potential.abstol)) 

hold = V(in) ;
V(out) <+ transition(hold, 0, 10n) ;

end
endmodule

Above Event

According to criteria you set, the simulator can generate an above event when an expression 
becomes greater than or equal to zero. Use the above function to specify when the simulator 
generates an above event. An above event can be generated and detected during 
initialization. By contrast, a cross event can be generated and detected only after at least one 
transient time step is complete.

The above function is a Cadence language extension.

above_function ::=
above (expr1 [ , time_tol [ , expr_tol ] ] )

time_tol ::=
expr2

expr_tol ::=
expr3

expr1 is a real expression whose value is to be compared with zero.

time_tol is a constant real expression with a positive value, which is the largest time 
interval that you consider negligible.

expr_tol is a constant real expression with a positive value, which is the largest difference 
that you consider negligible. If you specify expr_tol, both it and time_tol must be 
satisfied. If you do not specify expr_tol, the simulator uses the value of its own reltol 
parameter.

During a transient analysis, after t = 0, the above function behaves the same as a cross 
function with the following specification.

cross(expr1 , 1 , time_tol, expr_tol )
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During a transient analysis, the above function controls the time steps to accurately resolve 
the time when expr1 rises to zero or above.

The above function is subject to the restrictions listed in “Restrictions on Using Analog 
Operators” on page 152.

The following example illustrates how you might use the above function. The function 
generates an above event each time the analog voltage increases through the value 3.5 or 
decreases through the value 1.5.

connectmodule elect2logic_2(aVal, dVal);
input aVal;
output dVal;
electrical aVal;
logic dVal;
parameter real thresholdLo = 1.5; 
parameter real thresholdHi = 3.5; 

integer iVal;

assign dVal = iVal; // direct driver/receiver propagation

always @(above(V(aVal) - thresholdHi))
iVal = 1’b1;

always @(above(thresholdLo - V(aVal)))
iVal = 1’b0;

endmodule

The usefulness of the above function becomes apparent when elect2logic is inserted 
across the in port of the inv I1 instance in the following module.

module top;
electrical src, gnd;
logic out;
ground gnd;

vsource #(.dc(5)) V1(src,gnd);
inv I1(src,out);

endmodule

module inv(in,out);
input in;
output out;

assign out = !in;
endmodule

The modules describe a circuit where an analog DC voltage source, V1, generates a constant 
5 volt signal that drives a digital inverter. Using the above function in elect2logic sets the 
values correctly at the end of the initialization. However, if the above function is replaced with 
the cross function, the value of out is set to 1’b1 at the end of the initialization and retains 
that value throughout the transient analysis. This incorrect result is caused by the fact that 
cross events cannot be generated or detected during initialization.
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Absdelta Event

According to the criteria you set, the simulator can generate an absdelta event when an 
analog signal changes more than a specified amount, a capability that is typically used to 
discretize analog signals. Use the absdelta function to specify when the simulator 
generates an absdelta event. 

You can use the absdelta function only with the AMS Designer simulator using the 
simulation front end (SFE) parser or the AMS Designer simulator using the UltraSim solver. 
You must use this function only in an always block.

absdelta_function ::=
absdelta ( expr, delta [ , time_tol [ , expr_tol ]] )

expr is an analog signal expression.

delta is a real expression specifying an amount of change in the value of expr. The 
simulator generates an event when the expr value changes more than delta plus or minus 
expr_tol, relative to the expr value at the previous event time.

time_tol is a real expression specifying a time increment after the previous time point. 
When the current time is within time_tol of the previous event time, no event is generated. 
If time_tol is not specified, the default value is the time precision of the digital simulation. 
A specified time_tol that is smaller than the time precision is ignored and the time 
precision is used instead.

expr_tol is a real expression, which is the largest difference in expr that you consider 
negligible. If you do not specify expr_tol, the simulator uses the absolute voltage tolerance 
(vabstol) of the analog solver.

The absdelta function generates events for the following times and conditions.

■ At time zero.

■ At the time when the analog solver finds a stable solution during initialization.

■ When the expr value changes more than delta plus or minus expr_tol, relative to 
the previous absdelta event (but not when the current time is within time_tol of the 
previous absdelta event).

■ When expr changes direction (but not when the amount of the change is less than 
expr_tol).

The following module describes an event-driven electrical to wreal conversion where the 
absdelta function is used to determine when the electrical input signal is converted to a 
wreal output signal.
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‘include "disciplines.vams"
‘timescale 1ns / 100ps
module electrical_to_wreal (e_in, r_out);
input e_in;
output r_out;
electrical e_in;
wreal r_out;
parameter real vdelta=0.1     from (0:inf); // voltage delta
parameter real ttol=1n        from (0:1m];  // time tolerance
parameter real vtol=0.01      from (0:inf); // voltage tolerance
real sampled;

assign r_out = sampled;

always @(absdelta(V(e_in), vdelta, ttol, vtol))
sampled = V(e_in);

endmodule

Without proper tolerances, the absdelta function might attempt to generate a large number 
of events when:

■ the signal sampled by absdelta changes dramatically at a specific time step.

■ you specify a very small signal delta value as the second argument to the absdelta 
function.

Generation of a large number of events might significantly slow down the simulation, and in 
some cases, might even exhaust the system memory and crash the simulation. To handle 
such situations, the simulator ensures that no two events are generated within the span of the 
time tolerance time_tol. The default and the minimal time tolerance is the time precision of 
the digital simulation. A cap is also placed on how many events can be generated in a single 
time step. 

In addition, whenever a large number of events are to be generated, a warning message is 
issued. This message includes infomation such as the instance name, the Verilog-AMS 
source file name, and the line number where the problematic absdelta is used. The message 
also provides suggestions on how to correct or improve the code.

A warning message is also issued whenever you specify the time tolerance to be less than 
the time precision of the digital simulation. In this case, the specification is ignored and the 
time precision of the digital simulation is used as the time tolerance.

Timer Event

According to criteria you set, the simulator can generate a timer event at specified times 
during a simulation. Use the timer function to specify when the simulator generates a timer 
event. 

Do not use the timer function inside conditional statements.
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timer_function ::=
timer ( start_time [ , period [ , timetol ]] )

start_time is a dynamic expression specifying an initial time. The simulator places a first 
time step at, or just beyond, the start_time that you specify and generates a timer event.

period is a dynamic expression specifying a time interval. The simulator places time steps 
and generates events at each multiple of period after start_time.

timetol is a constant expression specifying how close a placed time point must be to the 
actual time point.

The module squarewave, below, illustrates how you might use the timer function to generate 
timer events. In squarewave, the output voltage changes from positive to negative or from 
negative to positive at every time interval of period/2.

module squarewave (out)
output out ;
electrical out ;
parameter period = 1.0 ;
integer x ;

analog begin
@(initial_step) x = 1 ;
@(timer(0, period/2)) x = -x ;
V(out) <+ transition(x, 0.0, period/100.0 ) ;

end
endmodule
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Simulator Functions

This chapter describes the Cadence® Verilog®-AMS language simulator functions. The 
simulator functions let you access information about a simulation and manage the 
simulation’s current state. You can also use the simulator functions to display and record 
simulation results. 

For information about using simulator functions, see

■ Announcing Discontinuity on page 121

■ Bounding the Time Step on page 123

■ Finding When a Signal Is Zero on page 124

■ Querying the Simulation Environment on page 125

■ Obtaining and Setting Signal Values on page 127

■ Determining the Current Analysis Type on page 135

■ Examining Drivers on page 132

■ Implementing Small-Signal AC Sources on page 136

■ Implementing Small-Signal Noise Sources on page 136

■ Generating Random Numbers on page 138

■ Generating Random Numbers in Specified Distributions on page 139

■ Interpolating with Table Models on page 145

For information on analog operators and filters, see

■ Limited Exponential Function on page 153

■ Time Derivative Operator on page 153

■ Time Integral Operator on page 154

■ Circular Integrator Operator on page 155
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■ Delay Operator on page 158

■ Transition Filter on page 159

■ Slew Filter on page 163

■ Implementing Laplace Transform S-Domain Filters on page 164

■ Implementing Z-Transform Filters on page 170

For descriptions of functions used to control input and output, see

■ Displaying Results on page 174

■ Working with Files on page 180

For descriptions of functions used to control the simulator, see

■ Exiting to the Operating System on page 185

For a description of the $pwr function, which is used to specify power consumption in a 
module, see

■ Specifying Power Consumption on page 179

For information on using user-defined functions in the Verilog-AMS language, see

■ Declaring an Analog User-Defined Function on page 187

■ Calling a User-Defined Analog Function on page 188
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Announcing Discontinuity

Use the $discontinuity function to tell the simulator about a discontinuity in signal 
behavior. 

discontinuity_function ::=
$discontinuity[ (constant_expression) ]

constant_expression, which must be zero or a positive integer, is the degree of the 
discontinuity. For example, $discontinuity, which is equivalent to $discontinuity(0), 
indicates a discontinuity in the equation, and $discontinuity(1) indicates a discontinuity 
in the slope of the equation.

You do not need to announce discontinuities created by switch branches or built-in functions 
such as transition and slew.

Be aware that using the $discontinuity function does not guarantee that the simulator 
will be able to handle a discontinuity successfully. If possible, you should avoid discontinuities 
in the circuits you model.

The following example shows how you might use the $discontinuity function while 
describing the behavior of a source that generates a triangular wave. As the Triangular Wave 
figure on page 121 shows, the triangular wave is continuous, but as the Triangular Wave First 
Derivative figure on page 121 shows, the first derivative of the wave is discontinuous.

Triangular Wave

Triangular Wave First Derivative

The module trisource describes this triangular wave source.

module trisource (vout) ;
output vout ;
voltage vout ;
parameter real wavelength = 10.0, amplitude = 1.0 ;
integer slope ;
real wstart ;
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analog begin
@(timer(0, wavelength)) begin

slope = +1 ;
wstart = $abstime ;
$discontinuity (1); // Change from neg to pos slope

end
@(timer(wavelength/2, wavelength)) begin

slope = -1 ;
wstart = $abstime ;
$discontinuity (1); // Change from pos to neg slope

end
V(vout) <+ amplitude * slope * (4 * ($abstime - wstart) / wavelength-1) ;

end
endmodule

The two $discontinuity functions in trisource tell the simulator about the 
discontinuities in the derivative. In response, the simulator uses analysis techniques that take 
the discontinuities into account.

The module relay, as another example, uses the $discontinuity function while 
modeling a relay.

module relay (c1, c2, pin, nin) ;
inout c1, c2 ;
input pin, nin ;
electrical c1, c2, pin, nin ;
parameter real r = 1 ;

analog begin
@(cross(V(pin, nin) - 1, 0, 0.01n, pin.potential.abstol)) $discontinuity(0);
if (V(pin, nin) >= 1)

I(c1, c2) <+ V(c1, c2) / r ;
else

I(c1, c2) <+ 0 ;
end
endmodule

The $discontinuity function in relay tells the simulator that there is a discontinuity in the 
current when the voltage crosses the value 1. For example, passing a triangular wave like that 
shown in the Relay Voltage figure on page 122 through module relay produces the 
discontinuous current shown in the Relay Current figure on page 123.

Relay Voltage
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Relay Current

Bounding the Time Step

Use the $bound_step function to specify the maximum time allowed between adjacent time 
points during simulation.

bound_step_function ::=
$bound_step ( max_step )

max_step ::=
constant_expression

By specifying appropriate time steps, you can force the simulator to track signals as closely 
as your model requires. For example, module sinwave forces the simulator to simulate at 
least 50 time points during each cycle.

module sinwave (outsig) ;
output outsig ;
voltage outsig ;
parameter real freq = 1.0, ampl = 1.0 ;

analog begin
V(outsig) <+ ampl * sin(2.0 * ‘M_PI * freq * $abstime) ;
$bound_step(0.02 / freq) ; // Max time step = 1/50 period

end
endmodule

Announcing and Handling Nonlinearities

Use the $limit function to announce nonlinearities that are other than exponential. This 
information is used to improve convergence.

limit_call_function ::=
$limit ( access_function_reference )

| $limit ( access_function_reference, string, arg_list)
| $limit ( access_function_reference, analog_function_ID, arg_list)

access_function_reference is the reference that is being limited.

string is a built-in simulator function that you recommend be used to compute the return 
value. In this release, the syntax of string is not checked.

1

-1C
u
r
r
e
n
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analog_function_ID is a user-defined analog function that you recommend be used to 
compute the return value. In this release, the syntax of analog_function_ID is not 
checked.

arg_list is a list of arguments for the built-in or user-defined function. In this release, the 
syntax of arg_list is not checked.

Note: Although the $limit function is allowed, Cadence tools, in this release, do nothing 
with the information. Consequently, coding

vdio = $limit(V(a,c), spicepnjlim, $vt, vcrit);

is equivalent to coding

vdio = V(a,c);

Finding When a Signal Is Zero

Use the last_crossing function to find out what the simulation time was when a signal 
expression last crossed zero.

last_crossing_function ::=
last_crossing ( signal_expression , direction )

Set direction to indicate which crossings the simulator should detect.

Before the first detectable crossing, the last_crossing function returns a negative value.

The last_crossing function is subject to the restrictions listed in “Restrictions on Using 
Analog Operators” on page 152.

The last_crossing function does not control the time step to get accurate results and uses 
interpolation to estimate the time of the last crossing. To improve the accuracy, you might 
want to use the last_crossing function together with the cross function.

If you want to Then

Detect all crossings Set direction equal to 0

Detect only crossings where the value is 
increasing

Set direction equal to +1

Detect only crossings where the value is 
decreasing

Set direction equal to -1
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For example, module period calculates the period of the input signal, using the cross 
function to resolve the times accurately.

module period (in) ;
input in ;
voltage in ;
integer crosscount ;
real latest, earlier ;

analog begin
@(initial_step) begin

crosscount = 0 ;
earlier = 0 ;

end

@(cross(V(in), +1)) begin
crosscount = crosscount + 1 ;
earlier = latest ;

end
latest = last_crossing(V(in), +1) ;
@(final_step) begin

if (crosscount < 2)
$strobe("Could not measure the period.") ;

else
$strobe("Period = %g, Crosscount = %d", latest-earlier, crosscount) ;

end
end
endmodule

Querying the Simulation Environment

Use the simulation environment functions described in the following sections to obtain 
information about the current simulation environment.

Obtaining the Current Simulation Time

Verilog-AMS provide two environment parameter functions that you can use to obtain the 
current simulation time: $abstime and $realtime.

$abstime Function

Use the $abstime function to obtain the current simulation time in seconds.

abstime_function ::=
$abstime

$realtime Function

Use the $realtime function to obtain the current simulation time in seconds.
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realtime_function ::=
$realtime[(time_scale)]

time_scale is a value used to scale the returned simulation time. The valid values are the 
integers 1, 10, and 100, followed by one of the scale factors in the following table.

If you do not specify time_scale, the return value is scaled to the ‘time_unit of the 
module that invokes the function.

For example, to print out the current simulation time in seconds, you might code

$strobe("Simulation time = %e", $realtime(1s)) ; 

Obtaining the Current Ambient Temperature

Use the $temperature function to obtain the ambient temperature of a circuit in degrees 
Kelvin.

temperature_function ::=
$temperature

Obtaining the Thermal Voltage

Use the $vt function to obtain the thermal voltage, (kT/q), of a circuit.

vt_function ::=
$vt[(temp)]

temp is the temperature, in degrees Kelvin, at which the thermal voltage is to be calculated. 
If you do not specify temp, the thermal voltage is calculated at the temperature returned by 
the $temperature function.

Scale Factor Meaning

s Seconds

ms Milliseconds

us Microseconds

ns Nanoseconds

ps Picoseconds

fs Femtoseconds
December 2011 126 Product Version 11.1



Cadence Verilog-AMS Language Reference
Simulator Functions
Querying the scale, gmin, and iteration Simulation Parameters

Use the $simparam function to query the value of the scale, gmin, or iteration 
simulation parameters. The returned value is always a real value.

simparam_function ::=
$simparam ("param" [, expression])

param is one of the following simulation parameters.

expression is an expression whose value is returned if param is not recognized.

For example, to return the value of the simulation parameter named gmin, you might code

$strobe("gmin = %e", $simparam("gmin")) ; 

To specify that a value of 2.0 is to be returned when the specified simulation parameter is not 
found, you might code

$strobe("gmin = %e", $simparam("gmin", 2.0)) ;

Obtaining and Setting Signal Values

Use the access functions to obtain or set the signal values.

access_function_reference ::=
bvalue

| pvalue

bvalue ::=
access_identifier ( analog_signal_list )

analog_signal_list ::=
branch_identifier

| array_branch_identifier [ genvar_expression ]
| net_or_port_scalar_expression 
| net_or_port_scalar_expression , net_or_port_scalar_expression

net_or_port_scalar_expression ::=
net_or_port_identifier

| vector_net_or_port_identifier [ genvar_expression ]

pvalue ::=
flow_access_identifier (<port_scalar_expression>)

Simulation Parameter Meaning

scale Scale factor for device instance geometry parameters.

gmin Minimum conductance placed in parallel with nonlinear 
branches.

iteration Iteration number of the analog solver.
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port_scalar_expression ::=
port_identifier

| array_port_identifier [ constant_expression ]
| vector_port_identifier [ constant_expression ]

Access functions in Verilog-AMS take their names from the discipline associated with a node, 
port, or branch. Specifically, the access function names are defined by the access attributes 
specified for the discipline’s natures.

For example, the electrical discipline, as defined in the standard definitions, uses the 
nature Voltage for potential. The nature Voltage is defined with the access attribute 
equal to V. Consequently, the access function for electrical potential is named V. For more 
information, see the files installed in your_install_dir/tools/spectre/etc/ahdl.

To set a voltage, use the V access function on the left side of a contribution statement.

V(out) <+ I(in) * Rparam ;

To obtain a voltage, you might use the V access function as illustrated in the following 
fragment. 

I(c1, c2) <+ V(c1, c2) / r ;

The simulator provides specialized support for obtaining (from analog contexts only) the 
voltages of nets or ports specified by out-of-module references. For example, you can use a 
block like the following: 

analog begin
tmp_a_b = V(top.level1.level2.node_a, top.level1.level2.node_b);
tmp_a = V(top.level1.level2.node_a);
tmp_c_b = V(top.level1.level2.node_c[1], top.level1.level2.node_b[1]);
$display("tmp_a_b = %g, tmp_a = %g, tmp_c_b =%g\n", tmp_a_b, tmp_a, tmp_c_b);

end

If you want to set the voltage on a net or port that is an out-of-module reference, you must be 
sure to define the discipline of that net or port explicitly as electrical. For example: 

// Contents of oomr.v 
`include "disciplines.vams"

module top;

electrical a; // node a referenced in module sub 
electrical gnd;

sub (* integer library_binding = "work_lib"; *) Isub (  );

resistor #(.r(1.000)) (* integer library_binding = "analogLib"; *) R1 (a, gnd);

analog begin
V(gnd) <+ 0.0;
V(Isub.b) <+ 18.0; // out-of-module reference to node b, 

// explicitly declared as electrical in module sub 
end

endmodule
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// Contents of sub.v
`include "disciplines.vams"

module sub;
electrical b; // node b referenced in module top 

electrical gnd;

resistor #(.r(1.000)) (* integer library_binding = "analogLib"; *) R1 (b ,gnd );

analog begin
V(top.a) <+ 17.0; // out-of-module reference to top.a, 

// explicitly declared as electrical in module top 
V(gnd)<+ 0.0;

end

endmodule

The simulator provides limited support for obtaining (from analog contexts only) the currents 
of nets or ports specified by out-of-module references. For more information, see “Obtaining 
Currents Using Out-of-Module References” on page 131.

You can apply access functions only to scalars or to individual elements of a vector. You select 
the scalar element of a vector using an index. For example, V(in[1]) accesses the voltage 
in[1]. 

To see how you can use access functions, see the “Access Function Formats” table, below. 
In the table, b1 refers to a branch, n1 and n2 refer to either nodes or ports, and p1 refers to 
a port. The branches, nodes, and ports in this table belong to the electrical discipline, 
where V is the name of the access function for the voltage (potential) and I is the name of the 
access function for the current (flow). Access functions for other disciplines have different 
names, but you use them in the same ways. For example, MMF is the access function for 
potential in the magnetic discipline. 

Access Function Formats

Format Effect

V(b1) Accesses the potential across branch b1

V(n1) Accesses the potential of n1 relative to ground

V(n1,n2) Accesses the potential difference on the unnamed branch between 
n1 and n2

I(b1) Accesses the current on branch b1

I(n1) Accesses the current flowing from n1 to ground

I(n1, n2) Accesses the current flowing on the unnamed branch between n1 
and n2; node n1 and node n2 cannot be the same node
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Notice the use of the port access operator (<>) in the last format. The port identifier in a port 
access function must be a scalar or resolve to a constant node of a bus port accessed by a 
constant expression. You cannot use the port access operator to access potential, nor can 
you use the port access operator on the left side of a contribution operator. You can use the 
port access operator only in modules that do not instantiate sub-hierarchies or primitives. 

You can use a port access to monitor the flow. In the following example, the simulator issues 
a warning if the total diode current becomes too large. 

module diode (a, c) ;
electrical a, c ;
branch (a, c) diode, cap ;
parameter real is=1e-14, tf=0, cjo=0, imax=1, phi=0.7 ;

analog begin
I(diode) <+ is*(limexp(V(diode)/$vt) -1) ;
I(cap) <+ ddt(tf*I(diode) - 2 * cjo * sqrt(phi * (phi * V(cap)))) ;
if (I(<a>) > imax) // Checks current through port

$strobe( "Warning: diode is melting!" ) ;
end 

endmodule

I(<p1>) Accesses the current flow into the module through port p1.

Access Function Formats, continued

Format Effect
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Obtaining Currents Using Out-of-Module References

Use the Cadence-provided system task $cds_iprobe to return the current of an out-of-
module port. 

OOM_current_reference ::=
$cds_iprobe("hierarchical_name")

hierarchical_name is the hierarchical name of the out-of-module scalar port or 
individual bit of a vector port whose current you want to access.

The $cds_iprobe task is subject to the following limitations:

■ The returned value is always the value at the last accepted simulation point. The value 
remains constant until the next simulation point is accepted. As a consequence, you 
cannot use the $cds_iprobe task to model a source for a current controlled device.

■ The $cds_iprobe task can be used only in analog contexts.

■ The $cds_iprobe task can be used only when the Spectre solver is active. This task 
cannot be used with the UltraSim solver, nor with the ncelab -amsfastspice option.

■ You must have an active Tcl current probe set up to probe the current that the 
$cds_iprobe task returns.

For example, you set up a Tcl probe with the following command.

ncsim> probe -create -flow -shm -port top.I1

You create and simulate the following modules:

module top;
electrical a, gnd;
ground gnd;
real x;
vsource #(.type("sine"), .ampl(11), .freq(1k)) V1(a,gnd);
leaf l1(a,gnd);
analog begin

// The top.I1.a below is an out-of-module reference.
 $display("I<top.l1.a>=%g\n", $cds_iprobe("top.l1.a"));

end
endmodule

module leaf(a,b);
electrical a, b;
resistor #(.r(1.0)) r1(a,b);

Endmodule

The $display statement in the analog block displays the current of port a in the instance of 
the leaf module.
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Accessing Attributes

Use the hierarchical referencing operator to access the attributes for a node or branch.

attribute_reference ::=
node_identifier.pot_or_flow.attribute_identifier

pot_or_flow ::=
potential

| flow

node_identifier is the node or branch whose attribute you want to access.

attribute_identifier is the attribute you want to access.

For example, the following fragment illustrates how to access the abstol values for a node and 
a branch.

electrical a, b, n1, n2;
branch (n1, n2) cap ;
parameter real c= 1p;
analog begin 

I(a,b) <+ c*ddt(V(a,b), a.potential.abstol) ; // Access abstol for node
I(cap) <+ c*ddt(V(cap), n1.potential.abstol) ; // Access abstol for branch

end

Examining Drivers

A driver of a signal is one of the following:

■ A process that assigns a value to the signal

■ A connection of the signal to an output port of a module instance or simulation primitive

Each driver can have both a present value and a pending value. The present value is the 
present contribution of the driver to the signal. The pending value is the next scheduled 
contribution, if any, of the driver to the signal. 

The drivers associated with a signal are numbered from zero to one less than the number of 
drivers. For example, if there are five associated drivers, then they have the numbers 0, 1, 2, 
3, and 4.

The next sections describe the Verilog-AMS driver access functions you can use to create 
connect modules that are controlled by the digital drivers in ordinary modules. Note that 

■ Driver access functions (including the driver_update event keyword) can be used 
only in the digital behavioral blocks of connect modules. They cannot be used in ordinary 
modules.
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■ Driver access functions (including the driver_update event keyword) are sensitive to 
drivers of only ordinary modules

■ . These functions automatically ignore any drivers found inside connect modules.

Counting the Number of Drivers

Use the $driver_count function to determine how many drivers are associated with a 
specified digital signal.

driver_count_function ::=
$driver_count ( signal )

signal is the name of the digital signal.

The $driver_count function returns an integer, which is the number of drivers associated 
with signal.

Determining the Value Contribution of a Driver

Use the driver_state function to determine the present value contribution of a specified 
driver to a specified signal.

driver_state_function ::=
$driver_state ( signal , driver_index )

signal is the name of the digital signal.

driver_index is an integer number between 0 and N-1 where N is the total number of 
drivers contributing to the signal value.

The driver_state function returns one of the following state values: 0, 1, x, or z.

Determining the Strength of a Driver

Use the driver_strength function to determine the strength contribution of a specified 
driver to a specified signal.

driver_strength_function ::=
$driver_strength ( signal , driver_index )

signal is the name of the digital signal.

driver_index is an integer number between 0 and N-1 where N is the total number of 
drivers contributing to the signal value.
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The driver_strength function returns two strengths: bits 5 through 3 for strength0 and 
bits 2 through 0 for strength1.

If the value returned is 0 or 1, strength0 returns the high end of the strength range and 
strength1 returns the low end of the strength range. Otherwise, the strengths of both 
strength0 and strength1 are defined as shown below.

For more information, see the “Logic Strength Modeling” section, of the “Gate and Switch 
Level Modeling” chapter, in the Verilog-XL Reference.

Detecting Updates to Drivers

Use the driver_update event keyword to determine when a driver of a signal is updated 
by the addition of a new pending value.

driver_update_event_keyword ::=
driver_update ( signal )

signal is the name of the digital signal.

The driver_update event occurs any time a new pending value is added to the driver, even 
when there is no change in the resolved value of the signal.

Use the driver_update event keyword in conjunction with the event detection operator to 
detect updates. For example, the statement in the following code executes any time a driver 
of the clock signal is updated.

always @ (driver_update clock)
statement ;

strength0 strength1

Bits 7

Su0

6

St0

5

Pu0

4

La0

3

We0

2

Me0

1

Sm0

0

HiZ0

0

HiZ1

1

Sm1

2

Me1

3

We1

4

La1

5

Pu1

6

St1

7

Su1

Bits

B5 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 B2

B4 1 1 0 0 1 1 0 0 0 0 1 1 0 0 1 1 B1

B3 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 B0
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Analysis-Dependent Functions

The analysis-dependent functions change their behavior according to the type of analysis 
being performed.

Determining the Current Analysis Type

Use the analysis function to determine whether the current analysis type matches a 
specified type. By using this function, you can design modules that change their behavior 
during different kinds of analyses.

analysis ( analysis_list )

analysis_list ::=
analysis_name { , analysis_name }

analysis_name ::=
"analysis_type"

analysis_type is one of the following analysis types.

The following table describes the values returned by the analysis function for some of the 
commonly used analyses. A return value of 1 represents TRUE and a value of 0 represents 
FALSE.

Analysis Types and Descriptions

Analysis Type Analysis Description

dc OP or DC analysis

static Any equilibrium point calculation, including a DC analysis as well as 
those that precede another analysis, such as the DC analysis that 
precedes an AC or noise analysis, or the initial-condition analysis that 
precedes a transient analysis

tran Transient analysis

Simulator Analysis Type

Argument DC TRAN
OP TRAN

AC
OP AC

NOISE
OP AC

static 1 1 0 1 0 1 0

ic 0 1 0 0 0 0 0
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You can use the analysis function to make module behavior dependent on the current 
analysis type.

if (analysis("dc", "ic"))
out = ! V(in) > 0.0 ;

else
@(cross (V(in),0)) out = ! out

V(out) <+ transition (out, 5n, 1n, 1n) ;

Implementing Small-Signal AC Sources

Use the ac_stim function to implement a sinusoidal stimulus for small-signal analysis.

ac_stim ( [ "analysis_type" [ , mag [ , phase]]] )

analysis_type, if you specify it, must be one of the analysis types listed in the Analysis 
Types and Descriptions table on page 135. The default for analysis_type is ac. The mag 
argument is the magnitude, with a default of 1. phase is the phase in radians, with a default 
of 0.

The ac_stim function models a source with magnitude mag and phase phase only during 
the analysis_type analysis. During all other small-signal analyses, and during large-
signal analyses, the ac_stim function returns 0.

Implementing Small-Signal Noise Sources

Verilog-AMS provides three functions to support noise modeling during small-signal 
analyses:

■ white_noise function

■ flicker_noise function

■ noise_table function

dc 1 0 0 0 0 0 0

tran 0 1 1 0 0 0 0

ac 0 0 0 1 1 0 0

noise 0 0 0 0 0 1 1

Simulator Analysis Type

Argument DC TRAN
OP TRAN

AC
OP AC

NOISE
OP AC
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White_noise Function

Use the white_noise function to generate white noise, noise whose current value is 
completely uncorrelated with any previous or future values. 

white_noise( PSD [ , "name"])

PSD is the power spectral density of the source where PSD is specified in units of A2/Hz or 
V2/Hz.

name is a label for the noise source. The simulator uses name to identify the contributions of 
noise sources to the total output noise. The simulator combines into a single source all noise 
sources with the same name from the same module instance.

The white_noise function is active only during small-signal noise analyses and returns 0 
otherwise.

For example, you might include the following fragment in a module describing the behavior of 
a diode.

I(diode) <+ white_noise(2 * ‘P_Q * Id, "shot" ) ;

For a resistor, you might use a fragment like the following.

V(res) <+ white_noise(4 * ‘P_K * $temperature * rs, "thermal");

flicker_noise Function

Use the flicker_noise function to generate pink noise that varies in proportion to:

The syntax for the flicker_noise function is

flicker_noise( power, exp [ , "name"])

power is the power of the source at 1 Hz. 

name is a label for the noise source. The simulator uses name to identify the contributions of 
noise sources to the total output noise. The simulator combines into a single source all noise 
sources with the same name from the same module instance.

The flicker_noise function is active only during small-signal noise analyses and returns 
0 otherwise.

1 f
exp⁄
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For example, you might include the following fragment in a module describing the behavior of 
a diode:

I(diode) <+ flicker_noise( kf * pow(abs(I(diode)),af),ef) ;

Noise_table Function

Use the noise_table function to generate noise where the spectral density of the noise 
varies as a piecewise linear function of frequency.

noise_table(vector [ , "name" ])

vector is an array containing pairs of real numbers. The first number in each pair is a 
frequency in hertz; the second number is the power at that frequency. The noise_table 
function uses linear interpolation to compute the spectral density for each frequency. At 
frequencies lower than the lowest frequency specified in the table, the associated power is 
assumed to be the power associated with the lowest specified frequency. Similarly, at 
frequencies higher than the highest frequency specified in the table, the associated power is 
assumed to be the power associated with the highest specified frequency.

name is a label for the noise source. The simulator uses name to identify the contributions of 
noise sources to the total output noise. The simulator combines into a single source all noise 
sources with the same name from the same module instance.

The noise_table function is active only during small-signal noise analyses and returns 0 
otherwise.

For example, you might include the following fragment in an analog block:

V(p,n) <+ noise_table({1,2,100,4,1000,5,1000000,6}, "noitab");

In this example, the power at every frequency lower than 1 is assumed to be 2; the power at 
every frequency above 1000000 is assumed to be 6.

Generating Random Numbers

Use the $random function to generate a signed integer, 32-bit, pseudorandom number.

$random [ ( seed ) ] ;

seed is a reg, integer, or time variable used to initialize the function. The seed provides a 
starting point for the number sequence and allows you to restart at the same point. If, as 
Cadence recommends, you use seed, you must assign a value to the variable before calling 
the $random function.

The $random function generates a new number every time step.
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Individual $random statements with different seeds generate different sequences, and 
individual $random statements with the same seed generate identical sequences.

The following code fragment uses the absolute value function and the modulus operator to 
generate integers between 0 and 99. 

// There is a 5% chance of signal loss.
module randloss (pinout) ;
electrical pinout ;
integer randseed, randnum;

analog begin
@ (initial_step) begin

randseed = 123 ; // Initialize the seed just once
end
randnum = abs($random(randseed) % 100) ;
if (randnum < 5) 

V(pinout) <+ 0.0 ;
else

V(pinout) <+ 3.0 ;
end // of analog block

endmodule

Generating Random Numbers in Specified Distributions

Verilog-AMS provides functions that generate random numbers in the following distribution 
patterns:

■ Uniform 

■ Normal (Gaussian)

■ Exponential

■ Poisson

■ Chi-square

■ Student’s T

■ Erlang

In releases prior to IC5.0, the functions beginning with $dist return real numbers rather than 
integer numbers. If you need to continue getting real numbers in more recent releases, 
change each $dist function to the corresponding $rdist function.
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Uniform Distribution

Use the $rdist_uniform function to generate random real numbers (or the 
$dist_uniform function to generate integer numbers) that are evenly distributed 
throughout a specified range. The $rdist_uniform function is not supported in digital 
contexts.

$rdist_uniform ( seed , start , end ) ;
$dist_uniform ( seed , start , end ) ;

seed is a scalar integer variable used to initialize the sequence of generated numbers. seed 
must be a variable because the function updates the value of seed at each iteration. To 
ensure generation of a uniform distribution, change the value of seed only when you initialize 
the sequence. 

start is an integer or real expression that specifies the smallest number that the 
$dist_uniform function is allowed to return. start must be smaller than end.

end is an integer or real expression that specifies the largest number that the 
$dist_uniform function is allowed to return. end must be larger than start.

The following module returns a series of real numbers, each of which is between 20 and 60 
inclusively. 

module distcheck (pinout) ;
electrical pinout ;
parameter integer start_range = 20 ; // A parameter
integer seed, end_range;
real rrandnum ;

analog begin
@ (initial_step) begin

seed = 23 ; // Initialize the seed just once
end_range = 60 ; // A variable

end
rrandnum = $rdist_uniform(seed, start_range, end_range);
$display ("Random number is %g", rrandnum ) ;

// The next line shows how the seed changes at each
// iterative use of the distribution function.

$display ("Current seed is %d", seed) ;

V(pinout) <+ rrandnum ;
end // of analog block

endmodule

Normal (Gaussian) Distribution

Use the $rdist_normal function to generate random real numbers (or the $dist_normal 
function to generate integer numbers) that are normally distributed. The $rdist_normal 
function is not supported in digital contexts.
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$rdist_normal ( seed , mean , standard_deviation ) ;
$dist_normal ( seed , mean , standard_deviation ) ;

seed is a scalar integer variable used to initialize the sequence of generated numbers. seed 
must be a variable because the function updates the value of seed at each iteration. To 
ensure generation of a normal distribution, change the value of seed only when you initialize 
the sequence. 

mean is an integer or real expression that specifies the value to be approached by the mean 
value of the generated numbers. 

standard_deviation is an integer or real expression that determines the width of 
spread of the generated values around mean. Using a larger standard_deviation 
spreads the generated values over a wider range. 

To generate a gaussian distribution, use a mean of 0 and a standard_deviation of 1. 
For example, the following module returns a series of real numbers that together form a 
gaussian distribution.

module distcheck (pinout) ;
electrical pinout ;
integer seed ;
real rrandnum ;

analog begin
@ (initial_step) begin

seed = 23 ;
end 
rrandnum = $rdist_normal( seed, 0, 1 ) ;
$display ("Random number is %g", rrandnum ) ;
V(pinout) <+ rrandnum ;

end // of analog block

endmodule

Exponential Distribution

Use the $rdist_exponential function to generate random real numbers (or the 
$dist_exponential function to generate integer numbers) that are exponentially 
distributed. The $rdist_exponential function is not supported in digital contexts.

$rdist_exponential ( seed , mean ) ;
$dist_exponential ( seed , mean ) ;

seed is a scalar integer variable used to initialize the sequence of generated numbers. seed 
must be a variable because the function updates the value of seed at each iteration. To 
ensure generation of an exponential distribution, change the value of seed only when you 
initialize the sequence. 

mean is an integer or real value greater than zero. mean specifies the value to be approached 
by the mean value of the generated numbers. 
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For example, the following module returns a series of real numbers that together form an 
exponential distribution.

module distcheck (pinout) ;
electrical pinout ;
integer seed, mean ;
real rrandnum ;

analog begin
@ (initial_step) begin

seed = 23 ;
mean = 5 ; // Mean must be > 0

end 
rrandnum = $rdist_exponential(seed, mean) ;
$display ("Random number is %g", rrandnum ) ;
V(pinout) <+ rrandnum ;

end // of analog block

endmodule

Poisson Distribution

Use the $rdist_poisson function to generate random real numbers (or the 
$dist_poisson function to generate integer numbers) that form a Poisson distribution. The 
$rdist_poisson function is not supported in digital contexts.

$rdist_poisson ( seed , mean ) ;
$dist_poisson ( seed , mean ) ;

seed is a scalar integer variable used to initialize the sequence of generated numbers. seed 
must be a variable because the function updates the value of seed at each iteration. To 
ensure generation of a Poisson distribution, change the value of seed only when you initialize 
the sequence. 

mean is an integer or real value greater than zero. mean specifies the value to be approached 
by the mean value of the generated numbers. 

For example, the following module returns a series of real numbers that together form a 
Poisson distribution.

module distcheck (pinout) ;
electrical pinout ;
integer seed, mean ;
real rrandnum ;

analog begin
@ (initial_step) begin

seed = 23 ;
mean = 5 ; // Mean must be > 0

end 
rrandnum = $rdist_poisson(seed, mean) ;
$display ("Random number is %g", rrandnum ) ;
V(pinout) <+ rrandnum ;

end // of analog block

endmodule
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Chi-Square Distribution

Use the $rdist_chi_square function to generate random real numbers (or the 
$dist_chi_square function to generate integer numbers) that form a chi-square 
distribution. The $rdist_chi_square function is not supported in digital contexts.

$rdist_chi_square ( seed , degree_of_freedom ) ;
$dist_chi_square ( seed , degree_of_freedom ) ;

seed is a scalar integer variable used to initialize the sequence of generated numbers. seed 
must be a variable because the function updates the value of seed at each iteration. To 
ensure generation of a chi-square distribution, change the value of seed only when you 
initialize the sequence. 

degree_of_freedom is an integer value greater than zero. degree_of_freedom 
determines the width of spread of the generated values. Using a larger 
degree_of_freedom spreads the generated values over a wider range.

For example, the following module returns a series of real numbers that together form a 
chi-square distribution.

module distcheck (pinout) ;
electrical pinout ;
integer seed, dof ;
real rrandnum ;

analog begin
@ (initial_step) begin

seed = 23 ;
dof = 5 ; // Degree of freedom must be > 0

end 
rrandnum = $rdist_chi_square(seed, dof) ;
$display ("Random number is %g", rrandnum ) ;
V(pinout) <+ rrandnum ;

end // of analog block

endmodule

Student’s T Distribution

Use the $rdist_t function to generate random real numbers (or the $dist_t function to 
generate integer numbers) that form a Student’s T distribution. The $rdist_t function is not 
supported in digital contexts.

$rdist_t ( seed , degree_of_freedom ) ;
$dist_t ( seed , degree_of_freedom ) ;

seed is a scalar integer variable used to initialize the sequence of generated numbers. seed 
must be a variable because the function updates the value of seed at each iteration. To 
ensure generation of a Student’s T distribution, change the value of seed only when you 
initialize the sequence. 
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degree_of_freedom is an integer value greater than zero. degree_of_freedom 
determines the width of spread of the generated values. Using a larger 
degree_of_freedom spreads the generated values over a wider range.

For example, the following module returns a series of real numbers that together form a 
Student’s T distribution.

module distcheck (pinout) ;
electrical pinout ;
integer seed, dof ;
real rrandnum ;

analog begin
@ (initial_step) begin

seed = 23 ;
dof = 15 ; // Degree of freedom must be > 0

end 
rrandnum = $rdist_t(seed, dof) ;
$display ("Random number is %g", rrandnum ) ;
V(pinout) <+ rrandnum ;

end // of analog block

endmodule

Erlang Distribution

Use the $rdist_erlang function to generate random real numbers (or the $dist_erlang 
function to generate integer numbers) that form an Erlang distribution. The $rdist_erlang 
function is not supported in digital contexts.

$rdist_erlang ( seed , k , mean ) ;
$dist_erlang ( seed , k , mean ) ;

seed is a scalar integer variable used to initialize the sequence of generated numbers. seed 
must be a variable because the function updates the value of seed at each iteration. To 
ensure generation of an Erlang distribution, change the value of seed only when you initialize 
the sequence. 

k is an integer value greater than zero. Using a larger value for k decreases the variance of 
the distribution.

mean is an integer or real value greater than zero. mean specifies the value to be approached 
by the mean value of the generated numbers. 

For example, the following module returns a series of real numbers that together form an 
Erlang distribution.

module distcheck (pinout) ;
electrical pinout ;
integer seed, k, mean ;
real rrandnum ;
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analog begin
@ (initial_step) begin

seed = 23 ;
k = 20 ; // k must be > 0
mean = 15 ; // Mean must be > 0

end 
rrandnum = $rdist_erlang(seed, k, mean) ;
$display ("Random number is %g", rrandnum ) ;
V(pinout) <+ rrandnum ;

end // of analog block

endmodule

Interpolating with Table Models

Use the $table_model function to model the behavior of a design by interpolating between 
and extrapolating outside of data points.

table_model_declaration ::=
$table_model(variables , table_source [ , ctrl_string ] )

variables ::=
independent_var { , 2nd_independent_var [ , nth_independent_var ]}

table_source ::=
data_file

| table_model_array

data_file ::=
"filename"

| string_param

table_model_array ::=
array_ID { , 2nd_array_ID [ , nth_array_ID ]}, output_array_ID

ctrl_string ::=
"sub_ctrl_string { , sub_ctrl_string }"

sub_ctrl_string ::=
I

| D
| [ degree_char ] [ extrap_char [ extrap_char ]]

degree_char ::=
1 | 2 | 3

extrap_char ::=
C | L | S | E

independent_var is an independent model variable. An independent_var can be 
any legal numerical expression that you can assign to an analog signal. You must specify an 
independent model variable for each dimension with a corresponding sub_ctrl_string 
other than I (ignore). You must not specify an independent model variable for dimensions 
that have a sub_ctrl_string of I (ignore). 

Note: The I (ignore) sub_ctrl_string and support for more than one dimension are 
extensions beyond the Verilog-AMS LRM, Version 2.2. 
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data_file is the text file that stores the sample points. You can either give the file name 
directly or use a string parameter. For more information, see “Table Model File Format” on 
page 147.

table_model_array is a set of one-dimensional arrays that contains the data points to 
pass to the $table_model function. The size of the arrays is the same as the number of 
sample points. The data is stored in the arrays so that for the kth dimension of the ith sample 
point, kth_dim_array_identifier[i] = Xik and so that for the ith sample point 
output_array_identifier[i] = Yi. For an example, see “Example: Preparing Data in 
One-Dimensional Array Format” on page 150.

ctrl_string controls the numerical aspects of the interpolation process. It consists of 
subcontrol strings for each dimension.

sub_ctrl_string specifies the handling for each dimension.

When you specify I (ignore), the software ignores the corresponding dimension 
(column) in the data file. You might use this setting to skip over index numbers, for 
example. When you associate the I (ignore) value with a dimension, you must not 
specify a corresponding independent_var for that dimension. 

When you specify D (discrete), the software does not use interpolation for this dimension. 
If the software cannot find the exact value for the dimension in the corresponding 
dimension in the data file, it issues an error message and the simulation stops.

degree_char is the degree of the splines used for interpolation. The degree must not be 
zero or exceed 3. The default value is 1. 

extrap_char controls how the simulator evaluates a point that is outside the region of 
sample points included in the data file. The C (clamp) extrapolation method uses a horizontal 
line that passes through the nearest sample point, also called the end point, to extend the 
model evaluation. The L (linear) extrapolation method, which is the default method, models 
the extrapolation through a tangent line at the end point. The S (spline) extrapolation method 
uses the polynomial for the nearest segment (the segment at the end) to evaluate a point 
beyond the interpolation area. The E (error) extrapolation method issues a warning when the 
point to be evaluated is beyond the interpolation area.

You can specify the extrapolation method to be used for each end of the sample point region. 
When you do not specify an extrap_char value, the linear extrapolation method is used for 
both ends. When you specify only one extrap_char value, the specified extrapolation 
method is used for both ends. When you specify two extrap_char values, the first character 
specifies the extrapolation method for the end with the smaller coordinate value, and the 
second character specifies the method for the end with the larger coordinate value.
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You can use the $table_model function in the analog context (in an analog block) and in 
the digital context (such as in an initial or an always block). In the analog context, the 
$table_model function is subject to the same restrictions as analog operators with respect 
to where you can use the function. For more information, see “Restrictions on Using Analog 
Operators” on page 152. 

Note: In order to use the $table_model function in a digital context, you must be using 
digital mixed-signal licensing or AMS Designer simulator licensing, according to the "Feature-
to-License Checklist" in the Virtuoso AMS Designer Simulator User Guide. 

See also 

■ Table Model File Format on page 147 

■ Example: Using the $table_model Function on page 150 

■ Example: Preparing Data in One-Dimensional Array Format on page 150 

■ Example: Using $table_model as a Built-In Digital System Task on page 151 

Table Model File Format

The data in the table model file must be in the form of a family of ordered isolines. An isoline 
is a curve of at least two values generated when one variable is swept and all other variables 
are held constant. An ordered isoline is an isoline in which the sweeping variable is either 
monotonically increasing or monotonically decreasing. A monotonically increasing variable 
is one in which every subsequent value is equal to or greater than the previous value. A 
monotonically decreasing variable is one in which every subsequent value is equal to or 
less than the previous value. 

For example, a bipolar transistor can be described by a family of isolines, where each isoline 
is generated by holding the base current constant and sweeping the collector voltage from 0 
to some maximum voltage. If the collector voltage sweeps monotonically, the generated 
isoline is an ordered isoline. In this example, the collector voltage takes many values for each 
of the isolines so the voltage is the fastest changing independent variable and the base 
current is the slowest changing independent variable. You need to know the fastest 
changing and slowest changing independent variables to arrange the data correctly in the 
table model file.

The sample points are stored in the file in the following format:

P1
P2
P3
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...
PM

where Pi (i = 1...M) are the sample points. Each sample point Pi is on a separate line and 
is represented as a sequence of numbers, Xi1 Xi2 ... XiN Yi where N is the highest 
dimension of the model, Xik is the coordinate of the sample point in the kth dimension, and 
Yi is the model value at this point. Xi1 (the leftmost variable) must be the slowest changing 
variable, XiN (the rightmost variable other than the model value) must be the fastest changing 
variable, and the other variables must be arranged in between from slowest changing to 
fastest changing. Comments, which begin with #, can be inserted anyplace in the file and 
continue to the end of the line.

For example, to create a table model with three ordered isolines representing the function

z = f(x,y) = x+y2

you build the model as follows, assuming that you want to have four sample values on each 
isoline. The y values used here are all the same and equally spaced on each isoline, but they 
do not have to be.

Isoline 1: x=1

y = 1, 2, 3, 4
z = 2, 5, 10, 17

Isoline 2: x=2

y = 1, 2, 3, 4
z = 3, 6, 11, 18

Isoline 3: x=3

y = 1, 2, 3, 4
z = 4, 7, 12, 19

Finally, you decide to prefix each row with an index. The function will be specified so as to 
ignore this new column of data.

You enter the table model data into the file as

# Indx is the index column to be ignored.
# x is the slowest changing independent variable.
# y is the fastest changing independent variable.
# z is the table model value at each point.
# Indx x y z

1 1 1 2
2 1 2 5
3 1 3 10
4 1 4 17
5 2 1 3
6 2 2 6
7 2 3 11
8 2 4 18
9 3 1 4
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10 3 2 7
11 3 3 12
12 3 4 19
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Example: Using the $table_model Function

For example, assume that you have a data file named nmos.tbl, which contains the data 
given above. You might use it in a module as follows: 

‘include "disciplines.vams"
‘include "constants.vams"

module mynmos (g, d, s);
electrical g, d, s;
inout g, d, s;

analog begin
I(d, s) <+ $table_model (V(g, s), V(d, s), "nmos.tbl", "I,3CL,3CL");

end

endmodule

In this example, the program ignores the first column of data. The independent variables are 
V(g,s) and V(d,s). The degree of the splines that the program uses for interpolation is 
three for each of the two active dimensions. For each of these dimensions, the extrapolation 
method for the lower end is clamping and the extrapolation for the upper end is linear. 

Example: Preparing Data in One-Dimensional Array Format

In this example, there are 18 sample points. Consequently, each of the one-dimensional 
arrays contains 18 bits. Each point has two independent variables, represented by x and y, 
and a value, represented by f_xy.

module measured_resistance (a, b);
electrical a, b;
inout a, b;
real x[0:17], y[0:17], f_xy[0:17];
analog begin

@(initial_step) begin
x[0]= -10; y[0]=-10; f_xy[0]=0; // 0th sample point
x[1]= -10; y[1]=-8; f_xy[1]=-0.4; // 1st sample point
x[2]= -10; y[2]=-6; f_xy[2]=-0.8; // 2nd sample point
x[3]= -9; y[3]=-10; f_xy[3]=0.2;
x[4]= -9; y[4]=-8; f_xy[4]=-0.2;
x[5]= -9; y[5]=-6; f_xy[5]=-0.6;
x[6]= -9; y[6]=-4; f_xy[6]=-1;
x[7]= -8; y[7]=-10; f_xy[7]=0.4;
x[8]= -8; y[8]=-9; f_xy[8]=0.2;
x[9]= -8; y[9]=-7; f_xy[9]=-0.2;
x[10]= -8; y[10]=-5; f_xy[10]=-0.6;
x[11]= -8; y[11]=-3; f_xy[11]=-1;
x[12]= -7; y[12]=-10; f_xy[12]=0.6;
x[13]= -7; y[13]=-9; f_xy[13]=0.4;
x[14]= -7; y[14]=-8; f_xy[14]=0.2;
x[15]= -7; y[15]=-7; f_xy[15]=0;
x[16]= -7; y[16]=-6; f_xy[16]=-0.2;
x[17]= -7; y[17]=-5; f_xy[17]=-0.4;

end
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I(a, b) <+ $table_model (V(a), V(b), x, y, f_xy, "3L,1L");
end
endmodule

Example: Using $table_model as a Built-In Digital System Task

You can use the $table_model function as a built-in digital system task in an initial or 
always block, such as: 

module example(rout, rin1, rin2, clk);
wreal rout, rin1, rin2;
input rin1, rin2;
output rout;
wire clk;
input clk;

real out;

assign rout = out;

always @clk begin
out = $table_model(rin1, rin2,"sample.dat");

end
endmodule
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Analog Operators 

Analog operators are functions that operate on more than just the current value of their 
arguments. These functions maintain an internal state and produce a return value that is a 
function of an input expression, the arguments, and their internal state.

The analog operators are the

■ Limited exponential function

■ Time derivative operator

■ Time integral operator

■ Circular integrator operator

■ Delay operator

■ Transition filter

■ Slew filter

■ Laplace transform filters

■ Z-transform filters

Restrictions on Using Analog Operators

Analog operators are subject to these restrictions:

■ You can use analog operators inside an if or case construct only if the controlling 
conditional expression consists entirely of genvar expressions, literal numerical 
constants, parameters, or the analysis function.

■ You cannot use analog operators in repeat, while, or for statements.

■ You cannot use analog operators inside a function. 

■ You cannot use analog operators inside initial blocks, always blocks, or user-
defined functions.

■ You cannot specify a null argument in the argument list of an analog operator.
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Limited Exponential Function

Use the limited exponential function to calculate the exponential of a real argument.

limexp( expr )

expr is a dynamic expression of type real.

The limexp function limits the iteration step size to improve convergence. limexp behaves 
like the exp function, except that using limexp to model semiconductor junctions generally 
results in dramatically improved convergence. For information on the exp function, see 
“Standard Mathematical Functions” on page 106.

The limexp function is subject to the restrictions listed in “Restrictions on Using Analog 
Operators” on page 152.

Time Derivative Operator

Use the time derivative operator to calculate the time derivative of an argument.

ddt( input [ , abstol | nature ] )

input is a dynamic expression.

abstol is a constant specifying the absolute tolerance that applies to the output of the ddt 
operator. Set abstol at the largest signal level that you consider negligible. In this release 
of Verilog-AMS, abstol is ignored.

nature is a nature from which the absolute tolerance is to be derived. In this release of 
Verilog-AMS, nature is ignored.

The time derivative operator is subject to the restrictions listed in “Restrictions on Using 
Analog Operators” on page 152.

In DC analyses, the ddt operator returns 0. To define a higher order derivative, you must use 
an internal node or signal. For example, a statement such as the following is illegal.

V(out) <+ ddt(ddt(V(in))) // ILLEGAL!

For an example illustrating how to define higher order derivatives correctly, see “Using 
Integration and Differentiation with Analog Signals” on page 45.

Note: You cannot output the result of the ddt operator using statements such as $print, 
$strobe, and $fopen. Instead, you can use an internal node to record the value, then 
output the value of the internal node. 
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Time Integral Operator

Use the time integral operator to calculate the time integral of an argument.

idt( input [ , ic [ , assert [ , abstol | nature ] ] ] )

input is a dynamic expression to be integrated.

ic is a dynamic expression specifying the initial condition.

assert is a dynamic integer-valued parameter. To reset the integration, set assert to a 
nonzero value.

abstol is a constant explicit absolute tolerance that applies to the input of the idt operator. 
Set abstol at the largest signal level that you consider negligible.

nature is a nature from which the absolute tolerance is to be derived.

The time integral operator is subject to the restrictions listed in “Restrictions on Using Analog 
Operators” on page 152.

The value returned by the idt operator during DC or AC analysis depends on which of the 
parameters you specify.

If you specify Then idt returns

input

The time-integral of x from 0 to t with the initial condition being 
computed in the DC analysis.

input, ic

The time-integral of x from 0 to t with initial condition ic. In DC or IC 
analyses, returns ic.

input, ic, 
assert

The time-integral of x from t0 to t with initial condition ic. In DC or IC 
analyses, and when assert is nonzero, returns ic. t0 is the time 
when assert last became 0.
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The initial condition forces the DC solution to the system. You must specify the initial 
condition, ic, unless you are using the idt operator in a system with feedback that forces 
input to zero. If you use a model in a feedback configuration, you can leave out the initial 
condition without any unexpected behavior during simulation. For example, an operational 
amplifier alone needs an initial condition, but the same amplifier with the right external 
feedback circuitry does not need that forced DC solution.

The following statement illustrates using idt with a specified initial condition.

V(out) <+ sin(2*`M_PI*(fc*$abstime + idt(gain*V(in),0))) ;

Circular Integrator Operator

Use the circular integrator operator to convert an expression argument into its indefinitely 
integrated form.

idtmod(expr [ , ic [ , modulus [, offset [, abstol | nature ] ] ] ] )

expr is the dynamic integrand or expression to be integrated.

ic is a dynamic initial condition. By default, the value of ic is zero.

modulus is a dynamic value at which the output of idtmod is reset. modulus must be a 
positive value equation. If you do not specify modulus, idtmod behaves like the idt 
operator and performs no limiting on the output of the integrator.

offset is a dynamic value added to the integration. The default is zero.

input, ic, 
assert, abstol

The time-integral of x from t0 to t with initial condition ic. In DC or IC 
analysis, and when assert is nonzero, returns ic. t0 is the time 
when assert last became 0.

input, ic, 
assert, nature

The time-integral of x from t0 to t with initial condition ic. In DC or IC 
analysis, and when assert is nonzero, returns ic. t0 is the time 
when assert last became 0.

If you specify Then idt returns
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The modulus and offset parameters define the bounds of the integral. The output of the 
idtmod function always remains in the range

offset < idtmod_output < offset+modulus

abstol is a constant explicit absolute tolerance that applies to the input of the idtmod 
operator. Set abstol at the largest signal level that you consider negligible.

nature is a nature from which the absolute tolerance is to be derived.

The circular integrator operator is subject to the restrictions listed in “Restrictions on Using 
Analog Operators” on page 152.

The value returned by the idtmod operator depends on which parameters you specify.

If you specify Then idtmod returns

expr

The time-integral of expr from 0 to t with the initial condition being 
computed in the DC analysis. Returns x.

expr, ic

The time-integral of expr from 0 to t with initial condition ic. In DC 
or IC analysis, returns ic; otherwise, returns x.

expr, ic, 
modulus

where x = n*modulus + k
n = ... -3, -2, -1, 0, 1, 2, 3 ...
Returns k where 0 < k < modulus

expr, ic, 
modulus, 
offset

where x = n*modulus + k
Returns k where offset < k < offset + modulus
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The initial condition forces the DC solution to the system. You must specify the initial 
condition, ic, unless you are using idtmod in a system with feedback that forces expr to 
zero. If you use a model in a feedback configuration, you can leave out the initial condition 
without any unexpected behavior during simulation.

Example

The circular integrator is useful in cases where the integral can get very large, such as in a 
voltage controlled oscillator (VCO). For example, you might use the following approach to 
generate arguments in the range [0,2π] for the sinusoid.

phase = idtmod(fc + gain*V(IN), 0, 1, 0); //Phase is in range [0,1].
V(OUT) <+ sin(2*PI*phase);

Derivative Operator

Use the ddx operator to access symbolically-computed partial derivatives of expressions in 
the analog block. 

ddx (expr, potential_access_id (net_or_port_scalar_expr))
ddx (expr, flow_access_id (branch_id))

expr is a real or integer value expression. The derivative operator returns the partial 
derivative of this argument with respect to the unknown indicated by the second argument, 
with all other unknowns held constant and evaluated at the current operating point. If expr 
does not depend explicitly on the unknown, the derivative operator returns zero. The expr 
argument:

■ Cannot be a dynamic expression, such as ddx(ddt(...), ...)

expr, ic, 
modulus, 
offset, 
abstol where x = n*modulus + k

Returns k where offset < k < offset + modulus

expr, ic, 
modulus, 
offset, 
nature where x = n*modulus + k

Returns k where offset < k < offset + modulus

If you specify Then idtmod returns
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■ Cannot be a nested expression, such as ddx(ddx(...), ...)

■ Cannot include symbolically calculated expressions, such as ddx(transition(...), 
...)

■ Cannot include arrays, such as ddx(a[0], ...)

■ Cannot contain unknown variables in the system of equations, such as ddx(V(a), 
...)

■ Cannot contain quantities that depend on other quantities, such as: 
I(a,b)<+g*V(a,b); ddx(I(a,b), V(a))

potential_access_id is the access operator for the potential of a scalar net or port.

net_or_port_scalar_expr is a scalar net or port.

flow_access_id is the access operator for the flow through a branch.

branch_id is the name of a branch.

The derivative operator is subject to the restrictions listed in “Restrictions on Using Analog 
Operators” on page 152.

Example

This example implements a voltage-controlled dependent current source. The names of the 
variables indicate the values of the partial derivatives: +1, -1, or 0. These values (scaled by 
the parameter k) can be used in a Newton-Raphson solution.

module vccs(pout,nout,pin,nin);
electrical pout, nout, pin, nin;
inout pout, nout, pin, nin;
parameter real k = 1.0;
real vin, one, minusone, zero;
analog begin

vin = V(pin,nin);
one = ddx(vin, V(pin));
minusone = ddx(vin, V(nin));
zero = ddx(vin, V(pout));
I(pout,nout) <+ k * vin;

end
endmodule

Delay Operator

Use the absdelay operator to delay the entire signal of a continuously valued waveform.

absdelay( expr , time_delay [ , max_delay ] )
December 2011 158 Product Version 11.1



Cadence Verilog-AMS Language Reference
Simulator Functions
expr is a dynamic expression to be delayed. 

time_delay, a dynamic nonnegative value, is the length of the delay. If you specify 
max_delay, you can change the value of time_delay during a simulation, as long as the 
value remains in the range 0 < time_delay < max_delay. Typically time_delay is a 
constant but can also vary with time (when max_delay is defined).

max_delay is a constant nonnegative number greater than or equal to time_delay. You 
cannot change max_delay because the simulator ignores any attempted changes and 
continues to use the initial value.

For example, to delay an input voltage you might code

V(out) <+ absdelay(V(in), 5u) ;

The absdelay operator is subject to the restrictions listed in “Restrictions on Using Analog 
Operators” on page 152.

In DC and operating analyses, the absdelay operator returns the value of expr unchanged. 
In time-domain analyses, the absdelay operator introduces a transport delay equal to the 
instantaneous value of time_delay based on the following formula.

Output(t) = Input(max(t-time_delay, 0))

Transition Filter

Use the transition filter to smooth piecewise constant waveforms, such as digital logic 
waveforms. The transition filter returns a real number that over time describes a 
piecewise linear waveform. The transition filter also causes the simulator to place time 
points at both corners of a transition to assure that each transition is adequately resolved.

transition(input [, delay [, rise_time [, fall_time [, time_tol ]]]])

input is a dynamic input expression that describes a piecewise constant waveform. It must 
have a real value. In DC analysis, the transition filter simply returns the value of input. 
Changes in input do not have an effect on the output value until delay seconds have 
passed. 

delay is a dynamic nonnegative real value that is an initial delay. By default, delay has a 
value of zero. 

rise_time is a dynamic positive real value specifying the time over which you want positive 
transitions to occur. If you do not specify rise_time or if you give rise_time a value of 
0, rise_time defaults to the value defined by ‘default_transition.

fall_time is a dynamic positive real number specifying the time over which you want 
negative transitions to occur. By default, fall_time has the same value that rise_time 
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has. If you do not specify rise_time or if you give rise_time a value of 0, fall_time 
defaults to the value defined by ‘default_transition.

time_tol is a constant expression with a positive value. This option requires the simulator 
to place time points no more than the value of time_tol away from the two corners of the 
transition.

If ‘default_transition is not specified, the default behavior of the transition filter 
approximates the ideal behavior of a zero-duration transition.

The transition filter is subject to the restrictions listed in “Restrictions on Using Analog 
Operators” on page 152.

With the transition filter, you can control transitions between discrete signal levels by 
setting the rise time and fall time of signal transitions. The transition filter stretches 
instantaneous changes in signals over a finite amount of time, as shown below, and can also 
delay the transitions.

Use short transitions with caution because they can cause the simulator to slow down to meet 
accuracy constraints. 

The next code fragment demonstrates how the transition filter might be used.

// comparator model
analog begin

if ( V(in) > 0 ) begin
Vout = 5 ;
end 

else begin
Vout = 0 ;

end
V(out) <+ transition(Vout) ;

end

output_expr(t)expr(t)

fall_time

rise_time

delay

t0t0
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Caution

The transition filter is designed to smooth out piecewise constant 
waveforms. If you apply the transition filter to smoothly varying 
waveforms, the simulator might run slowly, and the results will probably 
be unsatisfactory. For smoothly varying waveforms, consider using the 
slew filter instead. For information, see “Slew Filter” on page 163.

If interrupted on a rising transition, the transition filter adjusts the slope so that at the 
revised end of the transition the value is that of the new destination.

In the following example, a rising transition is interrupted when it is about three fourths 
complete, and the value of the new destination is below the value at the point of interruption. 
The transition filter computes the slope that would complete a transition from the new 
origin (not the value at the point of interruption) in the specified fall_time. The 

If the new destination value is below the 
value at the point of interruption, the 
transition filter

If the new destination value is above the 
value at the point of interruption, the 
transition filter

1. Uses the value of the original 
destination as the value of the new 
origin.

2. Adjusts the slope of the transition to the 
rate at which the value would decay 
from the value of the new origin to the 
value of the new destination in 
fall_time seconds.

3. Causes the value of the filter output to 
decay at the new slope, from the value 
at the point of interruption to the value at 
the new destination.

1. Retains the original origin.

2. Adjusts the slope of the transition to the 
rate at which the value would increase 
from the value of the origin to the value 
of the new destination in rise_time 
seconds.

3. Causes the value of the filter output to 
increase at the new slope, from the 
value at the point of interruption to the 
value at the new destination.
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transition filter then uses the computed slope to transition from the current value to the 
new destination. 

An interruption in a falling transition causes the transition filter to behave in an equivalent 
manner. 

With larger delays, it is possible for a new transition to be specified before a previously 
specified transition starts. The transition filter handles this by deleting any transitions that 
would follow a newly scheduled transition. A transition filter can have an arbitrary number 
of transitions pending. You can use a transition filter in this way to implement the 
transport delay of discretely valued signals.

The following example implements a D-type flip flop. The transition filter smooths the 
output waveforms.

module d_ff(vin_d, vclk, vout_q, vout_qbar) ;
input vclk, vin_d ;
output vout_q, vout_qbar ;
electrical vout_q, vout_qbar, vclk, vin_d ;
parameter real vlogic_high = 5 ;
parameter real vlogic_low = 0 ;
parameter real vtrans_clk = 2.5 ;
parameter real vtrans = 2.5 ;
parameter real tdel = 3u from [0:inf) ;
parameter real trise = 1u from (0:inf) ;
parameter real tfall = 1u from (0:inf) ;

integer x ;

analog begin
@ (cross( V(vclk) - vtrans_clk, +1 )) x = (V(vin_d) > vtrans) ;
V(vout_q) <+ transition( vlogic_high*x + vlogic_low*!x,tdel, trise, tfall );
V(vout_qbar) <+ transition( vlogic_high*!x + vlogic_low*x, tdel, 

trise, tfall ) ;
end

endmodule

The following example illustrates a use of the transition filter that should be avoided. The 
expression is dependent on a continuous signal and, as a consequence, the filter runs slowly.

I(p, n) <+ transition(V(p, n)/out1, tdel, trise, tfall); // Do not do this.

Original destination

New destination

Interruption

output_expression(t)

New origin

rise_time

fall_time
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However, you can use the following approach to implement the same behavior in a statement 
that runs much faster.

I(p, n) <+ V(p, n) * transition(1/out1, tdel, trise, tfall); // Do this instead.

Slew Filter

Use the slew filter to control the rate of change of a waveform. A typical use for slew is 
generating continuous signals from piecewise continuous signals. For discrete signals, 
consider using the transition filter instead. See “Transition Filter” on page 159 for more 
information.

slew(input [ , max_pos_rate [ , max_neg_rate ] ] )

input is a dynamic expression with a real value. In DC analysis, the slew filter simply 
returns the value of input.

max_pos_rate is a dynamic real number greater than zero, which is the maximum positive 
slew rate.

max_neg_rate is a dynamic real number less than zero, which is the maximum negative 
slew rate.

If you specify only one rate, its absolute value is used for both rates. If you give no rates, slew 
passes the signal through unchanged. If the rate of change of input is less than the 
specified maximum slew rates, slew returns the value of input.

The slew filter is subject to the restrictions listed in “Restrictions on Using Analog Operators” 
on page 152.

When applied, slew forces all transitions of expr faster than max_pos_rate to change at 
the max_pos_rate rate for positive transitions and limits negative transitions to the 
max_neg_rate rate.

The slew filter is particularly valuable for controlling the rate of change of sinusoidal 
waveforms. The transition function distorts such signals, whereas slew preserves the 
general shape of the waveform. The following 4-bit digital-to-analog converter uses the slew 
function to control the rate of change of the analog signal at its output. 

Δy

Δt

output_expression(t)
yΔ
tΔ

------ max_pos_rate≤
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module dac4(d, out) ;
input [0:3] d ;
inout out ; 
electrical [0:3] d ;
electrical out ; 
parameter real slewrate = 0.1e6 from (0:inf) ; 

real Ti ; 
real Vref ;
real scale_fact ;

analog begin 
Ti = 0 ; 
Vref = 1.0 ;
scale_fact = 2 ;
generate ii (3,0,-1) begin

Ti = Ti + ((V(d[ii]) > 2.5) ? (1.0/scale_fact) : 0);
scale_fact = scale_fact/2 ;

end
V(out) <+ slew( Ti*Vref, slewrate ) ;

end
endmodule

Implementing Laplace Transform S-Domain Filters

The Laplace transform filters implement lumped linear continuous-time filters. Each filter 
accepts an optional absolute tolerance parameter ε, which this release of Verilog-AMS 
ignores. The set of array values that are used to define the poles and zeros, or numerator and 
denominator, of a filter the first time it is used during an analysis are used at all subsequent 
time points of the analysis. As a result, changing array values during an analysis has no effect 
on the filter.

The Laplace transform filters are subject to the restrictions listed in “Restrictions on Using 
Analog Operators” on page 152. However, while most analog functions can be used, with 
certain restrictions, in if or case constructs, the Laplace transform filters cannot be used in 
if or case constructs in any circumstances.

Arguments Represented as Vectors

If you use an argument represented as a vector to define a numerator in a Laplace filter, and 
if one or more of the elements in the vector are 0, the order of the numerator is determined 
by the position of the rightmost non-zero vector element. For example, in the following 
module, the order of the numerator, nn, is 1

module test(pin, nin, pout, nout);
electrical pin, nin, pout, nout;

real nn[0:2];
real dd[0:2];

analog begin
@(initial_step) begin

nn[0] = 1;// The highest order non-zero coefficient of the numerator.
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nn[1] = 0;
nn[2] = 0;
dd[0] = 1;
dd[1] = 1;
dd[2] = 1;

end
V(pout, nout) <+ laplace_nd(V(pin,nin), nn, dd);

end
endmodule

Arguments Represented as Arrays

If you use an argument represented as an array constant to define a numerator in a Laplace 
filter, and if one or more of the elements in the array constant are 0, the order of the numerator 
is determined by the position of the rightmost non-zero array element. For example, if your 
numerator array constant is {1,0,0}, the order of the numerator is 1. If your array constant is 
{1,0,1}, the order of the numerator is 3. In the following example, the numerator order is 1 (and 
the value is 1).

module test(pin, nin, pout, nout);
electrical pin, nin, pout, nout;

analog begin
V(pout, nout) <+ laplace_nd(V(pin,nin), {1,0,0}, {1,1,1});

end
endmodule

Array literals used for the Laplace transforms can also take the form that uses a back tic. For 
example,

V(out) <+ laplace_nd(‘{5,6},‘{7.8,9.0});

Zero-Pole Laplace Transforms

Use laplace_zp to implement the zero-pole form of the Laplace transform filter. 

laplace_zp(expr, ζ, ρ [  , ε ] )

ζ (zeta) is a fixed-sized vector of M pairs of real numbers. Each pair represents a zero. The 
first number in the pair is the real part of the zero, and the second is the imaginary part. ρ 
(rho) is a fixed-sized vector of N real pairs, one for each pole. Specify the poles in the same 
manner as the zeros. If you use array literals to define the ζ and ρ vectors, the values must 
be constant or dependent upon parameters only. You cannot use array literal values defined 
by variables.

The transfer function is
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where  and  are the real and imaginary parts of the  zero, and  and  are the 
real and imaginary parts of the  pole. 

If a root (a pole or zero) is real, you must specify the imaginary part as 0. If a root is complex, 
its conjugate must be present. If a root is zero, the term associated with it is implemented as 
s rather than , where r is the root. If the list of roots is empty, unity is used for the 
corresponding denominator or numerator.

Zero-Denominator Laplace Transforms

Use laplace_zd to implement the zero-denominator form of the Laplace transform filter. 

laplace_zd(expr, ζ, d [  , ε ] )

ζ (zeta) is a fixed-sized vector of M pairs of real numbers. Each pair represents a zero. The 
first number in the pair is the real part of the zero, and the second is the imaginary part. d is 
a fixed-sized vector of N real numbers that contains the coefficients of the denominator. If you 
use array literals to define the ζ and d vectors, the values must be constant or dependent 
upon parameters only. You cannot use array literal values defined by variables.

The transfer function is

where  and  are the real and imaginary parts of the  zero, and  is the coefficient 
of the  power of s in the denominator. If a zero is real, you must specify the imaginary part 
as 0. If a zero is complex, its conjugate must be present. If a zero is zero, the term associated 
with it is implemented as s rather than .
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Numerator-Pole Laplace Transforms

Use laplace_np to implement the numerator-pole form of the Laplace transform filter. 

laplace_np(expr, n, ρ [  , ε ] )

n is a fixed-sized vector of M real numbers that contains the coefficients of the numerator. ρ 
(rho) is a fixed-sized vector of N pairs of real numbers. Each pair represents a pole. The first 
number in the pair is the real part of the pole, and the second is the imaginary part. If you use 
array literals to define the n and ρ vectors, the array values must be constant or dependent 
upon parameters only. You cannot use array values defined by variables.

The transfer function is

where  is the coefficient of the  power of s in the numerator, and  and  are the 
real and imaginary parts of the  pole. If a pole is real, you must specify the imaginary part 
as 0. If a pole is complex, its conjugate must be present. If a pole is zero, the term associated 
with it is implemented as s rather than .

Numerator-Denominator Laplace Transforms

Use laplace_nd to implement the numerator-denominator form of the Laplace transform 
filter. 

laplace_nd(expr, n, d [  , ε ] )

n is a fixed-sized vector of M real numbers that contains the coefficients of the numerator, and 
d is a fixed-sized vector of N real numbers that contains the coefficients of the denominator. 
If you use array literals to define the n and d vectors, the values must be constant or 
dependent upon parameters only. You cannot use array values defined by variables.

The transfer function is
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where  is the coefficient of the  power of s in the numerator, and  is the coefficient 
of the  power of s in the denominator.

Examples

The following code fragments illustrate how to use the Laplace transform filters.

V(out) <+ laplace_zp(V(in), {0,0}, {1,2,1,-2});

implements

The code fragment

V(out) <+ laplace_nd(V(in), {0,1}, {1,-0.4,0.2});

is equivalent.

The following statement contains an empty vector such that the middle argument is null: 

V(out) <+ laplace_zp(V(in), , {-1,0}); 

The absence of zeros, indicated by the null argument, means that the transfer function 
reduces to the following equation: 

The next module illustrates the use of array literals that depend on parameters. In this code, 
the array literal {dx,6*dx,5*dx} depends on the value of the parameter dx.

module svcvs_zd(pin, nin, pout, nout);
electrical pin, nin, pout, nout;
parameter real nx = 0.5;
parameter integer dx = 1;
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analog begin
V(pout,nout) <+ laplace_zd(V(pin,nin),{0-nx,0},{dx,6*dx,5*dx});

end
endmodule

The next fragment illustrates an efficient way to initialize array values. Because only the initial 
set of array values used by a filter has any effect, this example shows how you can use the 
initial_step event to set values at the beginning of the specified analyses.

real nn[0:1] ;
real dd[0:2] ;

analog begin
@(initial_step("static")) begin

nn[0] = 1 ; // These assignment
nn[1] = 2 ; // statements run only
dd[0] = 1 ; // at the beginning of
dd[1] = 6 ; // the analyses.

end
V(pout, nout) <+ laplace_nd(V(pin,nin), nn, dd) ;

end

When you use this technique, be sure to initialize the arrays at the beginning of each analysis 
that uses the filter.The static analysis is the dc operating point calculation required by most 
analyses, including tran, ac, and noise. Initializing the array during the static phase 
ensures that the array is non-zero as these analyses proceed.

The next modules illustrate how you can use an array variable to avoid error messages about 
using array literals with variable dependencies in the Laplace filters. The first version causes 
an error message.

// This version does not work.
‘include "constants.vams"
‘include "disciplines.vams"

module laplace(out, in);
inout in, out;
electrical in, out;
real dummy;

analog begin
dummy = -0.5;
V(out) <+  laplace_zd(V(in), [dummy,0], [1,6,5]); //Illegal!

end
endmodule

The next version works as expected.

// This version works correctly.
‘include "constants.vams"
‘include "disciplines.vams"

module laplace(out, in);
inout in, out;
electrical in, out;
real dummy;

real nn[0:1];
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analog begin
dummy = -0.5;
@(initial_step) begin // Defines the array variable.

nn[0] = dummy;
nn[1] = 0;

end

V(out) <+  laplace_zd(V(in), nn, [1,6,5]);
end
endmodule

Implementing Z-Transform Filters

The Z-transform filters implement linear discrete-time filters. Each filter requires you to specify 
a parameter T, the sampling period of the filter. A filter with unity transfer function acts like a 
simple sample-and-hold that samples every T seconds. 

All Z-transform filters share three common arguments, T,  τ ,  and t0. The T argument 
specifies the period of the filter and must be positive. τ  specifies the transition time and must 
be nonnegative. If you specify a nonzero transition time, the simulator controls the time step 
to accurately resolve both the leading and trailing corner of the transition. If you do not specify 
a transition time, τ  defaults to one unit of time as defined by the ‘default_transition 
compiler directive. If you specify a transition time of 0, the output is abruptly discontinuous. 
Avoid assigning a Z-filter with 0 transition time directly to a branch because doing so greatly 
slows the simulation. Finally, t0 specifies the time of the first sample/transition and is also 
optional. If not given, the first transition occurs at t=0.

The values of T and t0 at the first time point in the analysis are stored, and those stored values 
are used at all subsequent time points. The array values used to define a filter are used at all 
subsequent time points, so changing array values during an analysis has no effect on the 
filter.

The Z-transform filters are subject to the restrictions listed in “Restrictions on Using Analog 
Operators” on page 152.

Zero-Pole Z-Transforms

Use zi_zp to implement the zero-pole form of the Z-transform filter. 

zi_zp(expr, ζ, ρ, T [ , τ  [ , t0] ])

ζ (zeta) is a fixed or parameter-sized vector of M pairs of real numbers. Each pair represents 
a zero. The first number in the pair is the real part of the zero, and the second is the imaginary 
part. ρ (rho) is a fixed or parameter-sized vector of N real pairs, one for each pole. The poles 
are given in the same manner as the zeros. If you use array literals to define the ζ and ρ 
vectors, the values must be constant or dependent upon parameters only. You cannot use 
array values defined by variables.
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The transfer function is

where  and  are the real and imaginary parts of the  zero, and  and  are the 
real and imaginary parts of the  pole. If a root (a pole or zero) is real, you must specify the 
imaginary part as 0. If a root is complex, its conjugate must also be present. If a root is the 
origin, the term associated with it is implemented as z rather than , where r is 
the root. If a list of poles or zeros is empty, unity is used for the corresponding denominator 
or numerator.

Zero-Denominator Z-Transforms

Use zi_zd to implement the zero-denominator form of the Z-transform filter. 

zi_zd(expr, ζ, d, T [ , τ  [ , t0] ])

ζ (zeta) is a fixed or parameter-sized vector of M pairs of real numbers. Each pair represents 
a zero. The first number in the pair is the real part of the zero, and the second is the imaginary 
part. d is a fixed or parameter-sized vector of N real numbers that contains the coefficients of 
the denominator. If you use array literals to define the ζ and d vectors, the values must be 
constant or dependent upon parameters only. You cannot use array values defined by 
variables.

The transfer function is

where  and  are the real and imaginary parts of the  zero, and  is the coefficient 
of the  power of z in the denominator. If a zero is real, you must specify the imaginary part 
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as 0. If a zero is complex, its conjugate must also be present. If a zero is the origin, the term 
associated with it is implemented as z rather than . 

Numerator-Pole Z-Transforms

Use zi_np to implement the numerator-pole form of the Z-transform filter. 

zi_np(expr, n, ρ, T [ , τ  [ , t0] ])

n is a fixed or parameter-sized vector of M real numbers that contains the coefficients of the 
numerator. ρ (rho) is a fixed or parameter-sized vector of N pairs of real numbers. Each pair 
represents a pole. The first number in the pair is the real part of the pole, and the second is 
the imaginary part. If you use array literals to define the n and ρ vectors, the values must be 
constant or dependent upon parameters only. You cannot use array values defined by 
variables.

The transfer function is

where  is the coefficient of the  power of z in the numerator, and  and  are the real 
and imaginary parts of the  pole. If a pole is real, the imaginary part must be specified as 
0. If a pole is complex, its conjugate must also be present. If a pole is the origin, the term 
associated with it is implemented as z rather than .

Numerator-Denominator Z-Transforms

Use zi_nd to implement the numerator-denominator form of the Z-transform filter. 

zi_nd(expr, n, d, T [ , τ  [ , t0] ])

n is a fixed or parameter-sized vector of M real numbers that contains the coefficients of the 
numerator, and d is a fixed or parameter-sized vector of N real numbers that contains the 
coefficients of the denominator. If you use array literals to define the n and d vectors, the 
values must be constant or dependent upon parameters only. You cannot use array values 
defined by variables.

The transfer function is
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nk kth ρk
r ρk

i

kth

1 z 1– ρ–( )
December 2011 172 Product Version 11.1



Cadence Verilog-AMS Language Reference
Simulator Functions
where  is the coefficient of the  power of z in the numerator, and  is the coefficient 
of the  power of s in the denominator.

Examples

The following example illustrates an ideal sampled data integrator with the transfer function 

This transfer function can be implemented as

module ideal_int (in, out) ;
electrical in, out ;
parameter real T = 0.1m ;
parameter real tt = 0.02n ;
parameter real td = 0.04m ;

analog begin
// The filter is defined with constant array literals.
V(out) <+ zi_nd(V(in), {1}, {1,-1}, T, tt, td) ;

end
endmodule

The next example illustrates additional ways to use parameters and arrays to define filters.

module zi (in, out);
electrical in, out;

parameter real T = 0.1;
parameter real tt = 0.02m;
parameter real td = 0.04m;
parameter real n0 = 1;

parameter integer start_num = 0;
parameter integer num_d = 2;

real nn[0:0]; // Fixed-sized array
real dd[start_num:start_num+num_d-1]; // Parameter-sized array
real d;

analog begin

// The arrays are initialized at the beginning of the listed analyses.

nk kth dk
kth

H z( ) 1

1 z
1–

–
-----------------=
December 2011 173 Product Version 11.1



Cadence Verilog-AMS Language Reference
Simulator Functions
@(initial_step("ac","dc","tran")) begin
d = 1*n0;
nn[start_num] = n0;
dd[start_num] = d; dd[1] = -d;

end

V(out) <+ zi_nd( V(in), nn, dd, T, tt, td);
end
endmodule

Displaying Results

Verilog-AMS provides these tasks for displaying information: $strobe, $display, 
$monitor, $write, and $debug.

$strobe

Use the $strobe task to display information on the screen. $strobe and $display use 
the same arguments and are completely interchangeable. $strobe is supported in both 
analog and digital contexts.

strobe_task ::=
$strobe [ ( { list_of_arguments } ) ]

list_of_arguments ::=
argument

| list_of_arguments , argument

The $strobe task prints a new-line character after the final argument. A $strobe task 
without any arguments prints only a new-line character.

Each argument is a quoted string or an expression that returns a value.

Each quoted string is a set of ordinary characters, special characters, or conversion 
specifications, all enclosed in one set of quotation marks. Each conversion specification in the 
string must have a corresponding argument following the string. You must ensure that the 
type of each argument is appropriate for the corresponding conversion specification.

You can specify an argument without a corresponding conversion specification. If you do, an 
integer argument is displayed using the %d format, and a real argument is displayed using the 
%g format.
December 2011 174 Product Version 11.1



Cadence Verilog-AMS Language Reference
Simulator Functions
Special Characters

Use the following sequences to include the specified characters and information in a quoted 
string.

Conversion Specifications

Conversion specifications have the form

% [ flag ] [ field_width ] [ . precision ] format_character

where flag, field_width, and precision can be used only with a real argument. 

flag is one of the three choices shown in the table:

field_width is an integer specifying the minimum width for the field.

precision is an integer specifying the number of digits to the right of the decimal point.

Use this sequence To include

\n The new-line character

\t The tab character

\\ The backslash character, \

\" The quotation mark character, "

\ddd A character specified by 1 to 3 octal digits

%% The percent character, %

%m or %M The hierarchical name of the current module, function, or 
named block

flag Meaning

- Left justify the output

+ Always print a sign

Blank space, or any character 
other than a sign

Print a space
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format_character is one of the following characters.

Examples of $strobe Formatting

Assume that module format_module is instantiated in a netlist file with the instantiation

formatTest format_module

The module is defined as

module format_module ; 
integer ival ;
real rval ;
analog begin 

ival = 98 ;
rval = 123.456789 ;
$strobe("Format c gives %c" , ival) ;
$strobe("Format C gives %C" , ival) ;
$strobe("Format d gives %d" , ival) ;
$strobe("Format D gives %D" , ival) ;
$strobe("Format e (real) gives %e" , rval) ;
$strobe("Format E (real) gives %E" , rval) ;

format_
character

Type of 
Argument Output Example Output

b or B Binary format 00000000000000000
000000000111000

c or C Integer ASCII character format

d or D Integer Decimal format 191, 48, -567

e or E Real Real, exponential format -1.0, 4e8, 
34.349e-12

f or F Real Real, fixed-point format 191.04, -4.789

g or G Real Real, exponential, or decimal format, 
whichever format results in the 
shortest printed output

9.6001, 7.34E-8, 
-23.1E6

h or H Integer Hexadecimal format 3e, 262, a38, fff, 3E, 
A38

o or O Integer Octal format 127, 777

r or R Real Engineering notation format 123,457M, 12.345K

s or S String 
constant

String format
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$strobe("Format f (real) gives %f" , rval) ;
$strobe("Format F (real) gives %F" , rval) ;
$strobe("Format g (real)gives %g" , rval) ;
$strobe("Format G (real)gives %G" , rval) ;
$strobe("Format h gives %h" , ival) ;
$strobe("Format H gives %H" , ival) ;
$strobe("Format m gives %m") ;
$strobe("Format M gives %M") ;
$strobe("Format o gives %o" , ival) ;
$strobe("Format O gives %O" , ival) ;
$strobe("Format s gives %s" , "s string") ;
$strobe("Format S gives %S" , "S string") ;
$strobe("newline,\ntab,\tback-slash, \\") ; 
$strobe("doublequote,\"") ;

end

endmodule

When you run format_module, it displays

Format c gives b
Format C gives b
Format d gives 98
Format D gives 98
Format e gives 1.234568e+02
Format E gives 1.234568e+02
Format f gives 123.456789
Format F gives 123.456789
Format g gives 123.457
Format G gives 123.457
Format h gives 62
Format H gives 62
Format m gives formatTest
Format M gives formatTest
Format o gives 142
Format O gives 142
Format s gives s string
Format S gives S string
newline,
tab,    back-slash, \
doublequote,"

$display

Use the $display task to display information on the screen. $display is supported in both 
analog and digital contexts.

display_task ::=
$display [ ( { list_of_arguments } ) ]

list_of_arguments ::=
argument

| list_of_arguments , argument

$display and $strobe use the same arguments and are completely interchangeable. For 
guidance, see “$strobe” on page 174.
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$write

Use the $write task to display information on the screen. This task is identical to the 
$strobe task, except that $strobe automatically adds a newline character to the end of its 
output, whereas $write does not. $write is supported in both analog and digital contexts.

write_task ::=
$write [ ( { list_of_arguments } ) ]

list_of_arguments ::=
argument

| list_of_arguments , argument

The arguments you can use in list_of_arguments are the same as those used for 
$strobe. For guidance, see “$strobe” on page 174.

$debug

Use the $debug task to display information on the screen while the analog solver is running. 
This task displays the values of the arguments for each iteration of the solver.

debug_task ::=
$debug [ ( { list_of_arguments } ) ]

list_of_arguments ::=
argument

| list_of_arguments , argument

The arguments you can use in list_of_arguments are the same as those used for 
$strobe. For guidance, see “$strobe” on page 174.

$monitor

Use the $monitor task to display information on the screen. This task is identical to the 
$strobe task, except that $monitor outputs only when an argument changes 
value.$monitor is supported in only digital contexts.

$monitor_task ::=
$monitor [ ( { list_of_arguments } ) ]

list_of_arguments ::=
argument

| list_of_arguments , argument

The arguments you can use in list_of_arguments are the same as those used for 
$strobe. For guidance, see “$strobe” on page 174.
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Specifying Power Consumption

Use the $pwr system task to specify the power consumption of a module. The $pwr task is 
supported in only analog contexts.

Note: The $pwr task is a nonstandard Cadence-specific language extension.

pwr_task ::=
$pwr( expression )

expression is an expression that specifies the power contribution. If you specify more than 
one $pwr task in a behavioral description, the result of the $pwr task is the sum of the 
individual contributions. 

To ensure a useful result, your module must contain an assignment inside the behavior 
specification. Your module must also compute the value of $pwr tasks at every iteration. If 
these conditions are not met, the result of the $pwr task is zero.

The $pwr task does not return a value and cannot be used inside other expressions. Instead, 
access the result by using the options and save statements in the analog simulation control 
file. For example, using the following statement in the analog simulation control file saves all 
the individual power contributions and the sum of the contributions in the module named 
name:

name options pwr=all

For save, use a statement like the following:

save name:pwr

In each format, name is the name of a module. 

For more information about the options statement, see Chapter 7 of the Spectre Circuit 
Simulator User Guide. For more about the save statement, see Chapter 8 of the Spectre 
Circuit Simulator User Guide.

Example
// Resistor with power contribution
‘include "disciplines.vams"

module Res(pos, neg);
inout pos, neg;
electrical pos, neg;
parameter real r=5;

analog begin
V(pos,neg) <+ r * I(pos,neg);
$pwr(V(pos,neg)*I(pos,neg));

end
endmodule
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Working with Files

Verilog-AMS provides several functions for working with files. $fopen prepares a file for 
writing. $fstrobe and $fdisplay write to a file. $fclose closes an open file.

Opening a File

Use the $fopen function to open a specified file.

fopen_function ::=
multi_channel_descriptor = $fopen ( "file_name" [ "io_mode"] ) ;

| fd = $fopen ( "file_name", type ) ;

type ::=
"r"

| "w"
| "a"

multi_channel_descriptor is a 32-bit unsigned integer that is uniquely associated 
with file_name. The $fopen function returns a multi_channel_descriptor value 
of zero if the file cannot be opened.

Think of multi_channel_descriptor as a set of 32 flags, where each flag represents 
a single output channel. The least significant bit always refers to the standard output. The first 
time it is called, $fopen opens channel 1 and returns a descriptor value of 2 (binary 10). The 
second time it is called, $fopen opens channel 2 and returns a descriptor value of 4 (binary 
100). Subsequent calls cause $fopen to open channels 3, 4, 5, and so on, and to return 
values of 8, 16, 32, and so on, up to a maximum of 32 open channels.

io_mode is one of three possible values: w, a, or r. The w or write mode deletes the contents 
of any existing files before writing to them. The a or append mode appends the next output 
to the existing contents of the specified file. In both cases, if the specified file does not exist, 
$fopen creates that file. The r mode opens a file for reading. An error is reported if the file 
does not exist.

The $fopen function reuses channels associated with any files that are closed.

file_name is a string that can include the special commands described in “Special $fopen 
Formatting Commands” on page 181. If file_name contains a path indicating that the file 
is to be opened in a different directory, the directory must already exist when the $fopen 
function runs. file_name (together with the surrounding quotation marks) can also be 
replaced by a string parameter.

type (allowed in initial or always blocks, but not in analog blocks) is a character string 
or a reg that indicates how the file is to be opened. The value "r" opens the file for reading, 
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"w" truncates the file to zero length or creates the file for writing, "a" opens the file for 
appending, or creates the file for writing. 

For example, to open a file named myfile, you can use the code

integer myChanDesc ;
myChanDesc = $fopen ( "myfile" ) ;

Special $fopen Formatting Commands

The following special output formatting commands are available for use with the $fopen 
function.

The special output formatting commands can be followed by one or more modifiers, which 
extract information from UNIX filenames. (To avoid opening a file that is already open, the %C 
command must be followed by a modifier.) The modifiers are:

Command Output Example

%C Design filename input.scs

%D Date (yy-mm-dd) 94-02-28

%H Host name hal

%S Simulator type spectre

%P Unix process ID # 3641

%T Time (24hh:mm:ss) 15:19:25

%I Instance name opamp3

%A Analysis name dc0p, timeDomain, acSup

Modifier Extracted information

:r Root (base name) of the path for the file

:e Extension of the path for the file

:h Head of the path for any portion of the file before the last /

:t Tail of the path for any portion of the file after the last /

:: The (:) character itself
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Any other character after a colon (:) signals the end of modifications. That character is copied 
with the previous colon.

The modifiers are typically used with the %C command although they can be used with any of 
the commands. However, when the output of a formatting command does not contain a / and 
“.”, the modifiers :t and :r return the whole name and the :e and :h modifiers return “.”. As 
a result, be aware that using modifiers with formatting commands other than %C might not 
produce the results you expect. For example, using the command

$fopen("%I:h.freq_dat") ;

opens a file named ..freq_dat.

You can use a concatenated sequence of modifiers. For example, if your design file name is 
res.ckt, and you use the statement

$fopen("%C:r.freq_dat") ;

then 

■ %C is the design filename (res.ckt)

■ :r is the root of the design filename (res)

■ .freq_dat is the new filename extension

As a result, the name of the opened file is res.freq_dat.

The following table shows the various filenames generated from a design filename (%C) of 

/users/maxwell/circuits/opamp.ckt 

by using different formatting commands and modifiers.

Command and Modifiers Resulting Opened File

$fopen("%C"); None, because the design file cannot be overwritten.

$fopen("%C:r"); /users/maxwell/circuits/opamp

$fopen("%C:e"); ckt

$fopen("%C:h"); /users/maxwell/circuits

$fopen("%C:t"); opamp.ckt

$fopen("%C::"); /users/maxwell/circuits/opamp.ckt:

$fopen("%C:h:h"); /users/maxwell

$fopen("%C:t:r"); opamp
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Reading from a File

Use the $fscanf function to read information from a file.

fscanf_function ::=
$fscanf (multi_channel_descriptor , "format" { , storage_arg } )

The multi_channel_descriptor that you specify must have a value that is associated 
with one or more currently open files. The format describes the matching operation done 
between the $fscanf storage arguments and the input from the data file. The $fscanf 
function sequentially attempts to match each formatting command in this string to the input 
coming from the file. After the formatting command is matched to the characters from the 
input stream, the next formatting command is applied to the next input coming from the file. If 
a formatting command is not a skipping command, the data read from the file to match a 
formatting command is stored in the formatting command’s corresponding storage_arg. 
The first storage_arg corresponds to the first nonskipping formatting command; the 
second storage_arg corresponds to the second nonskipping formatting command. This 
matching process is repeated between all formatting commands and input data. The 
formatting commands that you can use are the same as those used for $strobe. See 
“$strobe” on page 174 for guidance.

For example, the following statement reads data from the file designated by fptr1 and 
places the information in variables called db1 and int.

$fscanf(fptr1, "Double = %e and Integer = %d", dbl, int);

Writing to a File

Verilog-AMS provides three input/output functions for writing to a file: $fstrobe, 
$fdisplay, and $fwrite. The $fstrobe and $fdisplay functions use the same 
arguments and are completely interchangeable. The $fwrite function is similar but does not 
insert automatic carriage returns in the output.

$fopen("%C:r:t"); opamp

$fopen("/tmp/%C:t:r.raw"); /tmp/opamp.raw

$fopen("%C:e%C:r:t"); ckt.opamp

$fopen("%C:r.%I.dat" ); /users/maxwell/circuits/
opamp.opamp3.dat

Command and Modifiers Resulting Opened File
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$fstrobe

Use the $fstrobe function to write information to a file.

fstrobe_function ::=
$fstrobe (multi_channel_descriptor {,list_of_arguments })

list_of_arguments ::=
argument

| list_of_arguments , argument

The multi_channel_descriptor that you specify must have a value that is associated 
with one or more currently open files. The arguments that you can use in 
list_of_arguments are the same as those used for $strobe. See “$strobe” on 
page 174 for guidance.

For example, the following code fragment illustrates how you might write simultaneously to 
two open files. 

integer mcd1 ;
integer mcd2 ;
integer mcd ;
@(initial_step) begin

mcd1 = $fopen("file1.dat") ;
mcd2 = $fopen("file2.dat") ;

end
.
.
.
mcd = mcd1 | mcd2 ; // Bitwise OR combines two channels
$fstrobe(mcd, "This is written to both files") ;

$fdisplay

Use the $fdisplay function to write information to a file.

fdisplay_function ::=
$fdisplay (multi_channel_descriptor {,list_of_arguments })

list_of_arguments ::=
argument

| list_of_arguments , argument

The multi_channel_descriptor that you specify must have a value that is associated 
with a currently open file. The arguments that you can use in list_of_arguments are the 
same as those used for $strobe. See “$strobe” on page 174 for guidance.

$fwrite

Use the $fwrite function to write information to a file.

fwrite_function ::=
$fwrite (multi_channel_descriptor {,list_of_arguments })
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list_of_arguments ::=
argument

| list_of_arguments , argument

The multi_channel_descriptor that you specify must have a value that is associated 
with a currently open file. The arguments that you can use in list_of_arguments are the 
same as those used for $strobe. See “$strobe” on page 174 for guidance.

The $fwrite function does not insert automatic carriage returns in the output.

Closing a File

Use the $fclose function to close a specified file.

file_close_function ::= 
$fclose ( multi_channel_descriptor ) ;

The multi_channel_descriptor that you specify must have a value that is associated 
with the currently open file that you want to close.

Exiting to the Operating System

Use the $finish function to make the simulator exit and return control to the operating 
system.

finish_function ::=
$finish [( msg_level )] ;

msg_level ::=
0 | 1 | 2

The msg_level value determines which diagnostic messages print before control returns to 
the operating system. The default msg_level value is 1.

Note: In this release, the $finish function always behaves as though the msg_level value 
is 0, regardless of the value you actually use.

msg_level Messages printed

0 None

1 Simulation time and location

2 Simulation time, location, and statistics about the memory 
and CPU time used in the simulation
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For example, to make the simulator exit, you might code:

$finish ;

If you want to stop only the current analysis, without exiting the simulator, you can use the 
$finish_current_analysis function instead of $finish. This allows you to stop the 
ongoing analysis and start a new analysis on the simulator. The syntax of 
$finish_current_analysis is the following:

finish_function ::=
$finish_current_analysis [( msg_level )] ;

where the msg_level value works exactly the same way as it does in the $finish function 
syntax.

Entering Interactive Tcl Mode

Use the $stop function to make the simulator enter interactive mode and display a Tcl 
prompt.

stop_function ::=
$stop [( msg_level )] ;

msg_level ::=
0 | 1 | 2

The msg_level value determines which diagnostic messages print before the simulator 
starts the interactive mode. The default msg_level value is 1.

For example, to make the simulator go interactive, you might code

$stop ;

msg_level Messages printed

0 None

1 Simulation time and location

2 Simulation time, location, and statistics about the memory 
and CPU time used in the simulation
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User-Defined Functions

Verilog-AMS supports user-defined functions. By defining and using your own functions, you 
can simplify your code and enhance readability and reuse. Each function can be a digital 
function (as defined in IEEE 1364-1995 Verilog HDL) or an analog function.

Declaring an Analog User-Defined Function

To define an analog function, use this syntax:

analog_function_declaration ::=
analog function [ type ] function_identifier ;
function_item_declaration {function_item_declaration}
statement
endfunction

type ::=
integer

| real

function_item_declaration ::=
input_declaration

| block_item_declaration

block_item_declaration ::=
integer_declaration

| real_declaration

type is the type of the value returned by the function. The default value is real.

statement cannot include analog operators and cannot define module behavior. 
Specifically, statement cannot include

■ ddt operator

■ idt operator

■ idtmod operator

■ Access functions

■ Contribution statements

■ Event control statements

■ Simulator library functions, except that you can include the functions in the next list

statement can include references to

■ $vt

■ $vt(temp)
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■ $temperature

■ $realtime

■ $abstime

■ analysis

■ $strobe

■ $display

■ $write

■ $fopen

■ $fstrobe

■ $fdisplay

■ $fwrite

■ $fclose

■ All mathematical functions

You can declare local variables to be used in the function.

Each function you define must have at least one declared input. Each function must also 
assign a value to the implicitly defined internal variable with the same name as the function.

For example,

analog function real chopper ;
input sw, in ; // The function has two declared inputs.
real sw, in ;

//The next line assigns a value to the implicit variable, chopper.
chopper = ((sw > 0) ? in : -in) ;

endfunction

The chopper function takes two variables, sw and in, and returns a real result. You can use 
the function in any subsequent function definition or in the module definition. 

Calling a User-Defined Analog Function

To call a user-defined analog function, use the following syntax.

analog_function_call ::=
function_identifier ( expression { , expression } )
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function_identifier must be the name of a defined function. Each expression is 
evaluated by the simulator before the function runs. However, do not rely on having 
expressions evaluated in a certain order because the simulator is allowed to evaluate them in 
any order.

An analog function must not call itself, either directly or indirectly, because recursive functions 
are illegal. Analog function calls are allowed only inside of analog blocks.

The module phase_detector illustrates how the chopper function can be called.

module phase_detector(lo, rf, if0) ;
inout lo, rf, if0 ;
electrical lo, rf, if0 ;
parameter real gain = 1 ;

function real chopper;
input sw, in;
real sw, in;
chopper = ((sw > 0) ? in : -in);

endfunction

analog
V(if0) <+ gain * chopper(V(lo),V(rf)); //Call from within the analog block.

endmodule
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Instantiating Modules and Primitives

Chapter 2, “Creating Modules,” discusses the basic structure of Cadence® Verilog®-AMS 
language modules. This chapter discusses how to instantiate Verilog-AMS modules within 
other modules. Module declarations cannot nest in one another; instead, you embed 
instances of modules in other modules. By embedding instances, you build a hierarchy 
extending from the instances of primitive modules up through the top-level modules. 

The following sections discuss

■ Instantiating Verilog-AMS Modules on page 192

■ Connecting the Ports of Module Instances on page 195

■ Overriding Parameter Values in Instances on page 197

■ Instantiating Analog Primitives on page 200

■ Using an M Factor (Multiplicity Factor) on page 202

■ Including Verilog-A Modules in Spectre Subcircuits on page 204
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Instantiating Verilog-AMS Modules

Use the following syntax to instantiate modules in other modules.

module_instantiation ::=
module_id [ parameter_value_assignment ] instance_list

instance_list ::= 
module_instance { , module_instance} ;

module_instance ::= 
name_of_instance ( [ list_of_module_connections ] )

name_of_instance ::= 
module_instance_identifier [ constant_range ]

list_of_module_connections ::=
ordered_port_connection { , ordered_port_connection }

|named_port_connection { , named_port_connection }

ordered_port_connection ::=
[ net_expression ]

named_port_connection ::=
. port_identifier ( [ net_expression ] )

net_expression ::=
net_identifier

|net_identifier [ constant_expression ]
|net_identifier [ constant_range ]

constant_range ::=
constant_expression : constant_expression

The instance_list expression is discussed in the following sections. The 
parameter_value_assignment expression is discussed in “Overriding Parameter 
Values in Instances” on page 197. 

Creating and Naming Instances

This section illustrates how to instantiate modules. Consider the following module, which 
describes a gain block that doubles the input voltage.

module vdoubler (in, out) ;
input in ;
output out ;
electrical in, out ;
analog

V(out) <+ 2.0 * V(in) ;
endmodule

Two of these gain blocks are connected, with the output of the first becoming the input of the 
second. The schematic looks like this.

qin aa1 qout
vd1 vd2
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This higher-level component is described by module vquad, which creates two instances, 
named vd1 and vd2, of module vdoubler. Module vquad also defines external ports 
corresponding to those shown in the schematic.

module vquad (qin, qout) ;
input qin ;
output qout ;
electrical qin, qout ;
wire aa1 ;
vdoubler vd1 (qin, aa1) ;
vdoubler vd2 (aa1, qout) ;
endmodule

Creating Arrays of Instances

The range specification on the module_instance_identifier allows you to create 
arrays of instances.

name_of_instance ::= 
module_instance_identifier [ constant_range ]

However, a module_instance_identifier used to create an array of instances (an 
AOI_identifier) is restricted to being purely digital and cannot instantiate an analog 
object at any level. That means that you cannot use:

■ An analog primitive or a connection module as the AOI_identifier.

■ Inherited connection attributes, m-factor attributes, or dynamic parameters in the 
AOI_identifier.

In addition, you cannot use a VHDL design unit as the AOI_identifier.

You cannot connect to the AOI_identifier a net or bus that is declared to be analog. 
Nets or buses of undetermined discipline are forced to the default discipline when they 
connect to an AOI_identifier.

When you use both the ncelab -dresolution and -messages options, the elaborator 
notifies you when it encounters an array of instances. Regardless of the number of arrays of 
instances in the design, the elaborator produces only a single message. For example, you 
define the following modules.

/* Digital module instance array */
module pmem();

wire [15:0]  xxpab,pab; 
nmos #0.06 npab[15:0] (xxpab,pab,1’b1);

endmodule

/* Instantiate both digital and analog modules */
module tmp ();

pmem pmem();
ana ana();

endmodule
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/* Analog module */
module ana();

electrical v;
real vValue;
initial begin

vValue = 0.1;
#100;
vValue = 1.5;

end
analog begin

V(v) <+ vValue;
end

endmodule

When you run ncelab with both the -dresolution and -messages options, the following 
message is produced.

nmos #0.06 npab[15:0] (xxpab,pab,1’b1);
|

ncelab: *W,AMSAOIW (./test.v,10|14): An array of instances was encountered in the 
AMS design. Only pure digital array of instance hierarchies are allowed in AMS 
designs.

Mapping Instance Ports to Module Ports

When you instantiate a module, you must specify how the actual ports listed in the instance 
correspond to the formal ports listed in the defining module. Module vquad, in the previous 
example, demonstrates one of the two methods provided in Verilog-AMS. Module vquad 
uses an ordered list, where instance vd1’s first actual port name qin maps to vdoubler’s 
first formal port name in. Instance vd1’s second actual port name aa1 maps to 
vdoubler’s second formal port name, and so on. 

You can also map actual ports to the formal ports in the defining module explicitly, using name 
pairs. If you choose this approach, the order of the ports does not matter.

You cannot mix the two kinds of mapping within a single instance. 

Mapping Ports with Ordered Lists

To use ordered lists to map actual ports listed in the instance to the formal ports listed in the 
defining module, ensure that the instance ports are in the same order as the defining module 
ports. For example, consider the following module child and the module instantiator 
that instantiates it.

module child (ina, inb, out) ; 
input [0:3] ina ; 
input inb ;
output out ;
electrical [0:3] ina ;
electrical inb ;
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electrical out ;
endmodule

module instantiator (conin, conout) ;
input [0:6] conin ;
output conout ;
electrical [0:6] conin ;
electrical conout ;
child child1 (conin [1:4], conin [6], conout) ;
end module

You can tell from the order of port names in these modules that port ina[0] in module child 
maps to port conin[1] in instance child1. Similarly, port inb in child maps to port 
conin[6] in instance child1. Port out in child maps to port conout in instance 
child1.

Mapping Ports with Name Pairs

You can also link the formal ports in a defining module and the actual ports in an instance 
explicitly by pairing the port names. A period and the formal port name come first in each pair, 
followed, in parentheses, by the actual port name used in the instance. For example, in this 
module instantiation statement, 

adc2 low (.in(rem_chain), .out(bout[1]), .outb()) ;

the formal names in, out, and outb, are from the defining module, and the actual names 
rem_chain and bout[1] are used in the instantiating module. The empty set of 
parentheses adjacent to outb show that the outb port is not used in this instance.

Ensure that the first name in each pair is a name specified on the module statement of the 
defining module. Then ensure that the second name, the actual one used in the instance and 
in the instantiating module, is one of the following:

■ A simple net identifier

■ A scalar member of a vector net or port declared within the instantiating module

■ A sub-range of a vector net declared within the instantiating module

Connecting the Ports of Module Instances

Developing modules that describe components is an important step on the way to the overall 
goal of simulating a system. But an equally important step is combining those components 
together so that they represent the system as a whole. This section discusses how to connect 
module instances, using their ports, to describe the structure and behavior of the system you 
are modeling.
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Consider again the modules vdoubler and vquad, which describe this schematic.

module vdoubler (in, out) ;
input in ;
output out ;
electrical in, out ;
analog

V(out) <+ 2.0 * V(in) ;
endmodule

module vquad (qin, qout) ;
input qin ;
output qout ;
electrical qin, qout ;
wire aa1 ;
vdoubler vd1 (qin, aa1) ;
vdoubler vd2 (aa1, qout) ;
endmodule

This time, note how the module instantiation statements in vquad use port names to 
establish a connection between output port aa1 of instance vd1 and input port aa1 of 
instance vd2.

You can establish the same connections by using name pairs, as illustrated in the following 
two instantiation statements

vdoubler vd1 (.out (aa1), .in (qin)) ;
vdoubler vd2 (.in (aa1), .out (qout)) ;

Module instantiation statements like

vdoubler vd1 (qin, qout) ;
vdoubler vd2 (qin, qout) ;

establish different connections. These statements describe a system where the gain blocks 
are connected in parallel, with this schematic. 

qin aa1 qout
vd1 vd2

qin qout

vd1

vd2
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Port Connection Rules

You can connect the ports described in the vdoubler instances because the ports are all 
analog, are defined with compatible disciplines, and are the same size. To generalize,

■ All analog ports connected to a net are compatible with each other. You can connect both 
analog and digital ports to the same net if you provide appropriate connect statements.

■ You must ensure that the sizes of connected ports and nets match. In other words, you 
can connect a scalar port to a scalar net, and a vector port to a vector net or 
concatenated net expression of the same width.

Overriding Parameter Values in Instances

The syntax for the module instance statement is 

module_id [ parameter_value_assignment ] instance_list

The following sections discuss the parameter_value_assignment expression, which 
is further defined as

parameter_value_assignment ::=
#( ordered_param_override_list )

| #( named_param_override_list )

ordered_param_override_list ::=
expression { , expression }

named_param_override_list ::=
named_param_override { , named_param_override }

named_param_override ::=
. parameter_identifier ( expression )

By default, instances of modules inherit any parameters specified in their defining module. If 
you want to change any of the default parameter values, you can do so on the module 
instantiation statement itself, or from other modules and instances by using the defparam 
statement. The defparam statement is particularly useful if you want to change parameters 
throughout your modules from a single location.

Overriding Parameter Values from the Instantiation Statement

Using the module instantiation statement, you can assign values to parameters in two ways. 
You can assign values in the order the parameters are declared, or you can assign values by 
explicitly referring to parameter names. The new values must be constant expressions.
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Overriding Parameter Values with Ordered Lists

To override parameters using an ordered list of replacement values you must ensure that the 
list specifies replacement values in the same order that the parameters are defined in the 
defining module. You are not required to specify replacement values for every defined 
parameter, but if you omit any value you must omit every value from then on. In other words, 
you cannot skip over selected parameters. If a parameter does not need a new value, 
however, you can specify a replacement value equal to the default value. 

Consider the two instances, weakp and plainp, instantiated within module m.

module m ;
voltage clk ;
electrical out_a, in_a ;
mosp # (2e-6, 1e-6) weakp (out_a, in_a, clk);//Overriding param values by order
mosp plainp (out_b, in_b, clk) ;
endmodule ;

The weakp module instantiation statement overrides the first two parameters given in the 
defining module, mosp, giving the first parameter the new value 2e-6 and the second 
parameter the value 1e-6. The plainp module instantiation statement has no parameter 
override expression, so the parameters assume their default values.

Overriding Parameter Values By Name

You can also override parameter values in an instantiated module by pairing the parameter 
names to be changed with the values they are to receive. A period and the parameter name 
come first in each pair, followed by the new value in parentheses. The parameter name must 
be the name of a parameter in the defining module of the module being instantiated. When 
you override parameter values by name, you are not required to specify values for every 
parameter.

Consider this modified definition of module vdoubler. This version has three parameters, 
parm1, parm2, and parm3.

module vdoubler (in, out) ;
input in ;
output out ;
electrical in, out ;
parameter parm1 = 0.2,

parm2 = 0.1,
parm3 = 5.0 ;

analog
V(out) <+ (parm1 + parm2 + parm3) * V(in) ;

endmodule

module vquad (qin, qout) ;
input qin ;
output qout ;
vdoubler # (.parm3(4.0)) vd1 (qin, aa1) ; // Overriding by name
vdoubler # (.parm1(0.3), .parm2(0.2)) vd2 (aa1, qout) ; // Overriding by name
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vdoubler # (0.3, 0.2) vd3 (aa1, qout) ; // By order
endmodule

The module instantiation statement for instance vd1 overrides parameter parm3 by name to 
specify that the value for parm3 should be changed to 4.0. The other two parameters retain 
the default values 0.2 and 0.1. The module instantiation statement for vd3 uses an ordered 
list to override the first two parameters, parm1, and parm2. Parameter parm3 retains the 
default value 5.0.

Overriding Parameter Values Using defparam

Use the defparam statement to set parameter values in any module instance throughout the 
module hierarchy. With this capability, for example, you can group all your parameter override 
assignments together in a single module. The syntax is

defparam param = constant_exp { , param = constant_exp } ;

param must be a complete hierarchical path for the parameter whose value you want to 
change in a module instance. constant_exp must be an expression involving only 
constant numbers and parameters that are defined in the same module containing the 
defparam statement. 

For example, as the following code demonstrates, you could remove the parameter overrides 
from module vquad and put them in a new module, annotate. 

module vdoubler (in, out) ;
input in ;
output out ;
electrical in, out ;
parameter parm1 = 0.2,

parm2 = 0.1,
parm3 = 5.0 ;

analog
V (out) <+ (parm1 + parm2 + parm3) * V (in) ;

endmodule

module vquad (qin, qout) ;
input qin ;
output qout ;
vdoubler vd1 (qin, aa1) ;
vdoubler vd2 (aa1, qout) ;
endmodule

module annotate ;
defparam 

vquad.vd1.parm3 = 4.0,
vquad.vd2.parm1 = 0.3,
vquad.vd2.parm2 = 0.2;

endmodule
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Precedence Rules for Overriding Parameter Values

Use the following rules to determine which parameter override takes precedence when a 
parameter value is overridden by more than one assignment.

■ If overrides take place at different levels of the module hierarchy, the highest level 
override takes precedence. 

■ If overrides take place at the same level of the module hierarchy, an override done by the 
defparam statement takes precedence over overrides done by module instantiation 
statements.

ps #(.b(1.5) inst1 (in, out);

Instances of paramsets are allowed to override only parameters that are declared in the 
paramset. Using a paramset instance to attempt to override a parameter of the base module 
that is not declared in the paramset results in a warning and the offending parameter override 
is ignored.

Instantiating Analog Primitives

The remaining sections of the chapter describe how to instantiate some analog primitives in 
your code. For more information, see the “Preparing the Design: Using Analog Primitives and 
Subcircuits” chapter of the Virtuoso AMS Designer simulator User Guide.

As you can instantiate Verilog-AMS modules in other Verilog-AMS modules, you can 
instantiate Spectre and SPICE masters in Verilog-AMS modules. You can also instantiate 
models and subcircuits in Verilog-AMS modules. For example, the following Verilog-AMS 
module instantiates two Spectre primitives: a resistor and an isource.

module ri_test (pwr, gnd) ;
electrical pwr, gnd ;
parameter real ibias = 10u, ampl = 1.0 ;
electrical in, out ;

resistor #(.r(100K)) RL (out, pwr) ; //Instantiate resistor
isource #(.dc(ibias)) Iin (gnd, in) ; //Instantiate isource

endmodule

When you connect a net of a discrete discipline to an analog primitive, the simulator 
automatically inserts a connect module between the two.

However, some instances require parameter values that are not directly supported by the 
Verilog-AMS language. The following sections illustrate how to set such values in the 
instantiation statement.
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Instantiating Analog Primitives that Use Array Valued Parameters

Some analog primitives take array valued parameters. For example, you might instantiate the 
svcvs primitive like this:

module fm_demodulator(vin, vout, vgnd) ;
input vin, vgnd ;
output vout ;
electrical vin, vout, vgnd ;
parameter real gain = 1 ;

svcvs #(.gain(gain),.poles({-1M, 0, -1M, 0}))
af_filter (vout, vgnd, vin, vgnd) ;

analog begin
...

end

endmodule 

This fm_demodulator module sets the array parameter poles to a comma-separated list 
enclosed by a set of square brackets.

Instantiating Modules that Use Unsupported Parameter Types

Spectre built-in primitives take parameter values that are not supported directly by the 
Verilog-AMS language. The following cases illustrate how to instantiate such modules. 

To set a parameter that takes a string type value, set the value to a string constant. For 
example, the next fragment shows how you might set the file parameter of the vsource 
device.

vsource #(.type("pwl"), .file("mydata.dat") V1(src,gnd);

To set an enumerated parameter in an instance of a Spectre built-in primitive, enclose the 
enumerated value in quotation marks. For example, the next fragment sets the parameter 
type to the value pulse.

vsource #(.type("pulse"),.val1(5),.period(50u)) Vclk(clk,gnd);
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Using an M Factor (Multiplicity Factor)

Circuit designers use m factors to mimic parallel copies of identical devices without having to 
instantiate large sets of devices in parallel. A design instance can inherit an m factor from one 
of its ancestors in a hierarchy of instances. The value of the inherited m factor in a particular 
module instance is the product of the m factor values in the ancestors of the instance and of 
the m factor value in the instance itself. If there are no passed m factors in the instance or in 
the ancestors of the instance, the value of the m factor is one (1.0). 

In the Cadence implementation of Verilog-AMS, you use the inherited_mfactor attribute 
to access the value of the m factor and set its value as follows: 

(* inherited_mfactor *) parameter real m=1;

and you use the passed_mfactor attribute to pass an m factor down the hierarchy; for 
example: 

one #(.m(3)) (* integer passed_mfactor = "m"; *) One();

This example specifies an m-factor parameter called m, gives it the value 3, and passes that 
value down to instance One of the module called one. Module one does not have to have the 
m parameter declared in its interface.

Note: If you are using the AMS Designer simulator in the AMS Designer environment, the 
AMS netlister inserts the passed_mfactor attribute so that you only need to insert the 
inherited_mfactor parameter. 

Example: Using an M Factor

The following example illustrates how the m-factor value is passed down the hierarchy and 
how the effective value is the product of the m factors in the current instance and in the 
ancestors of the current instance.

//Verilog-AMS HDL for "amslib", "top" "verilogams"

‘include "constants.vams"
‘include "disciplines.vams"

module top;
resistor R1(a,b);
one #(.m(3)) (* integer passed_mfactor = "m"; *) One();

// The above sets the m factor for instance One to 3.
endmodule

//Verilog-AMS HDL for "amslib", "one" "verilogams"

‘include "constants.vams"
‘include "disciplines.vams"

module one ( );
parameter real (* integer inherited_mfactor; *) m=1;
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resistor R1(a,b);
two Two();
analog $strobe ("Inherited mfactor in module one is %f",m);

// Value of m factor is 3, as set in module top.
endmodule

//Verilog-AMS HDL for "amslib", "two" "verilogams"

‘include "constants.vams"
‘include "disciplines.vams"

module two ( );
three #(.m(2)) (* integer passed_mfactor="m";*) Three();

// m factor is not accessed in this module, but a factor of 2 
// is added.
endmodule

//Verilog-AMS HDL for "amslib", "three" "verilogams"

‘include "constants.vams"
‘include "disciplines.vams"
module three ( );

parameter real (* integer inherited_mfactor; *) m=1;
// The effective value of m factor is now 3 * 2 = 6.

resistor R1(a,b);
four Four(); // No m factor is specified.
analog $strobe ("Inherited mfactor in module three is %f",m);

endmodule

//Verilog-AMS HDL for "amslib", "four" "verilogams"

‘include "constants.vams"
‘include "disciplines.vams"
module four ( );

resistor R1(a,b);
endmodule

When you simulate, these modules produce output like the following.

ncsim> run
inherited mfactor in module one is 3.000000
inherited mfactor in module three is 6.000000
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Including Verilog-A Modules in Spectre Subcircuits

Users of AMS Designer can instantiate Spectre cells in their Verilog-AMS code. By using the 
ahdl_include statement, those Spectre cells can, in turn, instantiate Verilog-A modules. 
This situation, which users of Spectre libraries often encounter, is summarized by the 
following diagram.

To set up a hierarchy like this one, you use an ahdl_include statement in the Spectre 
subcircuit to include the Verilog-A module.

The ahdl_include statement used in the Spectre subcircuit has the following format.

ahdl_include "filename"

For filename, use either a full or a relative path that resolves across your network. For a 
Verilog-A file, filename must have a .va file extension.

For example, to include in your Spectre subcircuit a Verilog-A npn instance with the name 
ahdlNpn, you use a statement like the following,

ahdl_include "/usr/ahdlNpn.va"

Be sure that you make the Spectre subcircuit available by defining the MODELPATH variable. 
For more information about this procedure, see the “Using Subcircuits and Models Written in 
SPICE or Spectre” section, in Chapter 3, of the Virtuoso AMS Designer simulator User 
Guide.

Verilog-AMS module

Spectre instance

...

...

Spectre subcircuit

Verilog-A instance

...

...

Verilog-A module

Behavioral code
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Mixed-Signal Aspects of Verilog-AMS

The Cadence® Verilog®-AMS language brings analog and digital modeling together in a 
single language. This chapter describes the mixed-signal features of Verilog-AMS and how 
the continuous (analog) and discrete (digital) domains interact.

Fundamental Mixed-Signal Concepts

Becoming familiar with the following terms will help you understand the discussion in this 
chapter.

Domains

The domain of a value refers to the method used to calculate the value. In Verilog-AMS, 

■ The potentials and flows described in natures are calculated in the continuous domain.

■ Register contents and the states of gate primitives are calculated in the discrete domain.

■ The values of real and integer variables are calculated in either the continuous or 
discrete domain, depending on the context in which their values are assigned. The 
domain of a variable is that of the context from which its value is assigned.

Values calculated in the discrete domain change value instantaneously and only at integer 
multiples of a minimum resolvable time. Values calculated in the continuous domain vary 
continuously.

Contexts

Statements in a Verilog-AMS module description can appear in the body of an analog block, 
in the body of an initial or always block, or outside of any block. Statements that appear 
in an analog block are in the continuous context; statements in any other location are in 
the discrete context. A particular variable can be assigned values in either context, but not 
in both contexts.
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Nets, Nodes, Ports, and Signals

In Verilog-AMS, hierarchical structures are created when higher-level modules create 
instances of lower level modules and communicate with those instances through input, 
output, and bidirectional ports. A port represents the physical connection of an expression in 
the instantiating or parent module with an expression in the instantiated or child module. The 
expressions, which can include registers, variables, and nets of both continuous and discrete 
disciplines, are referred to as connections. A port of an instantiated module has two nets, 
the upper connection, which is a net in the instantiating module, and the lower connection, 
which is a net in the instantiated module.

A net is said to be in the discrete domain if it has an associated discrete discipline. A net is in 
the continuous domain if it has an associated continuous discipline. A signal is a hierarchical 
collection of nets that, because of port connections, are contiguous. If all the nets that make 
up a signal are in the discrete domain, the signal is a digital signal. If all the nets that make 
up a signal are in the continuous domain, the signal is an analog signal. A signal that 
consists of nets from both domains is called a mixed signal. Similarly, a port whose 
connections are both analog is an analog port, a port whose connections are both digital is 
a digital port, and a port with one analog connection and one digital connection is a mixed 
port.

Nets and variables in the continuous domain are termed continuous nets and continuous 
variables. Nets and variables in the discrete domain are termed discrete nets and discrete 
variables.

If a signal is analog or mixed, then it is associated with a node. Regardless of the number of 
analog nets in an analog or mixed signal, and regardless of how the analog nets in a mixed 
signal are interspersed with digital nets, the analog portion of an analog or mixed signal is 
represented by only a single electrical node. This guarantees that at any instant in time the 
analog portion of a mixed or analog signal has one, and only one, value that represents its 
potential with respect to ground.

Analog nodes and branches are allowed only as arguments to signal access functions, 
analog functions, and analog primitive and module instantiations. They cannot be connected 
to digital primitives.

For additional information, see Appendix A, “Nodal Analysis.”

Mixed-signal and Net Disciplines

The discipline of a continuous net specifies the tolerance (abstol) used to calculate the 
potential of the associated node. A mixed signal might have multiple continuous nets of 
different compatible continuous disciplines, with different abstol values. In this case, the 
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abstol of the associated node is the smallest of the abstol values specified in the 
disciplines associated with the continuous nets of the signal.

Behavioral Interaction

Verilog-AMS supports various types of blocks used to describe behavior. In general, digital 
behavior is described in initial and always blocks and analog behavior is described in 
analog blocks. In a Verilog-AMS module, you can have, at most, one analog block and any 
number of initial and always blocks.

The nets and variables of each domain can be referenced in the other context, which is how 
information passes between the continuous and discrete domains. Read operations of nets 
and variables in both domains are allowed from both contexts. Write operations of nets and 
variables are only allowed from within the context of their domain.

The following example illustrates some of these capabilities.

`timescale 1ns/1ns
module mod (in);
integer abve; // Will be an analog-owned variable.
integer below; // Will be an analog-owned variable.
integer d; // Will be a digital-owned variable.

electrical in;

always begin // Enter the digital context.
if ( abve ) // Read the analog variable in the digital context.

d = 1; // Write the variable d in the digital context.

if ( below )
d = 0; // d, because written in digital context, is owned by digital.

#5;
end

analog begin // Enter the analog context.
@ (cross (V(in) - 2.5, +1 ) )

abve = 1; // Write to the variable abve in the analog context.
@ (cross (V(in) - 2.5, -1 ) )

abve = 0; // abve, because written in analog context,is owned by analog.

if ( d == 1 ) // Read the value of d in the analog context.
$strobe(" d is still high\n"); end

endmodule

Using Verilog-AMS, you can

■ Access discrete primaries, such as nets and variables, from a continuous context

■ Access continuous primaries, such as flows, potentials and variables, from a discrete 
context
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■ Detect discrete events from a continuous context

■ Detect continuous events from a discrete context

Accessing Discrete Nets and Variables from a Continuous Context

Using Verilog-AMS, you can access discrete nets and variables from a continuous context. 
The following table shows how values map from the discrete context to the analog context.

The following example shows code that accesses the value of a discrete primary from a 
continuous context.

Type of 
discrete net 
or variable

Example
Equivalent 
continuous 
variable type

Mapping from discrete to 
continuous

real real r;
real rm[0:8];

real Discrete real values are accessed in 
the continuous context as real 
numbers.

integer integer i;
integer im[0:4];

integer Discrete integer values are accessed 
in the continuous context as integer 
numbers.

bit reg r1;
wire w1;
reg [0:9] r[0:7];
reg r[0:66];
reg [0:34] rb;

integer Discrete bit and bit groupings (buses 
and part selects) are accessed in the 
continuous context as integer 
numbers. x and z values cannot be 
represented as analog integers. 
Furthermore, it is illegal in the analog 
context to reference digital bits that 
are set to x or z.

The sign bit (bit 31) of the integer is 
always set to zero, and the lowest bit 
of the bit grouping is mapped to the 
0th bit of the integer. Then, the next 
bit of the bus is mapped to the 1st bit 
of the integer and so on. If the bus 
width is less than 31 bits, the higher 
bits of the integer are set to zero. It is 
illegal to access a discrete bit 
grouping with more than 31 bits.
December 2011 208 Product Version 11.1



Cadence Verilog-AMS Language Reference
Mixed-Signal Aspects of Verilog-AMS
module onebit_dac (in, out) ;
input in ;
inout out ;
wire in ;
logic in ;
electrical out ;
real vout ;

analog
if (in==0) // "in" is a discrete primary.

vout = 0.0 ;
else

vout 3.0 ;
V(out) <+ vout ;

endmodule

Accessing Continuous Nets and Variables from a Discrete Context

Using access functions, you can probe continuous nets from within a discrete context. All 
probes that are legal in the continuous context of a module are also legal from within the 
discrete context. For more information on access functions, see “Obtaining and Setting Signal 
Values” on page 127.

The following example illustrates how you might access a continuous net from the discrete 
context.

module sampler (in, clk, out);
inout in;
input clk;
output out;
electrical in; // "in" is a continuous net.
wire clk;
reg out;
always @(posedge clk) // Entering the discrete context.

out = V(in); // Access the continuous net.
endmodule

Continuous variables can be accessed for reading from any discrete context in the same 
module that the continuous variables are declared. Because the discrete domain can fully 
represent all continuous types, a continuous variable is fully visible when it is read in a 
discrete context.

The following example illustrates this capability.

real aVar; // Will be a continuous analog variable.
electrical in;
reg dReg;

analog begin // Enter the analog context.
@ (cross (V(in) - 2.5, +1 ) )

aVar = 1; // Write to variable, so aVar is now owned by analog.
end
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always begin // Enter the digital context.
#5 dReg = aVar; // Read value of analog aVar within digital context.

end

Detecting Discrete Events from a Continuous Context

You can detect discrete events from within a continuous context. The arguments to discrete 
events in continuous contexts are considered part of the discrete context. A discrete event in 
a continuous context is non-blocking, like the other events allowed in continuous contexts.

The following example illustrates a discrete event being detected in a continuous context.

module sampler3 (in, clk1, clk2, out);
input in, clk1, clk2;
output out;
wire clk1;
real vout ;
electrical in, clk2, out;
analog begin // Enter the continuous context.

@(posedge clk1, 1)) // Detect discrete event posedge clk1.
vout = V(in);

V(out) <+ vout;
end
endmodule

Detecting Continuous Events from a Discrete Context

You can detect analog (continuous) events from within a discrete context. The arguments to 
these events are considered part of the continuous context. An analog event used in a 
discrete context is blocking like other discrete events.

The following example illustrates an analog event being detected in a discrete context.

module sampler2 (in, clk, out);
input in, clk;
output out;
wire in;
reg out;
electrical clk;
always @(cross(V(clk) - 2.5, 1)) // Code to detect the analog event.

out = in;
endmodule

Connect Modules

The Verilog-AMS language allows you to describe analog and digital components and to 
connect these components together. A connect module is a module automatically or 
manually inserted to connect the continuous and discrete disciplines (mixed-nets) of the 
design hierarchy together. A connect module contains the code required to translate and 
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propagate signals between the analog and digital components. This section contains details 
about the following aspects of using connect modules.

■ Coding connect modules

■ Understanding the factors affecting the placement of connect modules

■ Understanding the behavior of connect modules

Some additional examples of connect modules can be found at:

your_install_dir/tools/affirma_ams/etc/connect_lib

Coding Connect Modules

Connect modules have the following syntax.

connectmodule_declaration ::= 
connectmodule module_identifier ( port, port ) ;

[ connectmodule_items ] 
endmodule 

port ::=
port_identifier

connectmodule_items ::=
{ connectmodule_item }

| analog_block 

connectmodule_item ::= 
connectmodule_item_declaration 

| defparam_override 
| analog_primitive_instantiation
| digital_continuous_assignment
| digital_gate_instantiation
| digital_udp_instantiation
| digital_specify_block
| digital_initial_construct
| digital_always_construct

connectmodule_item_declaration ::= 
parameter_declaration 

| input_declaration 
| output_declaration 
| inout_declaration 
| integer_declaration 
| net_discipline_declaration 
| real_declaration

Specifying Port Directions in Connect Modules

The disciplines associated with the two specified ports, and the directions declared in the 
module, together determine when the connect module can be used to connect the discrete 
and continuous domains of a mixed net. 
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For example, the following connect module, d2a, can bridge

■ A mixed input port whose upper connection is compatible with the logic discipline and 
whose lower connection is compatible with the electrical discipline

■ A mixed output port whose upper connection is compatible with the electrical discipline 
and whose lower connection is compatible with the logic discipline.

connectmodule d2a(in,out);
input in ;
output out ;
logic in ;
electrical out ;

endmodule

The next example, a2d, defines a connect module that can bridge

■ A mixed output port whose upper connection is compatible with the logical discipline and 
whose lower connection is compatible with the electrical discipline

■ A mixed input port whose upper connection is compatible with the electrical discipline 
and whose lower connection is compatible with the logic discipline

connectmodule a2d(out, in) ;
output out ;
input in ;
logic out ;
electrical in ;

endmodule

The final example, bidir, defines a connect module that can bridge any mixed port where 
one connection is compatible with the logic discipline and the other connection is compatible 
with the electrical discipline.

connectmodule bidir(out, in) ;
inout out ;
inout in ;
logic out ;
electrical in ;

endmodule

The d2a, a2d, and bidir examples illustrate all the direction combinations that are allowed 
in a connect module. You must not define a connect module that declares both ports as input 
or both ports as output.

Coding to Meet Connect Module Requirements

Connect modules have two functions:

■ Translating between the analog and digital domains

■ Using analog information to control the propagation of digital signals 
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This section presents examples that illustrate how to code connect modules to handle these 
requirements. For more information, see “Driver-Receiver Segregation” on page 227.

Example: Using Analog Data to Control Digital Propagation

In the following connect module, the analog code determines when the ordinary driver 
outputs propagate to the ordinary receivers. The c2e connect module drives the digital port 
d (through the register tmp) only when the analog value rises above or falls below a 2.5-volt 
threshold.

connectmodule c2e(d,a);
inout d;
inout a;
cmos1 d; 
electrical a;
reg tmp;

assign d = tmp ; // Bind d to a register.

analog // Translate from digital to analog.
V(a) <+ transition( d == 1 ? 5.0 : 0.0, 3n, 3n);

always @( cross ( V(a) - 2.5, +1 ) )
tmp = 1‘b1; // Propagate the digital signal when

// the analog value rises to 2.5v.

always @( cross ( V(a) - 2.5, -1 ) )
tmp = 1‘b0; // Propagate the digital signal when

// the analog value falls to 2.5v.

endmodule

Example: Using Driver Access Functions to Control Digital Propagation 

The connect module described in this section uses driver access functions to examine the 
values of individual digital drivers. The module uses assumptions about the analog 
characteristics of a cmos1 (logic) driver to present to port a an accurate analog equivalent 
of the digital signal. The module then uses the voltage at port a to determine the logic state 
that propagates to the receivers of the digital signal.

The module embodies the following assumptions about cmos1 (logic):

■ The equivalent analog circuit of an output is a function of the rail-to-ground supply 
voltage supply.

■ The equivalent analog circuit when a gate output in cmos1 (logic) is driven high can 
be approximated by a resistance impedence1 between the output and the rail.

■ The equivalent analog circuit when a gate output in cmos1 (logic) is driven low can 
be approximated by a resistance impedence0 between the output and ground.
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■ The effect of the impedance between output and rail when the output is driven low, and 
of the impedance between output and ground when the output is driven high, is 
negligible.

This connect module effectively adds another parallel resistor from output to ground 
whenever a digital output connected to the net goes low and adds another parallel resistor 
from output to rail (supply) whenever a digital output connected to the net goes high.

‘include "disciplines.vams"
‘timescale 1ns/1ps

connectmodule d2a(d,a);
input d;
output a;
logic d;
electrical rail, a, gnd;
reg out;
ground gnd;
branch (rail,a) pull_up;
branch (a,gnd) pull_down;
branch (rail,gnd) power;
parameter real impedence0 = 120.0;
parameter real impedence1 = 100.0;
parameter real impedenceOff = 1e6;
parameter real vt_hi = 3.5;
parameter real vt_lo = 1.5;
parameter real supply = 5.0;
integer i, num_ones, num_zeros;

// net_resolution(d, out);
assign d=out;  // Cadence method used instead of net_resolution

initial begin
num_ones=0;
num_zeros=0;

end

always @(driver_update(d)) begin
num_ones = 0;
num_zeros = 0;
for ( i = 0; i < $driver_count(d); i=i+1 )

if ( $driver_state(d,i) == 1 )
num_ones = num_ones + 1;

else
num_zeros = num_zeros + 1;

end

always @(cross(V(a) - vt_hi, -1) or cross(V(a) - vt_lo, +1))
out = 1’bx;

always @(cross(V(a) - vt_hi, +1))
out = 1’b1;

always @(cross(V(a) - vt_lo, -1))
out = 1’b0;

analog begin
// Approximately one impedence1 resistor to rail per high output
// connected to the digital net.

V(pull_up) <+ 1/((1/impedence1)*num_ones+(1/impedenceOff)) * I(pull_up);

// Approximately one impedence0 resistor to ground per low output
// connected to the digital net.

V(pull_down) <+ 1/((1/impedence0)*num_zeros+(1/impedenceOff)) *I(pull_down);
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V(power) <+ supply;
end

endmodule

If this module is used as the d2a in the following schematic, 

■ The delay from digital drivers to the digital receiver is a function of the value of the 
capacitor

■ The delay with two gates driving the signal is approximately half as long as the delay with 
one gate driving the signal

Using Automatically-Inserted Connect Modules

To make use of an automatically-inserted connect module, you must specify the 
circumstances in which it is to be used. To do that, use the connect specification discussed 
in the next section. After that, the simulator automatically inserts the connect module 
according to the criteria that you specify. For an example of a design that uses automatically 
inserted connect modules, see “Example: Automatic Insertion of Connect Modules” on 
page 218.

Choosing and Specializing Connect Modules

Use the connect specification to declare which connect modules are to be automatically 
inserted in mixed ports. There can be multiple connect module declarations with port 
disciplines and directions that match each discrete/continuous discipline pair. The connect 
specification specifies which to use.

d3

d1 d2a d2

c1

n1
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connect_specification ::=
connectrules connectrule_identifier ;
{ connect_spec_item }
endconnectrules

connect_spec_item ::=
connect_insertion

| connect_resolution

connect_insertion ::= 
connect connect_module_identifier [connect_mode] [#(attribute_list)] 
[ [direction] discipline_iden, [direction] discipline_iden ] ;

connect_mode ::= 
merged 

| split 

attribute_list ::=
attribute 

| attribute_list , attribute 

attribute ::= 
.parameter_identifier ( expression ) 

direction ::= 
input 

| output 
| inout 

connect_module_identifier is the connect module to be used to connect mixed nets 
that have the disciplines declared in the connect module. For example, if d2a is defined as

connectmodule d2a(in,out);
input in ;
output out ;
logic in ;
electrical out ;

endmodule

then the specification

connect d2a ;

designates the d2a module as the connect module to insert automatically to bridge a mixed 
input port whose upper connection is compatible with the logic discipline and whose lower 
connection is compatible with the electrical discipline.

connect_resolution is further defined as follows.

connect_resolution ::=
connect discipline_list resolveto discipline_identifier ;

discipline_list ::=
discipline_identifier

| discipline_list, discipline_identifier

You use the connect_resolution statement to specify a single discipline to use during the 
discipline resolution process when multiple nets with compatible discipline are part of the 
same mixed net.
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connect_mode specifies whether all ports of a common discrete discipline and port direction 
share a single connect module or have individual connect modules. This attribute is 
discussed further in “connect_mode Attribute Affects Connect Module Placement” on 
page 221.

attribute_list allows you to override the default parameter values of the connect 
module. The expressions that specify the overriding values must not be out-of-module 
references. For example, the following statement specifies values for tt and vcc.

connect d2a_035u #(.tt(3.5n), .vcc(3.3)) ;

direction allows you to override the port directions specified in the connect module. For 
example, using the connect module d2a, defined above, the statement

connect d2a output logic, input electrical ;

designates the d2a module as the connect module to insert automatically to bridge a mixed 
input port whose upper connection is compatible with the electrical discipline and whose 
lower connection is compatible with the logic discipline or a mixed output port whose lower 
connection is compatible with electrical and whose upper connection is compatible with logic.

You can use the discipline identifiers to specify different discipline combinations for the 
connect module. For example, the connect module d2a, as it is coded, can only be used to 
bridge the logic and electrical disciplines. However, you can use it for other discipline pairs by 
coding something like this.

connect d2a logic, sig_flow_i ;

To use this discipline override form of the connect specification, the discipline you specify for 
the continuous domain must be compatible with the continuous discipline specified in the 
connect module. Similarly, the discipline you specify for the discrete domain must be 
compatible with the discrete discipline specified in the connect module.

Where AMS Designer Searches for Connect Rules and Connect Modules

On the ncelab command line, you can list multiple connectrules blocks, each of which 
can contain many connect rules. Each connect rule specifies a connect module to be inserted 
when the connect rule is selected. A connect rule and the connect module it specifies can be 
in different libraries.

The AMS elaborator uses the following approach to determine which connectrules block 
and which connect rule to use.

1. The elaborator searches, in order, as many of the connectrules blocks listed on the 
command line as necessary to find a valid connect rule. For example, if the command line 
is

ncelab cRuleBlockA cRuleBlockB
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the elaborator looks first at the connect rules in cRuleBlockA. If there are no valid 
connect rules in cRuleBlockA, then the elaborator looks at the connect rules in 
cRuleBlockB. 

2. To determine whether a connect rule is valid, the elaborator attempts to locate (as 
described in the next step) a connect module that matches the name specified by the 
connect rule and the discipline and direction requirements for the port and net being 
connected. 

3. The elaborator searches the following locations, in order, for a connect module that 
matches each connect rule in the connectrules block.

❑ The parent library of the connect module instance.

The elaborator inserts connect modules between a lower port and an upper net. The 
parent library is the library containing the module in which the upper net is located.

❑ The library that contains the connectrules block.

❑ The libraries listed in the cds.lib file.

If, in any single one of these libraries, the elaborator finds one (and only one) connect 
module that matches the selected connect rule, the connect rule is valid. After finding a 
connect module that makes the connect rule valid, the elaborator searches the rest of 
the current library, but does not go on to other libraries.

If any single one of these libraries contains more than one connect module that matches 
the selected connect rule, the elaborator issues an error.

4. If, in a connectrules block, there are multiple valid connect rules, the elaborator 
selects the last such valid connect rule listed. If there are no valid connect rules, the 
elaborator looks in the next connectrules block listed on the ncelab command.

Example: Automatic Insertion of Connect Modules

This example describes a ring of digital and analog inverters. To bridge between the discrete 
and continuous domains, the design uses two connect modules: elec_to_logic and 
logic_to_elect. The simulator automatically inserts the elec_to_logic connect 
module between the out port of instance a3 and net n1, which is bound to the in port of 
instance d1. The simulator automatically inserts the logic_to_elect connect module 
between the out port of instance d2 and net n3, which is bound to the in port of instance a3.

module ring;
dig_inv d1 (n1, n2);
dig_inv d2 (n2, n3);
analog_inv a3 (n3, n1);

endmodule
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module dig_inv(in, out);
input in;
output out;
logic in, out

always begin
out = #10 ~in;

end

endmodule

module analog_inv(in, out);
input in;
output out;
electrical in, out;
parameter real vth =2.5;

analog begin
if (V(in) > vth)) outval = 0;

else 
outval = 5 ;

V(out) <+ transition(outval);
end

endmodule

connectmodule elect_to_logic(el,cm);
input el;
output cm;
reg cm;
electrical el;
logic cm;

always 
@(cross(V(el) - 2.5, 1) cm = 1;

always 
@(cross(V(el) - 2.5, -1) cm = 0;

endmodule

connectmodule logic_to_elect(cm,el);
input cm;
output el;
logic cm;
electrical el;
analog 

V(el) <+ transition((cm == 1) ? 5.0 : 0.0);

endmodule

connectrules crules ;
connect elect_to_logic; // Specifies which appropriate connect module to use.
connect logic_to_elect;

endconnectrules

Names for Automatically Inserted Connect Module Instances

Parameters of automatically inserted connection instances can be individually set by using 
the defparam statement. To facilitate this, the instance names for the automatically inserted 
modules are entirely predictable.
December 2011 219 Product Version 11.1



Cadence Verilog-AMS Language Reference
Mixed-Signal Aspects of Verilog-AMS
To determine the name of a connect module instance when the connect_mode attribute 
value is merged

1. Identify the discipline, DisciplineName, at the bottom connection.

2. Identify the common signal, Net.

3. Identify the connect module, ModuleName.

The instance name of the connect module is 

Net__ModuleName__DisciplineName 

where the name sections are joined by double underscores.

To determine an instance name when the connect_mode attribute value is split

1. Identify the discipline of the common net, Net, at the top connection.

2. Identify the local instance name (non-hierarchical name) at the bottom connection, 
InstName.

3. Identify the port name at the bottom connection, PortName.

The instance name of the connect module is, 

Net__InstName__PortName 

where the name sections are joined by double underscores.

Understanding the Factors Affecting Connect Module Placement

By definition, connect modules are inserted between analog nets and digital nets. There are 
several factors, however, that affect where the boundary between analog and digital nets is 
drawn. These factors include

■ The value of the connect_mode attributes of connect statements

■ The disciplines used to explicitly declare nets

■ The result of discipline resolution, which assigns disciplines and domains to nets whose 
disciplines and domains are otherwise unknown

■ The use of aliased ports, which can result in the insertion of connect modules.
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connect_mode Attribute Affects Connect Module Placement

The connect_mode attribute of the connect statement controls the segmentation of the 
signal at each level of the hierarchy when a connect module is inserted. This attribute applies 
only when there is more than one port of discrete discipline on a signal for which the connect 
statement applies. The attribute has two possible values: split and merged. The split 
value indicates that there should be one connect module inserted per port. The merged 
value, which is the default, specifies that there is to be only one connect module inserted for 
all the ports on a signal that match a given connect statement.

connect_mode Merged

The merged value for the connect_mode attribute instructs the elaborator to group all ports 
(whether input, output, or inout) and to insert just one connect module for all of them, 
provided that the needed connect module is the same for all the ports. 

The following figure illustrates the effect of the merged value in three connect statements.

connectrules example ;
connect d2a merged input ttl, output electrical ;
connect bidir merged output electrical, input ttl ;
connect bidir merged inout ttl, inout electrical ;

endconnectrules
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Notice how connecting the electrical signal to the TTL input and inout ports results in the 
insertion of a single connect module, bidir. Connecting the electrical signal to the TTL 
output ports results in the insertion of a single, but different, module, d2a.

connect_mode Split

The split value for the connect_mode attribute instructs the simulator to insert a connect 
module for each port. The following figure illustrates the effect of the split value in three 
connect statements.

connectrules example ;
connect d2a split input ttl, output electrical ;
connect a2d merged output electrical, input ttl ;
connect bidir merged inout ttl, inout electrical ;

endconnectrules

With this specification, connecting the electrical signal to the TTL input ports results in the 
insertion of a single instance of the a2d connect module, as specified by the merged value. 
Similarly, a single instance of the bidir connect module is inserted for the inout ports. 
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However, the split value used for the d2a connect statement results in the insertion of a 
distinct instance of the connect module for each output port.

Disciplines Used to Declare Nets Affect Connect Module Placement

Connect modules are inserted at the boundary between the analog and digital domains. It 
follows that changing the location of the boundary can affect where connect modules are 
placed. For example, if the wires in the following schematic are digital, a single connect 
module is inserted between the analog capacitor and the digital inverters.
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However, if net n1 is analog, two connect modules are inserted.

In this case, the c2e module translates the digital output of inverter d1 into analog voltage for 
n1, and the e2c module translates analog voltage back into a digital signal for inverter d2. 
The analog capacitor connects directly to analog net n1.

Discipline Resolution Affects Connect Module Placement

Another factor that affects the location of the boundary between the analog and digital 
domains and, therefore, where connect modules are inserted, is discipline resolution. 
Discipline resolution is the process of assigning a domain and discipline to nets whose 
domain and discipline are otherwise unknown (or whose discipline is wire).

The factors that affect discipline resolution are listed in the following table.

Factor For more information, see

The disciplines that are used in the design, 
including the disciplines used for inherited 
connections

“Disciplines” on page 68

The value of the ‘default_discipline 
compiler directive

“Setting a Default Discrete Discipline for 
Signals” on page 240

The use of discipline resolution connect 
statements

“Using Discipline Resolution Connect 
Statements” on page 225

The discipline resolution method selected “Discipline Resolution Methods” on 
page 225

The way that mixed-domain buses are used “Discipline Resolution in Buses” on page 227

The use of aliased ports. “How Aliased Signals Are Netlisted” in 
chapter 4, of the Virtuoso AMS Designer 
Environment User Guide.

d1 d2

c1

c2e e2c

n1
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Using Discipline Resolution Connect Statements

Use the discipline resolution connect statement to specify a single discipline to resolve to 
when multiple nets with compatible disciplines are part of the same mixed net.

connect_resolution ::=
connect discipline_list resolveto discipline_to_use;

discipline_list ::=
discipline_identifier

| discipline_list, discipline_identifier

discipline_to_use is the single discipline to be used for the net.

discipline_list is the list of compatible disciplines that are to resolve to a single 
discipline.

For example,

connect electrical, electrical_hi_cur, electrical_low_power resolveto electrical

Discipline Resolution Methods

Verilog-AMS provides two methods of discipline resolution: default and detailed. The two 
methods assign domains and disciplines to unknown signal segments in different ways, 
resulting in different boundaries between the analog and digital domains. If you do not want 
to use the default method, you can specify the detailed method using the -disres 
detailed elaborator option. 

The default and detailed methods have different effects, as follows: 

Default method Detailed method

Propagates both continuous and discrete 
disciplines up the hierarchy, which typically 
results in fewer connections between the 
analog and digital domains.

Propagates continuous disciplines up and 
back down the hierarchy to meet discrete 
disciplines, which typically results in more 
connections between the analog and digital 
domains.

Produces connection elements between the 
analog and digital domains that tend to be 
higher in the hierarchy.

Produces connection elements between the 
analog and digital domains that tend to be 
lower in the hierarchy.

Assigns digital disciplines to more nets on a 
mixed signal.

Assigns analog disciplines to more nets on 
a mixed signal.
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Discipline resolution applies to the following kinds of nets: wire, tri, wor, trireg, wand, 
tri0, tri1, supply0, supply1, wreal, and nets of unknown disciplines. If a net resolves 
to the analog domain, the software ignores any digital property the net has. If a net resolves 
to the digital domain, the software considers any digital property that it has during further 
processing.

The methods use the following steps to assign domains and disciplines:

1. Traverse each signal hierarchically, starting at the bottom, until a net is found that has no 
assigned discipline.

2. Examine the connections of the segment and assign a domain to the segment.

❑ For the default method, examine the connections of the segment to only the upper 
parts of ports. If all such connections are digital, assign the segment to the digital 
domain. If any such connection is analog, assign the segment to the analog domain.

❑ For the detailed method, examine the connections of the segment to both the 
upper and the lower parts of ports. If all such connections are digital, assign the 
segment to the digital domain. If any such connection is analog, assign the segment 
to the analog domain.

3. Apply ‘default_discipline directives, as appropriate, to nets with digital domains.

4. For each net that has not yet been assigned a discipline, examine the ports to which the 
segment is connected.

❑ For the default method, examine all ports to which the segment forms the upper 
connection. Create a list of all the disciplines at the lower connections of these ports 
whose domains match the domain of the net.

❑ For the detailed method, examine all ports to which the segment forms the upper 
or lower connection. Create a list of all the disciplines at the other connections of 
these ports whose domains match the domain of the net.

5. Use the list created in the previous step to determine the discipline of the net.

❑ If there is only a single discipline in the list, assign that discipline to the net.

❑ If there is more than one discipline in the list, and the contents of the list match the 
discipline list of a resolution connect statement (the connect…using syntax), 
assign to the net the resolved discipline given by the statement.

❑ If there is more than one discipline in the list but the contents of the list do not match 
the discipline list of a resolution connect statement, the discipline of the net remains 
unknown.
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6. (detailed method only.) Traverse each signal hierarchically, starting at the top. When a 
net is found that has no assigned discipline, repeat step 2 through step 5.

Discipline Resolution in Buses

The individual nets in a bus with an unknown domain are assigned domains according to the 
following rules.

■ If any net in a bus with an unknown domain is used in a behavioral statement, every net 
in the bus is assigned to the digital domain.

■ If any net in a bus with an unknown domain is connected to an analog primitive, every 
net in the bus is assigned to the analog domain.

■ The nets in buses that are used only to establish connectivity can, according to how they 
are connected, all be assigned to the analog domain, all be assigned to the digital 
domain, or some nets can be assigned to the analog domain and some to the digital 
domain. This latter kind of bus is known as a mixed bus.

In a mixed bus, the domains of each net are individually determined by the connections 
of that particular net, using the discipline resolution methods described in “Discipline 
Resolution Methods” on page 225.

Understanding How Connect Modules Operate

The previous sections discuss the factors that affect where the software inserts connect 
modules in a design. The following sections discuss the behavior of connect modules after 
the software inserts them. The issues include 

■ Driver-receiver segregation

■ Digital islands

■ The independent behavior of connect modules

Driver-Receiver Segregation

In a purely digital net, drivers generate signals that propagate directly to receivers. In a mixed 
net, analog components can affect the propagation of the digital signals. To allow for this 
possibility, the AMS Designer simulator uses a technique called driver-receiver 
segregation. With driver-receiver segregation, which occurs with every mixed net, digital 
signals propagate only through connect modules inserted between the drivers and receivers.
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Digital nets connected to the ports of manually-inserted connect modules behave as mixed 
nets and are subject to driver-receiver segregation. 

Conceptual Overview of Driver-Receiver Segregation

Consider the following purely digital circuit containing two inverters.

The driver, d1, contributes a value directly to the receiver, d2. 

Adding an analog capacitor to the circuit, turns the net between d1 and d2 into a mixed net: 

Because the net is mixed, it is subject to driver-receiver segregation, which severs the direct 
connection between d1 and d2. After driver-receiver segregation, the circuit looks like this: 

d1 d2

d1 d2

c1

d1 d2

c1
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A connect module, c2e, reestablishes the link between the digital components and translates 
between the analog and digital domains. Conceptually, the circuit has the following schematic 
with the connect module added: 

The connect module, c2e, has both a digital input side and a digital output side, even when 
c2e is coded with only a single digital port. The c2e module must have two sides because 
part of its function is reading values from d1 and propagating them to d2. This is an important 
point. To ensure that digital values propagate through a connect module, the connect module 
code must be written to handle the task. Otherwise, the drivers have no effect on the 
receivers.

In a connect module, as in regular modules, all digital ports behave like inout ports, whether 
they are coded as inout, input, or output ports. For example, in the following code for the 
connect module c2e, the single digital port is both read and driven, in spite of the fact that the 
port is defined as input.

module c2e(d,a);

input d; // Define a digital port as input.
output a;

cmos1 d;
electrical a;

assign d = d ; // Both read and drive the digital port.

analog // Perform digital to analog translation.
V(a) <+ transition( d == 1 ? 5.0 : 0.0 );

endmodule

To summarize the basic concepts in driver-receiver segregation:

■ Every mixed net is subject to driver-receiver segregation.

■ Drivers segregated from receivers by a connect module can drive signals to receivers 
only if the connect module propagates the signals.

d1 d2

c1

c2e
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■ Digital ports in connect modules can be both read and driven, regardless of the way they 
are defined.

Digital Islands Limit the Range of Connect Modules

An important aspect of driver-receiver segregation has to do with the concept of digital 
islands. A digital island is the set of drivers and receivers interconnected by a purely digital 
net. Digital islands end at any connection to a mixed or analog net. For example, the following 
schematic contains three digital islands, each identified with dashed lines.

In this schematic, e2c1, c2e1, and c2e2 are connect modules, each connecting a digital 
island to the analog wire, W1. 

A connect module receives digital signals only from within the digital island isolated by the 
connect module and drives only the receivers located in the digital island. For example, 
referring to the above schematic, the digital port on the c2e1 module receives signals only 
from d1 and d3, which are the drivers in the digital island connected to the module. The c2e1 
module does not receive signals from d4 and d5, which are located in a different digital island. 
Similarly, c2e1 propagates digital values only to the receiver d2. The c2e1 module does not 
propagate digital values to d6, which is in a different digital island.

Multiple Connect Modules Act Independently

In a purely digital circuit with multiple drivers, the digital value acted on by the receiver is 
resolved from all of the digital values written by drivers. In the following schematic, for 
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example, the Verilog-AMS simulator resolves the values written by d3 and d1 and propagates 
the result to d2.

When connect modules act as drivers and receivers, however, there is another consideration: 
each connect module behaves as though it is the only connect module involved. For example, 
add an analog source and an analog capacitor to the previous schematic so that it looks like 
this.

The e2c connect module behaves as though the c2e connect module does not exist, so the 
only drivers that affect e2c are the ordinary drivers d3 and d1. Similarly, c2e is affected only 
by drivers d3 and d1, not by any digital value that e2c might contribute.

The connect modules e2c and c2e both write to their digital ports as they propagate digital 
values from the ordinary drivers to the ordinary receivers. Again, each connect module 
operates independently of the other, so each one sends a digital signal. The simulator 
resolves the two signals and sends the resolved signal to d2.

The independence of connect modules is also apparent when you use the driver access 
functions. For example, applying the driver_count function to the digital port of e2c 
returns the value 2, indicating that there are two drivers associated with that signal. Similarly, 
applying driver_count to the digital port of c2e returns the value 2, indicating that there 

d3
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d1 e2c c2e d2
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are two drivers associated with the signal. Neither count includes the other connect module 
because each connect module behaves as though the other does not exist.
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12
Controlling the Compiler

This chapter describes how to use the Cadence® Verilog®-AMS compiler directives for a 
range of tasks. The following compiler directives are available in Verilog-AMS. You can 
identify them by the initial accent grave ( ̀  ) character, which is different from the single quote 
character ( ' ). 

See also “Checking Support for Compact Modeling Extensions” on page 246 for information 
about a predefined macro that you can use to determine whether your simulator supports the 
compact modeling extensions. 

Compiler Directive Task

`define
`undef

“Implementing Text Macros” on page 234 

`ifdef “Compiling Code Conditionally” on page 236 

`include “Including Files at Compilation Time” on page 237 

`timescale “Adjusting the Time Scale” on page 238 

`default_discipline “Setting a Default Discrete Discipline for Signals” on page 240 

`default_transition “Setting Default Rise and Fall Times” on page 242 

`resetall “Resetting Directives to Default Values” on page 242 

`begin_keywords
`end_keywords

“Specifying Which Reserved Keyword List to Use” on 
page 243 

`remove_keyword
`restore_keyword

“Removing and Restoring Specific Keywords” on page 245 
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Implementing Text Macros

By using the text macro substitution capability provided by the `define and `undef 
compiler directives, you can simplify your code and facilitate necessary changes. For 
example, you can use a text macro to represent a constant you use throughout your code. If 
you need to change the value of the constant, you can then change it in a single location. 

`define Compiler Directive

Use the `define compiler directive to create a macro for text substitution. 

text_macro_definition ::=
`define text_macro_name macro_text

text_macro_name ::=
text_macro_identifier[( list_of_formal_arguments ) ]

list_of_formal_arguments ::=
formal_argument_identifier { , formal_argument_identifier }

macro_text is any text specified on the same line as text_macro_name. If 
macro_text is more than a single line in length, precede each new-line character with a 
backslash ( \ ). The first new-line character not preceded by a backslash ends 
macro_text. You can include arguments from the list_of_formal_arguments in 
macro_text.

Subject to the restrictions in the next paragraph, you can include one-line comments in 
macro_text. If you do, the comments do not become part of the text that is substituted. 
macro_text can also be blank, in which case using the macro has no effect.

You must not split macro_text across comments, numbers, strings, identifiers, keywords, 
or operators.

text_macro_identifier is the name you want to assign to the macro. You refer to this 
name later when you refer to the macro. text_macro_identifier must not be the 
same as any of the compiler directive keywords but can be the same as an ordinary identifier. 
For example, signal_name and `signal_name are different.

Important

If your macro includes arguments, there must be no space between 
text_macro_identifier and the left parenthesis.

To use a macro you have created with the `define compiler directive, use this syntax:

text_macro_usage ::=
`text_macro_identifier[( list_of_actual_arguments ) ]
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list_of_actual_arguments ::=
actual_argument { , actual_argument }

actual_argument ::=
expression

text_macro_identifier is a name assigned to a macro by using the `define 
compiler directive. To refer to the name, precede it with the accent grave ( ` ) character.

Important

If your macro includes arguments, there must be no space between 
text_macro_identifier and the left parenthesis. 

list_of_actual_arguments corresponds with the list of formal arguments defined 
with the `define compiler directive. When you use the macro, each actual argument 
substitutes for the corresponding formal argument.

For example, the following code fragment defines a macro named sum:

`define sum(a,b) ((a)+(b)) // Defines the macro

To use sum, you might code something like this.

if (`sum(p,q) > 5) begin
c = 0 ;

end

The next example defines an adc with a variable delay.

`define var_adc(dly) adc #(dly)

`var_adc(2) g121 (q21, n10, n11) ;
`var_adc(5) g122 (q22, n10, n11) ;

`undef Compiler Directive

Use the ̀ undef compiler directive to undefine a macro previously defined with the ̀ define 
compiler directive.

undefine_compiler_directive ::=
`undef text_macro_identifier

If you attempt to undefine a compiler directive that was not previously defined, the compiler 
issues a warning.
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Compiling Code Conditionally

Use the ̀ ifdef compiler directive to control the inclusion or exclusion of code at compilation 
time.

conditional_compilation_directive ::=
`ifdef text_macro_identifier

first_group_of_lines
[`else

second_group_of_lines ]
`endif

text_macro_identifier is a Verilog-AMS identifier. first_group_of_lines and 
second_group_of_lines are parts of your Verilog-AMS source description.

If you defined text_macro_identifier by using the `define directive, the compiler 
compiles first_group_of_lines and ignores second_group_of_lines. If you 
did not define text_macro_identifier but you include an ̀ else, the compiler ignores 
first_group_of_lines and compiles second_group_of_lines.

You can use an `ifdef compiler directive anywhere in your source description. You can, in 
fact, nest an `ifdef directive inside another `ifdef directive.

You must ensure that all your code, including code ignored by the compiler, follows the 
Verilog-AMS lexical conventions for white space, comments, numbers, strings, identifiers, 
keywords, and operators.
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Including Files at Compilation Time

Use the `include compiler directive to insert the entire contents of a file into a source file 
during compilation. 

include_compiler_directive ::=
`include "file"

file is the full or relative path of the file you want to include in the source file. file can 
contain additional `include directives. You can add a comment after the filename.

When you use the `include compiler directive, the result is as though the contents of the 
included source file appear in place of the directive. For example, 

`include "parts/resistors/standard/count.va" // Include the counter.

would place the entire contents of file count.va in the source file at the place where the 
`include directive is coded. 

Where the compiler looks for file depends on whether you specify an absolute path, a 
relative path, or a simple filename. If the compiler does not find the file, the compiler 
generates an error message.
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Adjusting the Time Scale

Use the `timescale compiler directive to specify the time unit and time precision of the 
modules that follow it. This directive affects only digital contexts.

timescale_compiler_directive ::=
`timescale time_period / time_precision

time_period ::= 
time_integer time_unit

time_precision ::=
time_integer time_unit

time_integer is one of the three integers: 1, 10, or 100. 

time_unit is one of the following:

The time_unit specifies the unit of measurement for time values such as the simulation 
time and delay values.

The time_precision specifies how delay values are rounded before being used in 
simulation. The values used in simulation are accurate to within the unit of time specified by 
time_precision. The time_precision you specify must be less than or equal to 
time_period. The smallest time_precision argument of all the ̀ timescale compiler 
directives in the design determines the time unit of the simulation.

The `timescale directive sets the transition time in the transition filter and in 
Z-transform filters when neither local transition settings nor a `default_transition 
directive is used. However, Cadence recommends using the `default_transition 
directive instead.

The following example illustrates how to use the `timescale directive.

`timescale 1 ns / 1 ps

time_unit Meaning

s seconds

ms milliseconds

us microseconds

ns nanoseconds

ps picoseconds

fs femtoseconds
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In this example, all time values in the modules which follow the directive are multiples of 1 ns 
because the time_unit argument is 1 ns. Delays are rounded to a precision of 
one-thousandth of a nanosecond because the time_precision argument is 1 ps, or 
one-thousandth of a nanosecond.
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Setting a Default Discrete Discipline for Signals

Use the `default_discipline compiler directive to specify a default discrete discipline 
for signals that do not have an explicit discipline declaration. You must not use this directive 
inside a module definition. 

default_discipline_compiler_directive ::=
`default_discipline [ discipline_identifier [qualifier] [scope]]

qualifier ::=
| reg
| wire
| tri
| wand
| triand
| wor
| wreal
| trior
| trireg
| tri0
| tri1
| supply0
| supply1

scope ::=
instance_identifier

discipline_identifier is the discrete discipline to be associated with signals that do 
not have explicit discipline declarations. Using the ̀ default_discipline directive without 
specifying a discipline_identifier turns off the directive, so subsequent signals 
without a discipline are associated with the empty discipline.

qualifier indicates the kind of signal to be acted upon by the `default_discipline 
directive. If you do not specify a qualifier, the `default_discipline compiler directive is 
in effect for every signal that lacks an explicit discipline declaration.

instance_identifier is the name of a module. The `default_discipline 
compiler directive is effective only in the indicated module. If you do not specify a module, the 
`default_discipline is effective in every module.

You can have more than one `default_discipline directive in effect at a time, provided 
that each differs in scope, qualifier, or both. Each directive remains in effect until the compiler 
encounters another `default_discipline with the same combination of qualifier and 
scope.

For example, the following statement illustrates how to use both a qualifier and a scope.

`default_discipline logic trireg example1.instance5 ;

In the following module, the signals in1, in2, and out are all associated with the discipline 
logic by default.

‘default_discipline logic // No qualifier or scope so affects all signals.
December 2011 240 Product Version 11.1



Cadence Verilog-AMS Language Reference
Controlling the Compiler
module behavnand(in1, in2, out);
input in1, in2; // Not associated with any explicit discipline.
output out;
reg out;
always begin

out = ~(in1 && in2);
end 
endmodule
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Setting Default Rise and Fall Times

Use the `default_transition compiler directive to specify default rise and fall times for 
the transition and Z-transform filters. This directive affects only analog contexts.

default_transition_compiler_directive ::=
`default_transition transition_time

transition_time is an integer value that specifies the default rise and fall times for 
transition and Z-transform filters that do not have specified rise and fall times.

If your description includes more than one `default_transition directive, the effective 
rise and fall times are derived from the immediately preceding directive. 

The `default_transition directive takes precedence over `timescale directives for 
setting the transition time in the transition and Z-transform transform filters when local 
transition settings are not provided.

If you include neither a `default_transition directive nor a `timescale directive in 
your description, the default rise and fall times for transition and Z-transform filters is 0.

Resetting Directives to Default Values

Use the ̀ resetall compiler directive to set all compiler directives, except the ̀ timescale 
directive, to their default values.

resetall_compiler_directive ::=
`resetall

Placing the `resetall compiler directive at the beginning of each of your source text files, 
followed immediately by the directives you want to use in that file, ensures that only desired 
directives are active.

Note: Use the `resetall directive with care because it resets the 

`define DISCIPLINES_VAMS

directive in the discipline.vams file, which is included by most Verilog-AMS files. 
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Specifying Which Reserved Keyword List to Use

Use the `begin_keywords and `end_keywords compiler directives to specify the active 
reserved keyword list for the parser. With these directives, you can mix Verilog (digital) and 
Verilog-AMS modules, even when the Verilog code uses identifiers that are Verilog-AMS 
keywords. 

begin_keywords_compiler_directive ::=
`begin_keywords "version_specifier"

version_specifier ::= 
|1364-1995 
|1364-2001 
|1364-2005 
|1800-2005

end_keywords_compiler_directive ::=
`end_keywords

Each version_specifier value specifies an active subset of the default keyword list. 
The software determines the default keyword list depending on the options you specify on the 
ncvlog or irun command line as follows: 

You must pair each ̀ begin_keywords directive with a ̀ end_keywords directive. The pair 
of directives defines a region of source code to which a specified version_specifier 
applies. The `begin_keywords directive affects all design elements (module, primitive, 
configuration, paramset, connectrules, and connectmodule) that follow the directive, even 
across source code file boundaries, until the software encounters its matching 
`end_keywords directive. These directives do not affect the semantics, tokens, and other 
aspects of the Verilog-AMS language. 

Option Default Keyword List Active Reserved Keywords

-v95 or -v1995 1364-1995 The subset of the default list that is part 
of the IEEE 1364-1995 standard 

-ams 1364-2005 and the 
Cadence AMS keywords

The subset of the default list that 
appears in Appendix D, “Verilog-AMS 
Keywords” 

-sv31 1800-2005 The subset of the default list that is part 
of the IEEE 1800-2005 standard 

None of the above 1364-2005 The subset of the default list that is part 
of the IEEE 1364-2005 standard 
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Note: You must not specify the `begin_keywords and `end_keywords directives inside 
a design element (module, primitive, configuration, paramset, connectrules, or 
connectmodule). 

You can nest directive pairs. When the software encounters a ̀ end_keywords directive, the 
compiler returns to using the version_specifier that was in effect prior to the matching 
`begin_keywords directive. 

The following example shows how you might use a Verilog (digital) module together with a 
Verilog-AMS module in a design. The Verilog module uses a parameter called sin, which is 
a Verilog-AMS keyword. To tell the compiler not to see sin as a keyword, you use the 
‘begin_keywords directive to change the active set of keywords to a set that does not 
include the sin keyword.

// Use IEEE Std 1364-2001 Verilog keywords. Do not use Verilog-AMS keywords.
`begin_keywords "1364-2001"

module digital_module;
parameter sin = "hello"; // Uses a Verilog-AMS keyword as an identifier.

// sin is not a keyword in 1364-2001.
initial begin

$strobe("%s",sin);
end
endmodule

// Restore the Verilog-AMS keywords now.
`end_keywords

Here is another similar example: 

`begin_keywords "1364-2005" // Use IEEE Std 1364-2005 Verilog keywords.
module m2 (sin ...);
input sin // Uses Verilog-AMS keyword sin as a port name.

// sin is not a keyword in 1364-2005.
...
endmodule
`end_keywords

The following example shows a definition of module m1 that does not have a 
`begin_keywords directive before it. Without this directive, the set of reserved keywords in 
effect for this module is the default set of reserved keywords for Cadence’s implementation of 
Verilog-AMS. 

module m1; // module definition with no `begin_keywords directive
...
endmodule
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Removing and Restoring Specific Keywords

You can use the `remove_keyword and `restore_keyword compiler directives to 
remove and restore specific keywords from the set of reserved keywords that the parser 
recognizes. 

You might use the `remove_keyword directive to remove one or more specific keywords 
from the set of reserved keywords you specify using the`begin_keywords and 
`end_keywords compiler directives. 

You can also use the -rmkeyword command-line option (for ncvlog or irun) in a similar 
fashion. 
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Checking Support for Compact Modeling Extensions

Use the __VAMS_COMPACT_MODELING__ macro to determine whether the simulator 
supports the compact modeling extensions. The AMS Designer simulator supports these 
extensions and sets the value of this macro to t.

VAMS_COMPACT_MODELING_macro_call::=
`ifdef __VAMS_COMPACT_MODELING__

The __VAMS_COMPACT_MODELING__ macro is predefined, so all you need to do is reference 
the macro name. (Notice the double underscore characters at both the beginning and the end 
of the macro name.) The returned value is t if the simulator supports the compact modeling 
extensions, which are:

■ Attributes consistent with Verilog-AMS Language Reference Manual version 
1364-2001

■ Output variables

■ Attributes for parameter descriptions and units (desc, units)

■ Net descriptions

■ Modules (module description attribute)

■ String parameters

■ Parameter aliases

■ Environment parameter functions ($simparam)

■ Derivative operator (ddx)

■ Limiting function (%limit)

■ Hierarchy detections functions ($param_given)

■ Display tasks ($debug)

■ Format specifications (%r, %R)

■ Local parameters (localparam)

If the simulator does not support the compact modeling extensions, the returned value is nil. 
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Nodal Analysis

This appendix briefly introduces Kirchhoff’s Laws and describes how the simulator uses them 
to simulate an analog system. For information, see

■ Kirchhoff’s Laws on page 248

■ Simulating an Analog System on page 249
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Kirchhoff’s Laws

Simulation of the analog content of Verilog®-AMS language modules is based on two sets of 
relationships. The first set, called the constitutive relationships, consists of formulas that 
describe the behavior of each component. Some formulas are supplied as built-in primitives. 
You provide other formulas in the form of module definitions.

The second set of relationships, the interconnection relationships, describes the structure 
of the network. This set, which contains information on how the nodes of the components are 
connected, is independent of the behavior of the constituent components. Kirchhoff’s laws 
provide the following properties relating the quantities present on the nodes and on the 
branches that connect the nodes.

■ Kirchhoff’s Flow Law

The algebraic sum of all the flows out of a node at any instant is zero.

■ Kirchhoff’s Potential Law

The algebraic sum of all the branch potentials around a loop at any instant is zero.

These laws assume that a node is infinitely small so that there is negligible difference in 
potential between any two points on the node and a negligible accumulation of flow.

flow2 +
potential 

-

flow1 

+
potential 
-

+
-

+ -
potential2

- +
potential4 

+
-

-
+

p
o

te
n

ti
a

l 3
 

p
o

te
n

ti
a

l 1
 

fl
o

w
3

 

 

Kirchhoff’s Laws

p
o

te
n

ti
a

l 
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flow1 + flow2 + flow3 = 0

Kirchhoff’s Potential Law

potential1 + potential2 +
potential3 + potential4 = 0 
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Simulating an Analog System

To describe an analog network, simulators combine constitutive relationships with Kirchhoff’s 
laws in nodal analysis to form a system of differential-algebraic equations of the form

These equations are a restatement of Kirchhoff’s Flow Law.

v is a vector containing all node potentials.

t is time.

q and i are the dynamic and static portions of the flow.

f is a vector containing the total flow out of each node.

v0 is the vector of initial conditions.

Transient Analysis

The equation describing the network is differential and nonlinear, which makes it impossible 
to solve directly. There are a number of different approaches to solving this problem 
numerically. However, all approaches break time into increments and solve the nonlinear 
equations iteratively.

The simulator replaces the time derivative operator (dq/dt) with a discrete-time finite 
difference approximation. The simulation time interval is discretized and solved at individual 
time points along the interval. The simulator controls the interval between the time points to 
ensure the accuracy of the finite difference approximation. At each time point, the simulator 
solves iteratively a system of nonlinear algebraic equations. Like most circuit simulators, the 
AMS Designer simulator uses the Newton-Raphson method to solve this system.

Convergence

In Verilog-AMS, the analog behavioral description is evaluated iteratively until the Newton-
Raphson method converges. (For a graphical representation of this process, see “Simulator 
Flow for Analog Systems” on page 28.) On the first iteration, the signal values used in 
Verilog-AMS expressions are approximate and do not satisfy Kirchhoff’s laws. 

In fact, the initial values might not be reasonable; so you must write models that do something 
reasonable even when given unreasonable signal values. 

f v t,( ) dq v t,( )
dt

-------------------- i v t,( )+ 0= =

v 0( ) v0=
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For example, if you compute the log or square root of a signal value, some signal values 
cause the arguments to these functions to become negative, even though a real-world system 
never exhibits negative values.

As the iteration progresses, the signal values approach the solution. Iteration continues until 
two convergence criteria are satisfied. The first criterion is that the proposed solution on this 
iteration, v(j)(t), must be close to the proposed solution on the previous iteration, v(j-1)(t), and

where reltol is the relative tolerance and abstol is the absolute tolerance.

reltol is set as a simulator option and typically has a value of 0.001. There can be many 
absolute tolerances, and which one is used depends on the resolved discipline of the net. You 
set absolute tolerances by specifying the abstol attribute for the natures you use. The 
absolute tolerance is important when vn is converging to zero. Without abstol, the iteration 
never converges. 

The second criterion ensures that Kirchhoff’s Flow Law is satisfied:

where fn
i(v(j)) is the flow exiting node n from branch i.

Both of these criteria specify the absolute tolerance to ensure that convergence is not 
precluded when vn or fn(v) go to zero. While you can set the relative tolerance once in an 
options statement in the analog simulation control file (.scs) to work effectively on any node 
in the circuit, you must scale the absolute tolerance appropriately for the associated 
branches. Set the absolute tolerance to be the largest value that is negligible on all the 
branches with which it is associated.

The simulator uses absolute tolerance to get an idea of the scale of signals. Absolute 
tolerances are typically 1,000 to 1,000,000 times smaller than the largest typical value for 
signals of a particular quantity. For example, in a typical integrated circuit, the largest potential 
is about 5 volts; so the default absolute tolerance for voltage is 1 μV. The largest current is 
about 1 mA; so the default absolute tolerance for current is 1 pA.

vn
j( )

vn
j 1–( )

– reltol max vn
j( )

vn
j 1–( ),⎝ ⎠

⎛ ⎞
⎝ ⎠
⎛ ⎞ abstol+<

fn v j( )( )
n
∑ reltol max fin v j( )( )( )( ) abstol+<
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Analog Probes and Sources

This appendix describes what analog probes and sources are and gives some examples of 
using them. For information, see

■ Probes on page 252

■ Port Branches on page 252

■ Sources on page 253

For examples, see

■ Linear Conductor on page 257

■ Linear Resistor on page 258

■ RLC Circuit on page 258

■ Simple Implicit Diode on page 258
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Overview of Probes and Sources

A probe is a branch in which no value is assigned for either the potential or the flow, anywhere 
in the module. A source is a branch in which either the potential or the flow is assigned a 
value by a contribution statement somewhere in the module.

You might find it useful to describe component behavior as a network of probes and sources. 

■ It is sometimes easier to describe a component first as a network of probes and sources, 
and then use the rules presented here to map the network into a behavioral description. 

■ A complex behavioral description is sometimes easier to understand if it is converted into 
a network of probes and sources.

The probe and source interpretation provides the additional benefit of unambiguously 
defining what the response will be when you manipulate a signal.

Probes

A flow probe is a branch in which the flow is used in an expression somewhere in the module. 
A potential probe is a branch in which the potential is used. You must not measure both the 
potential and the flow of a probe branch.

The equivalent circuit model for a potential probe is

The branch flow of a potential probe is zero. 

The equivalent circuit model for a flow probe is

The branch potential of a flow probe is zero.

Port Branches

You can use the port access function to monitor the flow into the port of a module. The name 
of the access function is derived from the flow nature of the discipline of the port and you use 
the (<>) operator to delimit the port name. For example, I(<a>) accesses the current 
through module port a.

p

f
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A port branch, which is a special form of a flow probe, measures the flow into a port rather 
than across a branch. When a port is connected to numerous branches, using a port branch 
provides a quick way of summing the flow.

The expression V(<a>) is invalid for ports and nets, where V is a potential access function. 
The port branch probe I(<a>) cannot be used on the left side of a contribution operator <+. 
As a result of these restrictions, you cannot use port branches to create behavioral resistors, 
capacitors, and inductors.

In the following example, the simulator issues a warning if the current through the diode 
becomes too large.

module diode (a, c) ;
electrical a, c ;
branch (a, c) diode, cap ;
parameter real is=1e-14, tf=0, cjo=0, imax=1, phi=0.7 ;

analog begin
I(diode) <+ is*(limexp(V(diode)/$vt) – 1) ;
I(cap) <+ ddt(tf*I(diode) - 2 * cjo * sqrt(phi * (phi * V(cap)))) ;
if (I(<a>) > imax) // Checks current through port

$strobe( "Warning: diode is melting!" ) ;
end 

endmodule

Sources

A potential source is a branch in which the potential is assigned a value by a contribution 
statement somewhere in the module. A flow source is a branch in which the flow is assigned 
a value. A branch cannot simultaneously be both a potential and a flow source, although it 
can switch between the two kinds. For additional information, see “Switch Branches” on 
page 255.
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The circuit model for a potential source branch shows that you can obtain both the flow and 
the potential for a potential source branch.

Similarly, the circuit model for a flow source branch shows that you can obtain the flow and 
potential for a flow source branch.

With the flow and potential sources, you can model the four basic controlled sources, using 
node or branch declarations and contribution statements like those in the following code 
fragments.

The model for a voltage-controlled voltage source is

branch (ps,ns) in, (p,n) out;
V(out) <+ A * V(in);

The model for a voltage-controlled current source is

branch (ps,ns) in, (p,n) out;
I(out) <+ A * V(in);

The model for a current-controlled voltage source is

branch (ps,ns) in, (p,n) out;
V(out) <+ A * I(in);

Flow probe

Potential 
source

Potential probe

f

p

Flow probe

Flow 
source

Potential probe

f

p
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The model for a current-controlled current source is

branch (ps,ns) in, (p,n) out;
I(out) <+ A * I(in);

Unassigned Sources

If you do not assign a value to a branch, the branch flow, by default, is set to zero. In the 
following fragment, for example, when closed is true, V(p,n) is set to zero. When closed 
is false, the current I(p,n) is set to zero. 

if (closed)
V(p,n) <+ 0 ;

else
I(p,n) <+ 0 ;

Alternatively, you could achieve the same result with

if (closed)
V(p,n) <+ 0 ;

This code fragment also sets V(p,n) to zero when closed is true. When closed is false, 
the current is set to zero by default.

Switch Branches

Switch branches are branches that change from source potential branches into source flow 
branches, and vice versa. Switch branches are useful when you want to model ideal switches 
or mechanical stops. 

To switch a branch to being a potential source, assign to its potential. To switch a branch to 
being a flow source, assign to its flow. The circuit model for a switch branch illustrates the 
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effect, with the position of the switch dependent upon whether you assign to the potential or 
to the flow of the branch.

As an example of a switch branch, consider the module idealRelay. 

module idealRelay (pout, nout, psense, nsense) ;
input psense, nsense ;
output pout, nout ;
electrical pout, nout, psense, nsense ;
parameter real thresh = 2.5 ;
analog begin

if (V(psense, nsense) > thresh)
V(pout, nout) <+ 0.0 ; // Becomes potential source

else
I(pout, nout) <+ 0.0 ; // Becomes flow source

end
endmodule

The simulator assumes that a discontinuity of order zero occurs whenever the branch 
switches; so you do not have to use the discontinuity function with switch branches. For more 
information about the discontinuity function, see “Announcing Discontinuity” on page 121.

Contributing a flow to a branch that already has a value retained for the potential results in 
the potential being discarded and the branch being converted to a flow source. Conversely, 
contributing a potential to a branch that already has a value retained for the flow results in the 
flow being discarded and the branch being converted to a potential source. For example, in 
the following code, each of the contribution statements is discarded when the next is 
encountered.

analog begin
V(out) <+ 1.0; // Discarded
I(out) <+ 1.0; // Discarded
V(out) <+ 1.0;

end

In the next example,

Flow probe

Potential 
source

Potential probe

Flow source
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I(out) <+ 1.0;
V(out) <+ I(out);

the result of V(out) is not 1.0. Instead, these two statements are equivalent to

// I(out) <+ 1.0;
V(out) <+ I(out);

because the flow contribution is discarded. The simulator reminds you of this behavior by 
issuing a warning similar to the following, 

The statement on line 12 contributes either a potential to a flow source or a flow 
to a potential source. To match the requirements of value retention, the statement 
is ignored.

Examples of Sources and Probes

The following examples illustrate how to construct models using sources and probes. 

Linear Conductor

The model for a linear conductor is

The contribution to I(cond) makes cond a current (flow) source branch, and V(cond) 
accesses the potential probe built into the current source branch.

Module myconductor(p,n) ;
parameter real G=1 ;
electrical p,n ;
branch (p,n) cond ;
analog begin

I(cond) <+ G * V(cond);
end
endmodule

Gv
v G
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Linear Resistor

The model for a linear resistor is

The contribution to V(res) makes res a potential source branch. I(res) accesses the 
flow probe built into the potential source branch.

RLC Circuit

A series RLC circuit is formulated by summing the voltage across the three components.

 

To describe the series RLC circuit with probes and sources, you might write 

V(p,n) <+ R*I(p,n) + L*ddt(I(p,n)) + idt(I(p,n))/C ;

A parallel RLC circuit is formulated by summing the currents through the three components.

To describe the parallel RLC circuit, you might code

I(p,n) <+ V(p,n)/R + C*ddt(V(p,n)) + idt(V(p,n))/L ;

Simple Implicit Diode

This example illustrates a case where the model equation is implicit. The model equation is 
implicit because the current I(a,c) appears on both sides of the contribution operator. The 
equation specifies the current of the branch, making it a flow source branch. In addition, both 
the voltage and the current of the branch are used in the behavioral description.

I(a,c) <+ is * (limexp((V(a,c) – rs * I(a,c)) / Vt) – 1) ;

module myresistor(p,n) ;
parameter real R=1 ;
electrical p,n;
branch (p,n) res ;
analog begin

V(res) <+ R * I(res);
end
endmodule
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Sample Model Library

This appendix discusses the Sample Model Library, which is included with this product. The 
library contains the following types of components:

■ Analog Components on page 261

■ Basic Components on page 278

■ Control Components on page 286

■ Logic Components on page 294

■ Electromagnetic Components on page 314

■ Functional Blocks on page 317

■ Magnetic Components on page 340

■ Mathematical Components on page 344

■ Measure Components on page 361

■ Mechanical Systems on page 381

■ Mixed-Signal Components on page 388

■ Power Electronics Components on page 397

■ Semiconductor Components on page 400

■ Telecommunications Components on page 408

You can use these models as they are, you can copy them and modify them to create new 
parts, or you can use them as examples. The models are in the following directory in the 
software hierarchy:

$CDSHOME/tools/dfII/samples/artist/spectreHDL/Verilog-A

Refer to the README file in this directory for a list of the files containing the models. The 
filenames have the suffix .va. For example, the model for the switch is located in sw.va. 
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Each model has an associated test circuit that can be used to simulate the model. The test 
circuits can be found in the test directory.

These models are also integrated into a Cadence® design framework II library, complete with 
symbols and Component Description Formats (CDFs). If you are using the Cadence analog 
design environment, you can access these models by adding the following library to your 
library path:

your_install_dir/tools/dfII/samples/artist/ahdlLib

This appendix provides a list of the parts and functions in the sample library. They are 
grouped according to application.

In the terminal description and parameter descriptions, the letters between the square 
brackets, such as [V,A] and [V], refer to the units associated with the terminal or parameter. 
V means volts, A means amps. (val, flow) means that any units can be used.
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Analog Components

Analog Multiplexer

Terminals

vin1, vin2: [V,A]

vsel: selection voltage [V,A]

vout: [V,A]

Description

When vsel > vth, the output voltage follows vin1.

When vsel < vth, the output voltage follows vin2.

Instance Parameters

vth = 1->0 threshold voltage for the selection line [V]
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Current Deadband Amplifier

Terminals

iin_p, iin_n: differential input current terminals [V,A]

iout: output current terminal [V,A]

Description

Outputs ileak when differential input current (iin_p - iin_n) is between idead_low and 
idead_high. When outside the deadband, the output current is an amplified version of the 
differential input current plus ileak.

Instance Parameters

idead_low = lower range of dead band [A]

idead_high = upper range of dead band [A]

ileak = offset current; only output in deadband [A]

gain_low = differential current gain in lower region []

gain_high = differential current gain in lower region []
December 2011 262 Product Version 11.1



Cadence Verilog-AMS Language Reference
Sample Model Library
Hard Current Clamp

Terminals

vin: input terminal [V,A]

vout: output terminal [V,A]

vgnd: gnd terminal [V,A]

Description

Hard limits output current to between iclamp_upper and iclamp_lower of the input 
current.

Instance Parameters

iclamp_upper = upper clamping current [A]

iclamp_lower = lower clamping current [A]
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Hard Voltage Clamp

Terminals

vin: input terminal [V,A]

vout: output terminal [V,A]

vgnd: gnd terminal [V,A]

Description

vout- vgnd hard clamped/limited to between vclamp_upper and vclamp_lower of vin - 
vgnd.

Instance Parameters

vclamp_upper = upper clamping voltage [A]

vclamp_lower = lower clamping voltage [A]
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Open Circuit Fault

Terminals

vp, vn: output terminals [V,A]

Description

At time=twait, the connection between the two terminals is opened. Before this, the 
connection between the terminals is closed.

Instance Parameters

twait = time to wait before open fault happens [s]
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Operational Amplifier

Terminals

vin_p, vin_n: differential input voltage [V,A]

vout: output voltage [V,A]

vref: reference voltage [V,A]

vspply_p: positive supply voltage [V,A]

vspply_n: negative supply voltage [V,A]

Instance Parameters

gain = gain []

freq_unitygain = unity gain frequency [Hz]

rin = input resistance [Ohms]

vin_offset = input offset voltage referred to negative [V]

ibias = input current [A]

iin_max = maximum current [A]

rsrc = source resistance [Ohms]

rout = output resistance [Ohms]

vsoft = soft output limiting value [V]
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Constant Power Sink

Terminals

vp, vn: terminals [V,A]

Description

Normally power watts of power is sunk. If the absolute value of vp - vn is above vabsmin, 
a faction of the power is sunk. The fraction is the ratio of vp - vn to vabsmin.

Instance Parameters

power = power sunk [Watts]

vabsmin = absolute value of minimum input voltage [V]
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Short Circuit Fault

Terminals

vp, vn: output terminals [V,A]

Description

At time=twait, the two terminals short. Before this, the connection between the terminals is 
open.

Instance Parameters

twait = time to wait before short circuit occurs [s]
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Soft Current Clamp

Terminals

vin: input terminal [V,A]

vout: output terminal [V,A]

vgnd: gnd terminal [V,A]

Description

Limits output current to between iclamp_upper and iclamp_lower of the input current.

The limiting starts working once the input current gets near iclamp_lower or 
iclamp_upper. The clamping acts exponentially to ensure smoothness.

The fraction of the range (iclamp_lower, iclamp_upper) over which the exponential 
clamping action occurs is exp_frac.

Excess current coming from vin is routed to vgnd.

Instance Parameters

iclamp_upper = upper clamping current [A]

iclamp_lower = lower clamping current [A]

exp_frac = fraction of iclamp range from iclamp_upper and iclamp_lower at which 
exponential clamping starts to have an effect [] 
December 2011 269 Product Version 11.1



Cadence Verilog-AMS Language Reference
Sample Model Library
Soft Voltage Clamp

Terminals

vin: input terminal [V,A]

vout: output terminal [V,A]

vgnd: gnd terminal [V,A]

Description

vout- vgnd clamped/limited to between vclamp_upper and vclamp_lower of vin - 
vgnd.

The limiting starts working once the input voltage gets near vclamp_lower or 
vclamp_upper. The clamping acts exponentially to ensure smoothness.

The fraction of the range (vclamp_lower, vclamp_upper) over which the exponential 
clamping action occurs is exp_frac.

Instance Parameters

vclamp_upper = upper clamping voltage [A]

vclamp_lower = lower clamping voltage [A]

exp_frac = fraction of vclamp range from vclamp_upper and vclamp_lower at which 
exponential clamping starts to have an effect [] 
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Self-Tuning Resistor

Terminals

vp, vn: terminals [V,A]

vtune: the voltage that is being tuned [V,A]

verr: the error in vtune [V,A]

Description

This element operates in four distinct phases:

1. It waits for tsettle seconds with the resistance between vp and vn set to rinit.

2. For tdir_check seconds, it attempts to tune the error away by increasing the 
resistance in proportion to the size of the error.

3. It waits for tsettle seconds with the resistance between vp and vn set to rinit.

4. For tdir_check seconds, it attempts to tune the error away by decreasing the 
resistance in proportion to the error.

5. Based on the results of (2) and (4), it selects which direction is better to tune in and tunes 
as best it can using integral action. For certain systems, this might lead to unstable 
behavior.

Note: Select tsettle to be greater than the largest system time constant. Select rgain so 
that the positive feedback is not excessive during the direction sensing phases. Select 
tdir_check so that the system has enough time to react but not so big that the resistance 
drifts too far from rinit. It is better if it can be arranged that verr does not change sign 
during tuning.

Instance Parameters

rmax = maximum resistance that tuning res can have [Ohms]

rmin = minimum resistance that tuning res can have [Ohms]

rinit = initial resistance [Ohms]

rgain = gain of integral tuning action [Ohms/(Vs)]
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vtune_set = value that vtune must be tuned to [V]

tsettle = amount of time to wait before tuning begins [s]

tdir_check = amount of time to spend checking each tuning direction [s]
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Untrimmed Capacitor

Terminals

vp, vn: terminals [V,A]

Description

Each instance has a randomly generated value of capacitance, which is calculated at 
initialization. The distribution of these random values is gaussian (that is, normal) with a 
c_mean and a standard deviation of c_std.

Two seeds are needed to generate the gaussian distribution.

Instance Parameters

c_mean = mean capacitance [Ohms]

c_dev = standard deviation of capacitance [Ohms]

seed1 = first seed value for randomly generating capacitance values []

seed2 = second seed value for randomly generating capacitance values []

show_val = option to print the value of capacitance to stdout
December 2011 273 Product Version 11.1



Cadence Verilog-AMS Language Reference
Sample Model Library
Untrimmed Inductor

Terminals

vp, vn: terminals [V,A]

Description

Each instance has a randomly generated value of inductance, which is calculated at 
initialization. The distribution of these random values is gaussian (that is, normal) with an 
l_mean and a standard deviation of l_std.

Two seeds are needed to generate the gaussian distribution.

Instance Parameters

l_mean = mean inductance [Ohms]

l_dev = standard deviation of inductance [Ohms]

seed1 = first seed value for randomly generating inductance values []

seed2 = second seed value for randomly generating inductance values []

show_val = option to print the value of inductance to stdout
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Untrimmed Resistor

Terminals

vp, vn: terminals [V,A]

Description

Each instance has a randomly generated value of resistance, which is calculated at 
initialization. The distribution of these random values is gaussian (that is, normal) with an 
r_mean and a standard deviation of r_std.

Two seeds are needed to generate the gaussian distribution.

Instance Parameters

r_mean = mean resistance [Ohms]

r_dev = standard deviation of resistance [Ohms]

seed1 = first seed value for randomly generating resistance values []

seed2 = second seed value for randomly generating resistance values []

show_val = option to print the value of resistance to stdout
December 2011 275 Product Version 11.1



Cadence Verilog-AMS Language Reference
Sample Model Library
Voltage Deadband Amplifier

Terminals

vin_p, vin_n: differential input voltage terminals [V,A]

vout: output voltage terminal [V,A]

Description

Outputs vleak when differential input voltage (vin_p-vin_n) is between vdead_low and 
vdead_high. When outside the deadband, the output voltage is an amplified version of the 
differential input voltage plus vleak.

Instance Parameters

vdead_low = lower range of dead band [V]

vdead_high = upper range of dead band [V]

vleak = offset voltage; only output in deadband [V]

gain_low = differential voltage gain in lower region []

gain_high = differential voltage gain in upper region []
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Voltage-Controlled Variable-Gain Amplifier

Terminals

vin_p, vin_n: differential input terminals [V,A]

vctrl_p, vctrl_n: differential-controlling voltage terminals [V,A]

vout: [V,A]

Description

When there is no input offset voltage, the output is vout = gain_const * (vctrl_p - 
vctrl_n) * (vin_p - vin_n) + (vout_high + vout_low)/2.

When there is an input offset voltage, vin_offset is subtracted from (vin_p - vin_n).

Instance Parameters

gain_const = amplifier gain when (vctrl_p - vctrl_n) = 1 volt []

vout_high = upper output limit [V]

vout_low = lower output limit [V]

vin_offset = input offset [V]
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Basic Components

Resistor

Terminals

vp, vn: terminals (V,A)

Instance Parameters

r = resistance (Ohms)
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Capacitor

Terminals

vp, vn: terminals (V,A)

Instance Parameters

c = capacitance (F)
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Inductor

Terminals

vp, vn: terminals (V,A)

Instance Parameters

l = inductance (H)
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Voltage-Controlled Voltage Source

Terminals

vout_p, vout_n: controlled voltage terminals [V,A]

vin_p, vin_n: controlling voltage terminals [V,A]

Instance Parameters

gain = voltage gain []
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Current-Controlled Voltage Source

Terminals

vout_p, vout_n: controlled voltage terminals [V,A]

iin_p, iin_n: controlling current terminals [V,A]

Instance Parameters

rm = resistance multiplier (V to I gain) [Ohms]
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Voltage-Controlled Current Source

Terminals

iout_p, iout_n: controlled current source terminals [V,A]

vin_p, vin_n: controlling voltage terminals [V,A]

Instance Parameters

gm = conductance multiplier (V to I gain) [Mhos]
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Current-Controlled Current Source

Terminals

iout_p, iout_n: controlled current terminals [V,A]

iin_p, iin_n: controlling current terminals [V,A]

Instance Parameters

gain = current gain []
December 2011 284 Product Version 11.1



Cadence Verilog-AMS Language Reference
Sample Model Library
Switch

Terminals

vp, vn: output terminals [V,A]

vctrlp, vctrln: control terminals [V,A]

Description

If (vctrlp - vctrln > vth), the branch between vp and vn is shorted. Otherwise, the 
branch between vp and vn is opened.

Instance Parameters

vth = threshold voltage [V]
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Control Components

Error Calculation Block

Terminals

sigset: setpoint signal (val, flow)

sigact: actual value signal (val, flow)

sigerr: error: difference between signals (val, flow)

Description

sigerr = sigset - sigact

Note: Defining larger values of abstol and huge for the quantities associated with sigin 
and sigout can help overcome convergence and clipping problems.

Instance Parameters

tdel, trise, tfall = {usual}
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Lag Compensator

Terminals

sigin: (val, flow)

sigout: (val, flow)

Description

Note: Defining larger values of abstol and huge for the quantities associated with sigin 
and sigout can help overcome convergence and clipping problems.

Instance Parameters

gain = compensator gain []

tau = compensator zero at -(1/tau) [s]

alpha = compensator pole at -(1/(alpha*tau)); alpha > 1 []

TF gain alpha× 1 tau S×+
1 alpha tau× S×+
--------------------------------------------------×=
December 2011 287 Product Version 11.1



Cadence Verilog-AMS Language Reference
Sample Model Library
Lead Compensator

Terminals

sigin: (val, flow)

sigout: (val, flow)

Description

Note: Defining larger values of abstol and huge for the quantities associated with sigin 
and sigout can help overcome convergence and clipping problems.

Instance Parameters

gain = compensator gain []

tau = compensator zero at -(1/tau) [s]

alpha = compensator pole at -(1/(alpha*tau)); alpha < 1 []

TF gain alpha× 1 tau S×+
1 alpha tau× S×+
--------------------------------------------------×=
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Lead-Lag Compensator

Terminals

sigin: (val, flow)

sigout: (val, flow)

Description

Defining larger values of abstol and huge for the quantities associated with sigin and 
sigout can help overcome convergence and clipping problems.

Instance Parameters

gain = compensator gain []

tau1 = compensator zero at -(1/tau1) [s]

alpha1 = compensator pole at -(1/(alpha*tau1)); alpha1 > 1 []

tau2 = compensator zero at -(1/tau2) [s]

alpha2 = compensator pole at -(1/(alpha*tau2)); alpha2 < 1 []

TF

ain alpha1× 1 tau1 S×+
1 alpha1 tau1× S×+
--------------------------------------------------------- alpha2

1 tau2 S×+
1 alpha2 tau2× S×+
---------------------------------------------------------×××

=
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Proportional Controller

Terminals

sigin: (val, flow)

sigout: (val, flow)

Description

sigout = kp*sigin

Note: Defining larger values of abstol and huge for the quantities associated with sigin 
and sigout can help overcome convergence and clipping problems.

Instance Parameters

kp = proportional gain []
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Proportional Derivative Controller

Terminals

sigin: (val, flow)

sigout: (val, flow)

Description

sigout = kp*sigin + kd* dot (sigin)

Note: Defining larger values of abstol and huge for the quantities associated with sigin 
and sigout can help overcome convergence and clipping problems.

Instance Parameters

kp = proportional gain []

kd = differential gain []
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Proportional Integral Controller

Terminals

sigin: (val, flow)

sigout: (val, flow)

Description

This model is a proportional, integral, and derivative controller.

sigout = kp * sigin + ki * integ (sigin) + kd* dot (sigin)

Note: Defining larger values of abstol and huge for the quantities associated with sigin 
and sigout can help overcome convergence and clipping problems.

Instance Parameters

kp = proportional gain []

ki = integral gain []
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Proportional Integral Derivative Controller

Terminals

sigin: (val, flow)

sigout: (val, flow)

Description

sigout = kp * sigin + ki * integ (sigin) + kd* dot (sigin)

Note: Defining larger values of abstol and huge for the quantities associated with sigin 
and sigout can help overcome convergence and clipping problems.

Instance Parameters

kp = proportional gain []

ki = integral gain []

kd = differential gain []
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Logic Components

AND Gate

Terminals

vin1, vin2: [V,A]

vout: [V,A]

Instance Parameters

vlogic_high = output voltage for high [V]

vlogic_low = output voltage for low [V]

vtrans = voltages above this at input are considered high [V]

tdel, trise, tfall = {usual} [s]
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NAND Gate

Terminals

vin1, vin2: [V,A]

vout: [V,A]

Instance Parameters

vlogic_high = output voltage for high [V]

vlogic_low = output voltage for high [V]

vtrans = voltages above this at input are considered high [V]

tdel, trise, tfall = {usual} [s]
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OR Gate

Terminals

vin1, vin2: [V,A]

vout: [V,A]

Instance Parameters

vlogic_high = output voltage for high [V]

vlogic_low = output voltage for high [V]

vtrans = voltages above this at input are considered high [V]

tdel, trise, tfall = {usual} [s]
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NOT Gate

Terminals

vin: [V,A]

vout: [V,A]

Instance Parameters

vlogic_high = output voltage for high [V]

vlogic_low = output voltage for high [V]

vtrans = voltages above this at input are considered high [V]

tdel, trise, tfall = {usual} [s]
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NOR Gate

Terminals

vin1, vin2: [V,A]

vout: [V,A]

Instance Parameters

vlogic_high = output voltage for high [V]

vlogic_low = output voltage for high [V]

vtrans = voltages above this at input are considered high [V]

tdel, trise, tfall = {usual} [s]
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XOR Gate

Terminals

vin1, vin2: [V,A]

vout: [V,A]

Instance Parameters

vlogic_high = output voltage for high [V]

vlogic_low = output voltage for high [V]

vtrans = voltages above this at input are considered high [V]

tdel, trise, tfall = {usual} [s]
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XNOR Gate

Terminals

vin1, vin2: [V,A]

vout: [V,A] 

Instance Parameters

vlogic_high = output voltage for high [V]

vlogic_low = output voltage for high [V]

vtrans = voltages above this at input are considered high [V]

tdel, trise, tfall = {usual} [s]
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D-Type Flip-Flop

Terminals

vin_d: [V,A]

vclk: [V,A]

out_q, vout_qbar: [V,A]

Description

Triggered on the rising edge.

Instance Parameters

vlogic_high = output voltage for high [V]

vlogic_low = output voltage for low [V]

vtrans = voltages above this at input are considered high [V]

vtrans_clk = transition voltage of clock [V]

tdel, trise, tfall = {usual} [s]
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Clocked JK Flip-Flop

Terminals

vin_j: [V,A]

vin_k: [V,A]

vclk: [V,A]

vout_q: [V,A]

vout_qbar: [V,A]

Description

Triggered on the rising edge.

Logic Table 

Instance Parameters

vlogic_high = output voltage for high [V]

vlogic_low = output voltage for low [V]

vtrans = voltages above this at input are considered high [V]

J K Q Q'

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 0
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tdel, trise, tfall = {usual} [s]
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JK-Type Flip-Flop

Terminals

vin_j, vin_k: inputs

vout_q, vout_qbar: outputs

Description

Triggered on the rising edge.

Logic Table

Instance Parameters

vlogic_high = output voltage for high [V]

vlogic_low = output voltage for low [V]

vtrans = voltages above this at input are considered high [V]

tdel, trise, tfall = {usual} [s]

J K Q Q(t+e)

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 0
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Level Shifter

Terminals

sigin: (val, flow)

sigout: (val, flow)

Description

sigout = sigin added to sigshift.

Instance Parameters

sigshift = level shift (val)
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RS-Type Flip-Flop

Terminals

vin_s: [V,A]

vin_r: [V,A]

vout_q, vout_qbar: [V,A]

Logic Table 

Instance Parameters

vlogic_high = output voltage for high [V]

vlogic_low = output voltage for low [V]

vtrans = voltages above this at input are considered high [V]

tdel, trise, tfall = {usual} [s] 

S(t) R(t) Q(t) Q(t+e)

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 X

1 1 1 X
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Trigger-Type (Toggle-Type) Flip-Flop

Terminals

vtrig: trigger [V,A]

vout_q, vout_qbar: outputs [V,A]

Description

Triggered on the rising edge.

Logic Table

Instance Parameters

initial_state = the initial state/output of the flip-flop []

vlogic_high = output voltage for high [V]

vlogic_low = output voltage for low [V]

vtrans = voltages above this at input are considered high [V]

tdel, trise, tfall = {usual} [s]

T Q Q(t+e)

0 0 0

0 1 1

1 0 1

1 1 0
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Half Adder

Terminals

vin1, vin2: bits to be added [V,A]

vout_sum: vout_sum out [V,A]

vout_carry: carry out [V,A]

Instance Parameters

vlogic_high = logic high value [V]

vlogic_low = logic low value [V]

vtrans = threshold for inputs to be high [V]

tdel, trise, tfall = {usual} [s]
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Full Adder

Terminals

vin1, vin2: bits to be added [V,A]

vin_carry: carry in [V,A]

vout_sum: sum out  [V,A]

vout_carry: carry out [V,A]

Instance Parameters

vlogic_high = logic high value [V]

vlogic_low = logic low value [V]

vtrans = threshold for inputs to be high [V]

tdel, trise, tfall = {usual} [s]
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Half Subtractor

Terminals

vin1, vin2: inputs [V,A]

vout_diff: difference out [V,A]

vout_borrow: borrow out [V,A]

Formula

vin1 - vin2 = vout_diff and borrow

Truth Table

Instance Parameters

vlogic_high = logic high value [V]

vlogic_low = logic low value [V]

vtrans = threshold for inputs to be high [V]

tdel, trise, tfall = {usual} [s]

in1 in2 diff borrow

0 0 0 0

0 1 1 1

1 0 1 0

1 1 0 0
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Full Subtractor

Terminals

vin1, vin2: inputs [V,A]

vin_borrow: borrow in [V,A]

vout_diff: difference out [V,A]

vout_borrow: borrow out [V,A] 

Truth Table 

Instance Parameters

vlogic_high = logic high value [V]

vlogic_low = logic low value [V]

vtrans = threshold for inputs to be high [V]

tdel, trise, tfall = {usual} [s]

in1 in2 bin bout doff

0 0 0 0 0

0 0 1 1 1

0 1 0 1 1

0 1 1 1 0

1 0 0 0 1

1 0 1 0 0

1 1 0 0 0

1 1 1 1 1
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Parallel Register, 8-Bit

Terminals

vin_d0..vin_d7: input data lines [V,A]

vout_d0..vout_d7: output data lines [V,A]

venable: enable line [V,A]

Description

Input occurs on the rising edge of venable.

Instance Parameters

vlogic_high = output voltage for high [V]

vlogic_low = output voltage for low [V]

vtrans = voltages above this at input are considered high [V]

tdel, trise, tfall = {usual} [s]
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Serial Register, 8-Bit

Terminals

vin_d: input data lines [V,A]

vout_d: output data lines [V,A]

vclk: enable line [V,A]

Description

Input occurs on the rising edge of vclk.

Instance Parameters

vlogic_high = output voltage for high [V]

vlogic_low = output voltage for low [V]

vtrans = voltages above this at input are considered high [V]

tdel, trise, tfall = {usual} [s]
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Electromagnetic Components

DC Motor

Terminals

vp: positive terminal [V,A]

vn: negative terminal [V,A]

pos_shaft: motor shaft [rad, Nm]

Description

This is a model of a DC motor driving a shaft.

Instance Parameters

km = motor constant [Vs/rad]

kf = flux constant [Nm/A]

j = inertia factor [Nms2/rad]

d = drag (friction) [Nms/rad]

rm = motor resistance [Ohms]

lm = motor inductance [H]
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Electromagnetic Relay

Terminals

vopen: normally opened terminal [V,A]

vcomm: common terminal [V,A]

vclosed: normally closed terminal [V,A]

vctrl_n: negative control signal [V,A]

vctrl_p: positive control signal [V,A]

Description

This is a model of a voltage-controlled single-pole, double-throw switch. When the voltage 
differential between vctrl_p and vctrl_n exceeds vtrig, the normally open branch is 
shorted (closed). Otherwise, the normally open branch stays open. If the open branch is 
already closed and the voltage differential between vctrl_p and vctrl_n falls below 
vrelease, the normally open branch is opened.

Instance Parameters

vtrig = input value to close relay [V]

vrelease = input value to open relay [V]
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Three-Phase Motor

Terminals

vp1, vn1: phase 1 terminals [V,A]

vp2, vn2: phase 2 terminals [V,A]

vp3, vn3: phase 3 terminals [V,A]

pos: position of shaft [rad, Nm]

shaft: speed of shaft [rad/s, Nm]

com: rotational reference point [rad/s, Nm]

Instance Parameters

km = motor constant [Vs/rad]

kf = flux constant [Nm/A]

j = inertia factor [Nms^2/rad]

d = drag (friction) [Nms/rad]

rm = motor resistance [Ohms]

lm = motor inductance [H]
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Functional Blocks

Amplifier

Terminals

sigin: input (val, flow)

sigout: output (val, flow)

Instance Parameters

gain = gain between input and output []

sigin_offset = subtracted from sigin before amplification (val)
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Comparator

Terminals

sigin: (val, flow)

sigref: reference to which sigin is compared (val, flow)

sigout: comparator output (val, flow)

Description

Compares (sigin-sigin_offset) to sigref—the output is related to their difference by 
a tanh relationship.

If the difference >>> sigref, sigout is sigout_high.

If the difference = sigref, sigout is (sigout_high + sigout_low)/2.

If the difference <<< sigref, sigout is sigout_low.

Intermediate points are fitting to a tanh scaled by comp_slope.

Instance Parameters

sigout_high = maximum output of the comparator (val)

sigout_low = minimum output of the comparator (val)

sigin_offset = subtracted from sigin before comparison to sigref (val)

comp_slope = determines the sensitivity of the comparator []
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Controlled Integrator

Terminals

sigin: (val, flow)

sigout: (val, flow)

sigctrl: (val, flow)

Description

Integration occurs while sigctrl is above sigctrl_trans.

Instance Parameters

sigout0 = initial sigout value (val)

gain = gain []

sigctrl_trans  = if sigcntl is above this, integration occurs (val)
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Deadband

Terminals

sigin: input (val, flow)

sigout: output (val, flow)

Description

Deadband region is when sigin is between sigin_dead_high and sigin_dead_low. 
sigout is zero in the deadband region. Above the deadband, the output is sigin - 
sigin_dead_high. Below the deadband, the output is sigin - sigin_dead_low.

Instance Parameters

sigin_dead_high = upper deadband limit (val)

sigin_dead_low = lower deadband limit (val)
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Deadband Differential Amplifier

Terminals

sigin_p, sigin_n: differential input terminals (val, flow)

sigout: output terminal (val, flow)

Description

Outputs sigout_leak when differential input (sigin_p-sigin_n) is between 
sigin_dead_low and sigin_dead_high. When outside the deadband, the output is an 
amplified version of the differential input plus sigout_leak.

Instance Parameters

sigin_dead_low = lower range of dead band (val)

sigin_dead_high = upper range of dead band (val)

sigout_leak = offset signal; only output in deadband (val)

gain_low = differential gain in lower region []

gain_high = differential gain in upper region []
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Differential Amplifier (Opamp)

Terminals

sigin_p, sigin_n: (val, flow)

sigout: (val, flow)

Description

sig_out is gain times the adjusted input differential signal. The adjusted input differential 
signal is the differential input minus sigin_offset.

Instance Parameters

gain = amplifier differential gain (val)

sigin_offset = input offset (val)
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Differential Signal Driver

Terminals

sigin_p, sigin_n: differential input signals (val, flow)

sigout_p, sigout_n: differential output signals (val, flow)

sigref: differential outputs are with reference to this node
(val, flow)

Description

Amplifies its differential pair of input by an amount gain, producing a differential pair of output 
signals. The output differential signals appear symmetrically about sigref.

Instance Parameters

gain = diffdriver gain []
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Differentiator

Terminals

sigin: (val, flow)

sigout: (val, flow)

Instance Parameters

gain = []
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Flow-to-Value Converter

Terminals

sigin_p, sigin_n: [V,A]

sigout_p, sigout_n: [V,A]

Description

val(sigout_p, sigout_n) = flow(sigin_p, sigin_n)

Instance Parameters

gain = flow to val gain
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Rectangular Hysteresis

Terminals

sigin: (flow, val)

sigout: (flow, val) 

Instance Parameters

hyst_state_init = the initial output []

sigout_high = maximum input/output (val)

sigout_low = minimum input/output (val)

sigtrig_low = the sigin value that will cause sigout to go low when sigout is high 
(val)

sigtrig_high = the sigin value that will cause sigout to go high when sigout is low 
(val) 

tdel, trise, tfall = {usual} [s]
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Integrator

Terminals

sigin: (val, flow)

sigout: (val, flow)

Instance Parameters

sigout0 = initial sigout value (val)

gain = []
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Level Shifter

Terminals

sigin: (val, flow)

sigout: (val, flow)

Description

sigout = sigin added to sigshift.

Instance Parameters

sigshift = level shift (val)
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Limiting Differential Amplifier

Terminals

sigin_p, sigin_n: (val, flow)

sigout: (val, flow)

Description

Has limited output swing. sigout is gain times the adjusted differential input signal about 
(sigout_high + sigout_low)/2. The adjusted differential input signal is the differential 
input signal minus sigin_offset.

Instance Parameters

sigout_high = upper amplifier output limit (val)

sigout_low = lower amplifier output limit (val)

gain = amplifier gain within the limits []

sigin_offset = input offset (val)
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Logarithmic Amplifier

Terminals

sigin: (val, flow)

sigout: (val, flow)

Description

sigout is gain times the natural log of the absolute value of the adjusted input. The 
adjusted input is sigin minus sigin_offset unless the absolute value of the this is less 
than min_sigin. In this case, min_sigin is used as the adjusted input.

Instance Parameters

min_sigin = absolute value of minimum acceptable sigin (val)

gain = (val)

sigin_offset = input offset (val)
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Multiplexer

Terminals

sigin1, sigin2, sigin3: signals to be multiplexed (val, flow)

cntrlp, cntrlm: differential-controlling signal (val, flow)

sigout: (val, flow)

Description

If the differential-controlling signal is below sigth_high, sigout is sigin1. If the 
differential-controlling signal is above sigth_low, sigout is sigin3. In between these two 
thresholds, sigout = sigin2.

Instance Parameters

sigth_high = high threshold value (val)

sigth_low = low threshold value (val)
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Quantizer

Terminals

sigin: (val, flow)

sigout: (val, flow)

Description

This model quantizes input with unity gain.

Instance Parameters

nlevel = number of levels to quantize to []

round = if yes, go to nearest q-level, otherwise go to nearest q-level below []

sigout_high = maximum input/output (val)

sigout_low = minimum input/output (val)

tdel, trise, tfall = {usual} [s]
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Repeater

Terminals

sigin: (val, flow)

sigout: (val, flow)

Description

From 0 to period, sigout = sigin. After this, sigout is a periodic repetition of what 
sigin was between 0 and period.

Instance Parameters

period = period of repeated waveform (val)
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Saturating Integrator

Terminals

sigin: (val, flow)

sigout: (val, flow)

Description

The output is the limited integral of the input. The limits are sigout_max, sigin_min. 
sigout0 must lie between sigout_max and sigin_min.

Instance Parameters

sigout0 = initial sigout value (val)

gain = []

sigout_max = maximum signal out (val)

sigout_min = minimum signal out (val)
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Swept Sinusoidal Source

Terminals

sigout_p, sigout_n: output (val, flow)

Description

The instantaneous frequency of the output is sweep_rate * time plus start_freq.

Instance Parameters

start_freq = start frequency [Hz]

sweep_rate = rate of increase in frequency [Hz/s]

amp = amplitude of output sinusoid (val)

points_per_cycle = number of points in a cycle of the output []
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Three-Phase Source

Terminals

vouta: A-phase terminal [V,A]

voutb: B-phase terminal [V,A]

voutc: C-phase terminal [V,A]

vout_star: star terminal [V,A]

Instance Parameters

amp = phase-to-phase voltage amplitude [V]

freq = output frequency [Hz]
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Value-to-Flow Converter

Terminals

sigin_p, sigin_n: [V,A]

sigout_p, sigout_n: [V,A]

Description

flow(sigout_p, sigout_n) = val(sigin_p, sigin_n)

Instance Parameters

gain = value-to-flow gain []
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Variable Frequency Sinusoidal Source

Terminals

sigin: frequency-controlling signal (val, flow)

sigout: (val, flow)

Description

Outputs a variable frequency sinusoidal signal. Its instantaneous frequency is 
(center_freq + freq_gain * sigin) [Hz]

Instance Parameters

amp = amplitude of the output signal (val)

center_freq = center frequency of oscillation frequency when sigin = 0 [Hz]

freq_gain = oscillator conversion gain (Hz/val)
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Variable-Gain Differential Amplifier

Terminals

sigin_p, sigin_n: differential input terminals (val, flow)

sigctrl_p, sigctrl_n: differential-controlling terminals (val, flow)

sigout: (val, flow)

Description

sigout is the product of gain_const, (sigctrl_p - sigctrl_n), and the adjusted input 
differential signal added to (sigout_high + sigout_low)/2. The adjusted input differential 
signal is the input differential signal minus sigin_offset.

Instance Parameters

gain_const = amplifier gain when (sigctrl_p - sigctrl_n) = 1 unit []

sigout_high = upper output limit (val)

sigout_low = lower output limit (val)

sigin_offset = input offset (val)
December 2011 339 Product Version 11.1



Cadence Verilog-AMS Language Reference
Sample Model Library
Magnetic Components

Magnetic Core

Terminals

mp: positive MMF terminal [A, Wb]

mn: negative MMF terminal [A, Wb]

Description

This is a Jiles/Atherton magnetic core model.

Instance Parameters

len = effective magnetic length of core [m]

area = magnetic cross-section area of core [m2]

ms = saturation magnetization

gamma = shaping coefficient

k = bulk coupling coefficient 

alpha = interdomain coupling coefficient

c = coefficient for reversible magnetization
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Magnetic Gap

Terminals

mp: positive MMF terminal [A, Wb]

mn: negative MMF terminal [A, Wb]

Description

This is a Jiles/Atherton magnetic gap model.

This model is analogous to a linear resistor in an electrical system.

Instance Parameters

len = effective magnetic length of gap [m]

area = magnetic cross-section area of gap [m2]
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Magnetic Winding

Terminals

vp: positive voltage terminal [V,A]

vn: negative voltage terminal [V,A]

mp: positive MMF terminal [A, Wb]

mn: negative MMF terminal [A, Wb]

Description

This is a Jiles/Atherton winding model.

Instance Parameters

num_turns = number of turns []

rturn = winding resistance per turn [Ohms]
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Two-Phase Transformer

Terminals

vp_1, vn_1: [V,A]

vp_2, vn_2: [V,A]

Description

This is structural transformer model implemented using Jiles/Atherton core and winding 
primitives

Instance Parameters

turns1 = number of turns in the first winding []

turns1 = number of turns in the second winding []

rwinding1 = resistance per turn of first winding [Ohms]

rwinding2 = resistance per turn of second winding [Ohms]

len = length of the transformer core [m]

area = area of the transformer core [m2]

ms = saturation magnetization

gamma = shaping coefficient

k = bulk coupling coefficient 

alpha = interdomain coupling coefficient

c = coefficient for reversible magnetization
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Mathematical Components

Absolute Value

Terminals

sigin: (val, flow)

sigout: (val, flow)

Description

sigout is the absolute value of sigin.

Instance Parameters

None.
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Adder

Terminals

sigin1, sigin2: (val, flow)

sigout: (val, flow)

Description

This model adds two node values.

Instance Parameters

k1 = gain of sigin1 []

k2 = gain of sigin2 []
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Adder, 4 Numbers

Terminals

sigin1, sigin2, sigin3, sigin4: (val, flow)

sigout: (val, flow)

Description

sigout = gain1*sigin1 + gain2*sigin2 +gain3*sigin3 + gain4*sigin4

Instance Parameters

gain1 = gain for sigin1 []

gain2 = gain for sigin2 []

gain3 = gain for sigin3 []

gain4 = gain for sigin4 []
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Cube

Terminals

sigin: (val, flow)

sigout: (val, flow)

Description

sigout is the cube of the sigin.

Instance Parameters

None. 
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Cubic Root

Terminals

sigin: (val, flow)

sigout: (val, flow)

Description

sigout is the cubic root of sigin.

Instance Parameters

epsilon = small number added to sigin to ensure not getting pow(0,0.3333.), because 
pow() is implemented using logs (val)
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Divider

Terminals

signumer: numerator (val, flow)

sigdenom: denominator (val, flow)

sigout: (val, flow)

Description

sigout is gain multiplied by signumer divided by sigdenom unless the absolute value of 
sigdenom is less than min_sigdenom. In that case, signumer is divided by 
min_sigdenom instead and multiplied by the sign of the sigdenom.

Instance Parameters

gain = divider gain []

min_sigdenom = minimum denominator (val)
December 2011 349 Product Version 11.1



Cadence Verilog-AMS Language Reference
Sample Model Library
Exponential Function

Terminals

sigin: (val, flow)

sigout: (val, flow)

Description

sigout is an exponential function of sigin. However, if sigin is greater than max_sigin, 
sigin is taken to be max_sigin. This is necessary because the exponential function 
explodes very quickly.

Instance Parameters

max_sigin = maximum value of sigin accepted (val)
December 2011 350 Product Version 11.1



Cadence Verilog-AMS Language Reference
Sample Model Library
Multiplier

Terminals

sigin1, sigin2: inputs (val, flow)

sigout: terminals (val, flow)

Description

sigout = gain * sigin1 * signin2

Instance Parameters

gain = gain of multiplier []
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Natural Log Function

Terminals

sigin: (val, flow)

sigout: (val, flow)

Description

sigout is the natural log of sigin, providing sigin > min_sigin. If sigin is between 0 
and min_sigin, sigout is the log of min_sigin. If sigin is less than 0, an error is 
reported.

Instance Parameters

min_sigin = minimum value of sigin (val) 
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Polynomial

Terminals

sigin: (val, flow)

sigout: (val, flow)

Description

This is a model of a third-order polynomial function.

sigout = p3 * sigin3 + p2 * sigin2 + p1 * sigin + p0

Instance Parameters

p3 = cubic coefficient []

p2 = square coefficient []

p1 = linear coefficient []

p0 = constant coefficient []
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Power Function

Terminals

sigin: (val, flow)

sigout: (val, flow)

Description

sigout is sigin to the power of exponent.

Instance Parameters 

exponent = what sigin is raised by []

epsilon = small number added to sigin to ensure not getting pow(0,0.3333.), because 
pow() is implemented using logs (val)
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Reciprocal

Terminals

sigin: (val, flow)

sigout: (val, flow)

Description

sigout is gain/denom

Instance Parameters

gain = gain (val)

min_sigdenom = minimum denominator (val)
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Signed Number

Terminals

sigin: (val, flow)

sigout: (val, flow)

Description

This is a model of the sign of the input.

sigout is +1 if sigin >= 0; otherwise, sigout is -1.

Instance Parameters

None.
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Square

Terminals

sigin: input

sigout: output

Description

sigout is the square of the sigin.

Instance Parameters

None.
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Square Root

Terminals

sigin: (val, flow)

sigout: (val, flow)

Description

sigout is the square root of sigin.

Instance Parameters

None.
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Subtractor

Terminals

sigin_p: input subtracted from (val, flow)

sigin_n: input that is subtracted (val, flow)

sigout: (val, flow)

Instance Parameters

None.
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Subtractor, 4 Numbers

Terminals

sigin1, sigin2, sigin3, sigin4: (val, flow)

sigout: (val, flow)

Description

sigout = gain1*sigin1 - gain2*sigin2 - gain3*sigin3 - gain4*sigin4

Instance Parameters

gain1 = gain for sigin1

gain2 = gain for sigin2

gain3 = gain for sigin3

gain4 = gain for sigin4
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Measure Components

ADC, 8-Bit Differential Nonlinearity Measurement

Terminals

vd0..vd7: data lines from ADC [V,A]

vout: voltage sent from conversion to ADC [V,A]

vclk: clocking signal for the ADC [V,A]

Description

Measures an 8-bit analog-to-digital converter’s (ADC’s) differential nonlinearity measurement 
(DNL) using a histogram method. vout is sequentially set to 4,096 equally spaced voltages 
between vstart and vend. At each different value of vout, a clock pulse is generated 
causing the ADC to convert this vout value. The resultant code of each conversion is stored.

When all the conversions have been done, the DNL is calculated from the recorded data.

If log_to_file is yes, the DNL (differential nonlinearity) is recorded and written to 
filename.

Instance Parameters

vlogic_high = [V]

vlogic_low = [V]

tsettle = time to allow for settling after the data lines are changed before vd0-7 are 
recorded [s]—also the period of the ADC conversion clock.

vstart = voltage at which to start conversion sweep []

vend = voltage at which to end conversion sweep []

log_to_file = whether to log the results to a file; yes or no []

filename = the name of the file in which the results are logged []
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ADC, 8-Bit Integral Nonlinearity Measurement

Terminals

vd0..vd7: data lines from ADC [V,A]

vout: voltage sent from conversion to ADC [V,A]

vclk: clocking signal for the ADC [V,A]

Description

Measures an 8-bit ADC’s INL using a histogram method. vout is sequentially set to 4,096 
equally spaced voltages between vstart and vend. At each different value of vout, a clock 
pulse is generated causing the ADC to convert this vout value. The resultant code of each 
conversion is stored.

When all the conversions have been done, the INL is calculated from the recorded data.

If log_to_file is yes, the INL (integral nonlinearity) is recorded and written to filename.

Instance Parameters

vlogic_high = [V]

vlogic_low = [V]

tsettle = time to allow for settling after the data lines are changed before vd0-7 are 
recorded [s]—also the period of the ADC conversion clock.

vstart = voltage at which to start conversion sweep []

vend = voltage at which to end conversion sweep []

log_to_file = whether to log the results to a file; yes or no []

filename = the name of the file in which the results are logged []
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Ammeter (Current Meter)

Terminals

vp, vn: terminals [V,A]

vout: measured current converted to a voltage [V,A]

Description

Measures the current between two of its nodes. It has two modes: rms (root-mean-squared) 
and absolute. 

The measurement is passed through a first-order filter with bandwidth bw before being written 
to a file and appearing at vout. This is useful when doing rms measurements. If bw is set to 
zero, no filtering is done.

Instance Parameters

mtype = type of current measurement; absolute or rms []

bw = bw of output filter (a first-order filter) [Hz]

log_to_file = whether to log the results to a file; yes or no []

filename = the name of the file in which the results are logged []
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DAC, 8-Bit Differential Nonlinearity Measurement

Terminals

vin: terminal for monitoring DAC output voltages [V,A]

vd0..vd7: data lines for DAC [V,A]

Description

Sweeps through all the 256 codes and records the digital-to-analog converter (DAC) output 
voltage and writes the maximum DNL found to the output.

If log_to_file is yes, the DNL (differential nonlinearity) is recorded and written to 
filename.

Instance Parameters

vlogic_high = [V]

vlogic_low = [V]

tsettle = time to allow for settling after the data lines are changed before vin is recorded 
[s]

log_to_file = whether to log the results to a file; yes or no []

filename = the name of the file in which the results are logged []
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DAC, 8-Bit Integral Nonlinearity Measurement 

Terminals

vin: terminal for monitoring DAC output voltages [V,A]

vd0..vd7: data lines for DAC [V,A]

Description

Sweeps through all the 256 codes and records the DAC output voltage and writes the 
maximum INL found to the output.

If log_to_file is yes, the INL (integral nonlinearity) is recorded and written to filename.

Instance Parameters

vlogic_high = [V]

vlogic_low = [V]

tsettle = time to allow for settling after the data lines are changed before vin is recorded 
[s]

log_to_file = whether to log the results to a file; yes or no []

filename = the name of the file in which the results are logged []
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Delta Probe

Terminals

start_pos, start_neg: signal that controls start of measurement []

stop_pos, stop_neg: signal that controls end of measurement [] 

Description

This probe measures argument delta between the occurrence of the starting and stopping 
events. It can also be used to find when the start and stop signals cross the specified 
reference values (by default start_count and stop_count are set to 1).

Instance Parameters

start_td, stop_td = signal delays [s]

start_val, stop_val = signal value that starts/end measurement []

start_count, stop_count = number of signal values that starts/end measurement

start_mode = one of the starting/stopping modes []

arg–argument value (simulation time)

rise–crossing of the signal value on rise

fall–crossing of the signal value on fall

crossing–any crossing of the signal value

stop_mode = one of the starting/stopping modes []

arg–argument value (simulation time)

rise–crossing of the signal value on rise

fall–crossing of the signal value on fall

crossing–any crossing of the signal value
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Find Event Probe

Terminals

out_pos, out_neg: signal to measure []

start_pos, start_neg: signal that controls start of measurement []

ref_pos, ref_neg: differential reference signal

Description

This model is of a signal statistics probe. This probe measures the output signal at the 
occurrence of the event:

■ If arg_val is given, measure at this value.

■ If start_ref_val is given, measure the output signal when the start signal crosses this 
value.

■ If start_ref_val is not given, measure the output signal when it is equal to the 
reference signal.

Instance Parameters

start = argument value that starts measurements

stop = argument value that stops measurements

start_td = signal delays [s]

start_val = signal value that starts/ends measurement []

start_count = number of signal values that starts/ends measurement

start_mode = one of the starting/stopping modes []

arg–argument value (simulation time)

rise–crossing of the signal value on rise

fall–crossing of the signal value on fall

crossing–any crossing of the signal value
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start_ref_val = start signal reference value []

arg_val = argument value that controls when to measure signals []

1. If arg_val is given, measure at the specified value of the simulation argument. If it is 
not given, measure at the occurrence of the event.

2. If start_ref_val is given, measure the output signal when the start signal is equal to 
the reference value.

3. If start_ref_val is not given, measure the output signal when the start signal is equal 
to the reference signal.
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Find Slope

Terminals

out_pos, out_neg: signal to measure []

Description

This model is of a signal statistics probe.

This probe measures slope of a signal between arg_val1 and arg_val2; if arg_val2 is 
not specified, it is set to the value exceeding arg_val1 by 0.1%.

Instance Parameters

arg_val1 = first argument value []

arg_val2 = (optional) second argument value []
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Frequency Meter

Terminals

vp, vn: terminals [V,A]

fout: measured frequency [F,A]

Description

Measures the frequency of the voltage across the terminals by detecting the times at which 
the last two zero crossings occurred. This method only works on pure AC waveforms.

Instance Parameters

log_to_file = whether to log the results to a file; yes or no []

filename = the name of the file in which the results are logged []
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Offset Measurement

Terminals

vamp_out: output voltage of opamp being measured [V,A]

vamp_p: positive terminal of opamp being measured [V,A]

vamp_n: negative terminal of opamp being measured [V,A]

vamp_spply_p: positive supply of opamp being measured [V,A]

vamp_spply_n: negative supply of opamp being measured [V,A]

Description

This is a model of a slew rate measurer.

The opamp terminals of the opamp under test are connected to this model. It shorts 
vamp_out to vamp_n and grounds vamp_vp. After tsettle seconds, the voltage read at 
vamp_out is taken to be offset.

The result is printed to the screen.

Instance Parameters

vspply_p = positive supply voltage required by opamp [V]

vspply_n = negative supply voltage required by opamp [V]

tsettle = time to let opamp settle before measuring the offset [s]
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Power Meter

Terminals

iin: input for current passing through the meter [V,A]

vp_iout: positive voltage sending terminal and output for current passing
through the meter [V,A]

vn: negative voltage sensing terminal [V,A]

pout: measured impedance converted to a voltage [V]

va_out: measured apparent power [W]

pf_out: measured power factor []

Description

To measure the power being dissipated in a 2-port device, this meter should be placed in the 
netlist so that the current flowing into the device passes between iin and vp_iout first, that 
vp_iout is connected to the positive terminal of the device, and that vn is connected to the 
negative terminal of the device.

The measured power is the average over time of the product of the voltage across and the 
current through the device. This average is calculated by integrating the VI product and 
dividing by time and passing the result through a first-order filter with bandwidth bw.

The apparent power is calculated by finding the rms values of the current and voltage first and 
filtering them with a first-order filter of bandwidth bw. The apparent power is the product of the 
voltage and current rms values.

The purpose of the filtering is to remove ripple. Cadence recommends that bw be set to a low 
value to produce accurate measurements and that at least 10 input AC cycles be allowed 
before the power meter is considered settled. Also allow time for the filters to settle.

This meter requires accurate integration, so it is desirable that the integration method is set 
to gear2only in the netlist.

Instance Parameters

tstart = time to wait before starting measurement [s]
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bw = bw of rms filters (a first-order filter) [Hz]

log_to_file = whether to log the results to a file; yes or no []

filename = the name of the file in which the results are logged []
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Q (Charge) Meter

Terminals

vp, vn: terminals [V,A]

qout: measured charge [C,A]

Description

Measures the charge that has flown between vn and vp between tstart and tend.

Instance Parameters

tstart = start time [s]

tend = end time [s]

log_to_file = whether to log the results to a file; yes or no []

filename = the name of the file in which the results are logged []
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Sampler

Terminal

sigin: (val, flow)

Description

Samples sigin every tsample and writes the results to filename and labels the data with 
label. The time variable is recorded if log_time is yes.

Instance Parameters

tsample = how often input is sampled [s]

filename = name of file where samples are stored []

label = label for signal being sampled []

log_time = if the time variable should be logged to a file []
December 2011 375 Product Version 11.1



Cadence Verilog-AMS Language Reference
Sample Model Library
Slew Rate Measurement

Terminals

vamp_out: output voltage of the opamp being measured [V,A]

vamp_p: positive terminal of the opamp being measured [V,A]

vamp_n: negative terminal of the opamp being measured [V,A]

vamp_spply_p: positive supply of the opamp being measured [V,A]

vamp_spply_n: negative supply of the opamp being measured [V,A]

Description

Monitors the input and records the times at which it equals vstart and vend. The slew is 
given to be vstart - vend divided by the time difference.

The result is printed to the screen.

Instance Parameters

vspply_p = positive supply voltage required by opamp [V]

vspply_n = negative supply voltage required by opamp [V]

twait = time to wait before applying pulse to opamp input [V]

vstart = voltage at which to record the first measurement point [V]

vend = voltage at which to record the other measurement point [V]

tmin = minimum time allowed between both measurements before an error is reported [s]
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Signal Statistics Probe

Terminals

out_pos, out_neg: signal to measure []

start_pos, start_neg: signal that controls start of measurement []

stop_pos, stop_neg: signal that controls end of measurement [] 

Description

This probe measures signals such as minimum, maximum, average, peak-to-peak, root mean 
square, standard deviation of the output, and start signals within a measuring window. It also 
gives a correlation coefficient between output and start signals.

Instance Parameters

start_arg = argument value that starts measurements

stop_arg = argument value that stops measurements

start_td, stop_td = signal delays [s]

start_val, stop_val = signal value that starts/end measurement []

start_count, stop_count = number of signal values that starts/end measurement

start_mode = one of starting/stopping modes []

arg–argument value (simulation time)

rise–crossing of the signal value on rise

fall–crossing of the signal value on fall

crossing–any crossing of the signal value

stop_mode = one of starting/stopping modes []

arg–argument value (simulation time)

rise–crossing of the signal value on rise
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fall–crossing of the signal value on fall

crossing–any crossing of the signal value
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Voltage Meter

Terminals

vp, vn: terminals [V,A]

vout: measured voltage [V,A]

Description

Measures the voltage between two of its nodes. It has two modes: rms (root-mean-squared) 
and absolute. 

The measurement is passed through a first-order filter with bandwidth bw before being written 
to a file and appearing at vout. This is useful when doing rms measurements. If bw is set to 
zero, no filtering is done. 

Instance Parameters

mtype = type of voltage measurement; absolute or rms []

bw = bw of output filter (a first-order filter) [Hz]

log_to_file = whether to log the results to a file; yes or no []

filename = the name of the file in which the results are logged []
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Z (Impedance) Meter

Terminals

iin: input for current passing through the meter [V,A]

vp_iout: positive voltage-sensing terminal and output for current passing through the 
meter [V,A]

vn: negative voltage sensing terminal [V,A]

zout: measured impedance converted to a voltage [Ohms]

Description

To measure the impedance across a 2-port device, this meter should be placed in the netlist 
so that the current flowing into the device passes between iin and vp_iout first, that 
vp_iout is connected to the positive terminal of the device, and that vn is connected to the 
negative terminal of the device.

The impedance is calculated by finding the rms values of the current and voltage first and 
filtering them with a first-order filter of bandwidth bw. The impedance is the ratio of these 
filtered Irms and Vrms values. The purpose of the filtering is to remove ripple.

Cadence recommends that bw be set to a low value to produce accurate measurements and 
that at least 10 input AC cycles be allowed before the zmeter is considered settled. Also allow 
time for the filters to settle.

The time step size should also be kept small to increase accuracy.

This meter is nonintrusive—that is, it does not drive current in the device being measured. 
However to work it requires that something else drives current through the device.

Instance Parameters

bw = bw of rms filters (a first-order filter) [Hz]

log_to_file = whether to log the results to a file; yes or no []

filename = the name of the file in which the results are logged []
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Mechanical Systems

Gearbox

Terminals

wshaft1: shaft of the first gear [rad/s, Nm]

wshaft2: shaft of the second gear [rad/s, Nm]

Description

This is a model of two intermeshed gears.

Instance Parameters

radius1 = radius of first gear [m]

radius2 = radius of second gear [m]

inertia1 = inertia of first gear [Nms/rad]

inertia2 = inertia of second gear [Nms/rad]
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Mechanical Damper

Terminals

posp, posn: terminals [m, N]

Instance Parameters

d = friction coefficient [N/m]
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Mechanical Mass

Terminal

posin: terminal [m, N]

Instance Parameters

m = mass [kg]

gravity = whether gravity acting on the direction of movement of mass []
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Mechanical Restrainer

Terminals

posp, posn: terminals [m, N]

Description

Limits extension of the nodes to which it is attached.

Instance Parameters

minl = minimum extension [m]

maxl = maximum extension [m]
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Road

Terminal

posin: terminal [m, N]

Description

This is a model of a road with bumps.

Instance Parameters

height = height of bumps [m]

length = length of bumps [m]

speed = speed [m/s]

distance = distance to first bump [m] 
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Mechanical Spring

Terminals

posp, posn: terminals [m, N]

Instance Parameters

k = spring constant [N/m]

l = length of the spring [m]
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Wheel

Terminals

posp, posn: terminals [m, N]

Description

This is a model of a bearing wheel on a fixed surface.

Instance Parameters

height = height of the wheel [m]
December 2011 387 Product Version 11.1



Cadence Verilog-AMS Language Reference
Sample Model Library
Mixed-Signal Components

Analog-to-Digital Converter, 8-Bit

Terminals

vin: [V,A]

vclk: [V,A]

vd0..vd7: data output terminals [V,A]

Description

This ADC comprises 8 comparators. An input voltage is compared to half the reference 
voltage. If the input exceeds it, bit 7 is set and half the reference voltage is subtracted. If not, 
bit 7 is assigned zero and no voltage is subtracted from the input. Bit 6 is found by doing an 
equivalent operation comparing double the adjusted input voltage coming from the first 
comparator with half the reference voltage. Similarly, all the other bits are found.

Mismatch effects in the comparator reference voltages can be modeled setting mismatch to 
a nonzero value. The maximum mismatch on a comparator’s reference voltage is +/-
mismatch percent of that voltage’s nominal value.

Instance Parameters

mismatch_fact = maximum mismatch as a percentage of the average value []

vlogic_high = [V]

vlogic_low = [V]

vtrans_clk = clk high-to-low transition voltage [V]

vref = voltage that voltage is done with respect to [V]

tdel, trise, tfall = {usual} [s]
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Analog-to-Digital Converter, 8-Bit (Ideal)

Terminals

vin: [V,A]

vclk: [V,A]

vd0..vd7: data output terminals [V,A]

Description

This model is ideal because no mismatch is modeled.

Instance Parameters

tdel, trise, tfall = {usual} [s]

vlogic_high = [V]

vlogic_low = [V]

vtrans_clk = clk high-to-low transition voltage [V]

vref = voltage that voltage is done with respect to [V]
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Decimator

Terminals

vin: [V,A]

vout: [V,A]

vclk: [V,A]

Description

Produces a cumulative average of N samples of vin. vin is sampled on the positive vclk 
transition. The cumulative average of the previous set of N samples is output until a new set 
of N samples has been captured.

Transfer Function: 1/N * (1 - Z^-N)/(1-Z^-1)

Instance Parameters

N = oversampling ratio [V]

vtrans_clk = transition voltage of the clock [V]

tdel, trise, tfall = {usual} [s]
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Digital-to-Analog Converter, 8-Bit

Terminals

vd0..vd7: data inputs [V,A]

vout: [V,A]

Description

Mismatch effects can be modeled in this DAC by setting mismatch to a nonzero value. The 
maximum mismatch on a bit is +/-mismatch percent of that bit’s nominal value.

Instance Parameters

vref = reference voltage for the conversion [V]

mismatch_fact = maximum mismatch as a percentage of the average value []

vtrans = logic high-to-low transition voltage [V]

tdel, trise, tfall = {usual} [s]
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Digital-to-Analog Converter, 8-Bit (Ideal)

Terminals

vd0..vd7: data inputs [V,A]

vout: [V,A]

Instance Parameters

vref = reference voltage that conversion is with respect to [V]

vtrans = transition voltage between logic high and low [V]

tdel, trise, tfall = {usual} [s]
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Sigma-Delta Converter (first-order)

Terminals

vin: [V,A]

vclk: [V,A]

vout: [V,A]

Description

This is a model of a first-order sigma-delta analog-to-digital converter.

Instance Parameters

vth = threshold voltage of two-level quantizer [V]

vout_high = range of sigma-delta is 0-vout_high [V] 

vtrans_clk = transition of voltage of clock [V]

tdel, trise, tfall = {usual}
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Sample-and-Hold Amplifier (Ideal)

Terminals

vin: [V,A]

vclk: [V,A]

vout: [V,A]

Instance Parameters

vtrans_clk = transition voltage of the clock [V]
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Single Shot

Terminals

vin: input terminal [V,A]

vout: output terminal [V,A]

Description

This model outputs a logic high pulse of duration pulse_width if a positive transition is 
detected on the input.

Instance Parameters

pulse_width = pulse width [s]

vlogic_high = output voltage for high [V]

vlogic_low = output voltage for low [V]

vtrans = voltages above this at input are considered high [V]

tdel, trise, tfall = {usual} [s]
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Switched Capacitor Integrator

Terminals

vout_p, vout_n: output terminals [V,A]

vin_p, vin_n: input terminals [V,A]

vphi: switching signal [V,A]

Instance Parameters

cap_in = input capacitor value

cap_fb = feedback capacitor value

vphi_trans = transition voltage of vphi
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Power Electronics Components

Full Wave Rectifier, Two Phase

Terminals

vin_top: input [V,A]

tfire: delay after positive zero crossing of each phase before phase
rectifier fires [s,A]

vout: rectified output voltage [V,A]

Instance Parameters

ihold = holding current (minimum current for rectifier to work) [A]

switch_time = maximum amount of time to spend attempting switch-on [s]

vdrop_rect = total rectification voltage drop [V]
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Half Wave Rectifier, Two Phase

Terminals

vin_top: input [V,A]

tfire: delay after positive zero crossing of each phase before phase 
rectifier fires [s,A]

vout: rectified output voltage [V,A]

Instance Parameters

ihold = holding current (minimum current for rectifier to work) [A]

switch_time = maximum amount of time to spend attempting switch-on [s]

vdrop_rect = total rectification voltage drop [V]
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Thyristor

Terminals

vanode: anode [V,A]

vcathode: cathode [V,A]

vgate: gate [V,A]

Instance Parameters

iturn_on = thyristor gate triggering current [A]

ihold = thyristor hold current [A]

von = thyristor on voltage [V]
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Semiconductor Components

Diode

Terminals

vanode: anode voltage [V,A]

vcathode: cathode voltage [V,A]

Description

This model is of a diode based on the Schockley equation.

Instance Parameters

is = saturation current with negative bias [A]
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MOS Transistor (Level 1)

Terminals

vdrain: drain [V,A]

vgate: gate [V,A]

vsource: source [V,A]

vbody: body [V,A]

Description

This model is of a basic, level-1, Schichmann-Hodges style model of a MOSFET transistor.

Instance Parameters

width = [m]

length = [m]

vto = threshold voltage [V]

gamma = bulk threshold []

phi = bulk junction potential [V]

lambda = channel length modulation []

tox = oxide thickness []

u0 = transconductance factor []

xj = metallurgical junction depth []

is = saturation current []

cj = bulk junction capacitance [F]

vj = bulk junction voltage [V]

mj = bulk grading coefficient []
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fc = forward bias capacitance factor []

tau = parasitic diode factor []

cgbo = gate-bulk overlap capacitance [F]

cgso = gate-source overlap capacitance [F]

cgdo = gate-drain overlap capacitance [F]

dev_type = the type of MOSFET used []
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MOS Thin-Film Transistor

Terminals

vdrain: drain terminal [V,A]

vgate_front: front gate terminal [V,A]

vsource: source terminal [V,A]

vgate_back: back gate terminal [V,A]

Description

This model is of a silicon-on-insulator thin-film transistor.

This is a model of a fully depleted back surface thin-film transistor MOSFET model. No short-
channel effects.

Instance Parameters

length = length []

width = width []

toxf = oxide thickness [m]

toxb = oxide thickness [m]

nsub = [cm-3]

ngate = [cm-3]

nbody = [cm-3]

tb = [m]

u0 = []

lambda = channel length modulation factor []

dev_type = dev_type []
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N JFET Transistor

Terminals

vdrain: drain voltage [V,A]

vgate: gate voltage [V,A]

vsource: source voltage [V,A]

Description

This is a model of an n-channel, junction field-effect transistor.

Instance Parameters

area = area []

vto = threshold voltage [V]

beta = gain []

lambda = output conductance factor []

is = saturation current []

gmin = minimal conductance []

cjs = gate-source junction capacitance [F]

cgd = gate-drain junction capacitance [F]

m = emission coefficient []

phi = gate junction barrier potential []

fc = forward bias capacitance factor []
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NPN Bipolar Junction Transistor

Terminals

vcoll: collector [V,A]

vbase: base [V,A]

vemit: emitter [V,A]

vsubs: substrate [V,A]

Description

This is a gummel-poon style npn bjt model.

Instance Parameters

area = cross-section area

is = saturation current []

ise = base-emitter leakage current []

isc = base-collector leakage current []

bf = beta forward  []

br = beta reverse []

nf = forward emission coefficient []

nr = reverse emission coefficient []

ne = b-e leakage emission coefficient []

nc = b-c leakage emission coefficient []

vaf = forward Early voltage [V]

var = reverse Early voltage [V]

ikf = forward knee current [A]
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ikr = reverse knee current [A]

cje = capacitance, base-emitter junction [F]

vje = voltage, base-emitter junction [V]

mje = b-e grading exponential factor []

cjc = capacitance, base-collector junction [F]

vjc = voltage, base-collector junction [V]

mjc = b-c grading exponential factor []

cjs = capacitance, collector-substrate junction [F]

vjs = voltage, collector-substrate junction [V]

mjs = c-s grading exponential factor []

fc = forward bias capacitance factor []

tf = ideal forward transit time [s]

xtf = tf bias coefficient []

vtf = tf-vbc dependence voltage [V]

itf = high current factor []

tr = reverse diffusion capacitance [s]
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Schottky Diode

Terminals

vanode: anode voltage [V,A]

vcathode: cathode voltage [V,A]

Description

This model is of a diode based on the Schockley equation.

Instance Parameters

area = area of junction []

is = saturation current []

n = emission coefficient []

cjo = zero-bias junction capacitance [F]

m = grading coefficient []

phi = body potential [V]

fc = forward bias capacitance [F]

tt = transit time [s]

bv = reverse breakdown voltage [V]

rs = series resistance [Ohms]

gmin = minimal conductance [Mhos]
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Telecommunications Components

AM Demodulator

Terminals

vin: AM RF input signal [V,A]

vout: demodulated signal [V,A]

Description

Demodulates the signal in vin and outputs it as vout.

Consists of four stages in series:

1. RF amp amplifier

2. Detector stage (full wave rectifier)

3. AF filters stage is a low-pass filter that extracts the AF signal—has gain of one, and two 
poles at af_wn [rad/s]

4. AF amp stage amplifies by af_gain and adds af_lev_shift

Instance Parameters

rf_gain = gain of RF (radio frequency) stage []

af_wn = location of both AF (audio frequency) filter poles [rad/s]

af_gain = gain of the audio amplifier []

af_lev_shift = added to AF signal after amplification and filtering [V]
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AM Modulator

Terminals

vin: input signal [V,A]

vout: modulated signal [V,A]

Description

vin is limited to the range between vin_max and vin_min. It is also scaled so that it lies 
within the +/-1 range. This produces vin_adjusted. vout is given by the following formula:

vout = unmod_amp * (1 + mod_depth * vin_adjusted) * cos (2 * PI * f_carrier * time)

Instance Parameters

f_carrier = carrier frequency [Hz]

vin_max = maximum input signal [V] 

vin_min = minimum input signal [V]

mod_depth = modulation depth []

unmod_amp = unmodulation carrier amplitude [V]
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Attenuator

Terminals

vin: AM input signal [V,A]

vout: rectified AM signal [V,A]

Description

vout is attenuated by attenuation.

Instance Parameters

attenuation = 20log10 attenuation [dB]
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Audio Source

Terminals

vin: [V,A]

vout: [V,A]

Description

This model synthesizes an audio source. Its output is the sum of 4 sinusoidal sources.

Instance Parameters

amp1 = amplitude of the first sinusoid [V]

amp2 = amplitude of the second sinusoid [V]

amp3 = amplitude of the third sinusoid [V]

amp4 = amplitude of the fourth sinusoid [V]

freq1 = frequency of the first sinusoid [Hz]

freq2 = frequency of the second sinusoid [Hz]

freq3 = frequency of the third sinusoid [Hz]

freq4 = frequency of the fourth sinusoid [Hz]
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Bit Error Rate Calculator

Terminals

vin1: [V,A]

vin2: [V,A]

Description

This model compares the two input signals tstart+tperiod/2 and every tperiod 
seconds later. At the end of the simulation, it prints the bit error rate, which is the number of 
errors found divided by the number of bits compared.

Instance Parameters

tstart = when to start measuring [s]

tperiod = how often to compare bits [s]

vtrans = voltages above this at input are considered high [V]
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Charge Pump

Terminals

vout: output terminal from which charge pumped/sucked [V,A]

vsrc: source terminal from which charge sourced/sunk [V,A]

siginc, sigdec: Logic signal that controls charge pump operation [V,A]

Description

This model can source of sink a fixed current, iamp. Its mode depends on the values of 
siginc and sigdec;

When siginc > vtrans, iamp amps are pumped from the output. When sigdec > 
vtrans, iamp amps are sucked into the output. When both siginc and sigdec are in the 
same state, no current is sucked/pumped.

Instance Parameters

iamp = charging current magnitude [A]

vtrans = voltages above this at input are considered high [V]

tdel, trise, tfall = {usual} [s]
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Code Generator, 2-Bit

Terminals

vout0, vout1: output bits [V,A]

Description

Generates a pair of random binary signals.

Instance Parameters

seed = random seed

tperiod = period of output code [s]

vlogic_high = output voltage for high [V]

vlogic_low = output voltage for low [V]

tdel, trise, tfall = {usual} [s]
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Code Generator, 4-Bit

Terminals

vout_b0-3: output bits [V,A]

Description

This model is of a random 4-bit code generator.

This model outputs a different, randomly generated, 4-bit code every tperiod seconds.

Instance Parameters

tperiod = period of the code generation [s]

vlogic_high = output voltage for high [V]

vlogic_low = output voltage for low [V]

tdel, trise, tfall = {usual} [s]
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Decider

Terminals

vin: [V,A]

vout: [V,A]

Description

This model samples this input signal a number of times and outputs the most likely value of 
the binary data contained in the signal. 

A decision on what data is contained in the input is made each tperiod. During each 
decision period, a sample of the input is taken each tsample. A count of the number of 
samples with values greater than (vlogic_high + vlogic_low)/2 is kept. If at the end of 
the period, this count is greater than half the number of samples taken, a logic 1 is output. If 
it is less than half the number of samples, vlogic_low is output. Otherwise, the output is 
(vlogic_high + vlogic_low)/2.

The sampling starts at tstart.

Instance Parameters

tperiod = period of binary data being extracted [s]

tsample = sampling period [s]

vlogic_high = output voltage for high [V]

vlogic_low = output voltage for low [V]

tstart = time at which to start sampling [s]

tdel, trise, tfall = {usual} [s]
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Digital Phase Locked Loop (PLL)

Terminals

vin: [V,A]

vout: [V,A]

Description

The model comprises a number of submodels: digital phase detector, a change pump, a low-
pass filter (LPF), and a digital voltage-controlled oscillator (VCO).

They are arranged in the following way:

___________ ________ _______
| | | | Iq Vin_VCO | |

Vin------| Phase |------| Charge |--->--|----------| |
| | | | V | VCO |

----| Detector |------| Pump | ___|___ | |
| |___________| |________| | | |_______|
| | | RC | |
| | |Network| |
| | | (LPF) | |---Vout
| V_local_osc | |_______| |
| | | |
| |----------- |
| | |
| __|__ |
| gnd ///// |
| |
|-----------------------------------------------------|

Instance Parameters

pump_iamp = amplitude of the charge pump’s output current [A]

vco_cen_freq = center frequency of the VCO [Hz]

vco_gain = the gain of the VCO []

lpf_zero_freq = zero frequency of LPF (low-pass filter) [Hz]

lpf_pole_freq = pole frequency of LPF [Hz]

lpf_r_nom = nominal resistance of RC network implementing LPF
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Digital Voltage-Controlled Oscillator

Terminals

vin: [V,A]

vout: [V,A]

Description

The output is a square wave with instantaneous frequency:

center_freq + vco_gain * vin

Instance Parameters

center_freq = center frequency of oscillation frequency when vin = 0 [Hz]

vco_gain = oscillator conversion gain [Hz/volt]

vlogic_high = output voltage for high [V]

vlogic_low = output voltage for low [V]

tdel, trise, tfall = {usual} [s]
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FM Demodulator

Terminals

vin: FM RF input signal [V,A]

vout: demodulated signal [V,A]

Description

Demodulates the signal in vin and outputs it as vout.

Consists of four stages in series:

1. RF amp stage amplifiers vin

2. Detector stage is a phase locked loop (PLL)

3. AF filters stage is a low-pass filter that extracts the AF signal. The filter has gain of one, 
and two poles at af_wn [rad/s]

4. AF amp stage amplifies by af_gain and adds af_lev_shift.

Instance Parameters

rf_gain = gain of RF (radio frequency) stage []

pll_out_bw = bandwidth of PLL output filter [Hz]

pll_vco_gain = gain of the PLL’s VCO []

pll_vco_cf = the center frequency of the PLLs [Hz]

af_wn = location of both AF (audio frequency) filter poles [Hz]

af_gain = gain of the audio amplifier []

af_lev_shift = added to AF signal after amplification and filtering [V]
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Sample Model Library
FM Modulator

Terminals

vin: input signal [V,A]

vout: modulated signal [V,A]

Description

vout = amp * sin (phase)

where phase = integ (2 * PI * f_carrier + vin_gain * vin)

Instance Parameters

f_carrier = carrier frequency [Hz]

amp = amplitude of the FM modulator output []

vin_gain = amplification of vin_signal before it is used to modulate the FM carrier signal []
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Frequency-Phase Detector

Terminals

vin_if: signal whose phase is being detected [V,A]

vin_lo: signal from local oscillator [V,A]

sigout_inc: logic signal to control charge pump [V,A]

sigout_dec: logic signal to control charge pump [V,A]

Description

The freq_ph_detector can have three states: behind, ahead, and same. The specific 
state is determined by the positive-going transitions of the signals vin_if and vin_lo.

Positive transitions on vin_if causes the state to become the next higher state unless the 
state is already ahead.

Positive transitions on vin_lo cause the state to become the next lower state unless the 
state is already behind.

The output depends on the state the detector is in:

ahead => sigout_inc = high, sigout_dec = low

same => sigout_inc = high, sigout_dec = high

behind => sigout_inc = low, sigout_dec = high

The output signals are expected to be used by a charge_pump.

Instance Parameters

vlogic_high = output voltage for high [V]

vlogic_low = output voltage for low [V]

vtrans = voltages above this at input are considered high [V]

tdel, trise, tfall = {usual} [s]
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Mixer

Terminals

vin1, vin2: [V,A]

vout: [V,A]

Description

vout = gain * vin1 * vin2

Instance Parameters

gain = gain of mixer []
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Noise Source

Terminals

vin: [V,A]

vout: [V,A]

Description

This is an approximate white noise source.

Note: It is not a true white source because its output changes every time step and the time 
step is dependent on the behavior of the circuit.

Instance Parameters

amp = amplitude of the output signal about 0 [V]
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Sample Model Library
PCM Demodulator, 8-Bit

Terminals

vin: input signal [V,A]

vout: demodulated signal [V,A]

Description

The PCM demodulator samples vin at bit_rate [Hz] starting at tstart + 0.5/bit_rate. 
Each set of 8 samples is considered a binary word, and these sets are converted to an output 
voltage using a linear 8-bit binary code with 0 representing vin_min and 255 representing 
vin_max. The first bit received is the LSB, bit 0; the last bit received is the MSB, bit 7.

The output rate is bit_rate/8.

Instance Parameters

freq_sample = sample frequency [Hz]

tstart = when to start sampling [s]

vout_min = minimum input voltage [V]

vout_max = maximum input voltage [V]

vtrans = voltages above this at input are considered high [V]

tdel, trise, tfall = {usual} [s]
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PCM Modulator, 8-Bit 

Terminals

vin: input signal [V,A]

vout: modulated signal [V,A]

Description

The PCM modulator samples vin at a sample_freq [Hz] starting at tstart. Once a 
sample has been obtained, it is converted to a linear 8-bit binary code with 0 representing 
vin_min and 255 representing vin_max. 

The bits are in the code and are sequentially put through vout at a rate 8 times 
sample_freq with vlogic_high signifying a 1 and vlogic_low signifying a 0. The first 
bit transmitted is the LSB, bit 0; the last bit transmitted is the MSB, bit 7.

Clipping occurs when the input is outside vin_min and vin_max.

Instance Parameters

sample_freq = sample frequency [Hz]

tstart = when to start sampling [s]

vin_min = minimum input voltage [V]

vin_max = maximum input voltage [V]

vlogic_high = output voltage for high [V]

vlogic_low = output voltage for low [V]

tdel, trise, tfall = {usual} [s]
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Phase Detector

Terminals

vlocal_osc: local oscillator voltage [V,A]

vin_rf: PLL radio frequency input voltage [V,A]

vif: intermediate frequency output voltage [V,A]

Instance Parameters

gain = gain of detector []

mtype = type of phase detection to be used; chopper or multiplier []
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Phase Locked Loop

Terminals

vlocal_osc: local oscillator voltage [V,A]

vin_rf: PLL radio frequency input voltage [V,A]

vout: voltage proportional to the frequency being locked onto [V,A]

vout_ph_det: output of the phase detector [V,A]

Instance Parameters

vco_gain = gain of VCO cell [Hz/V]

vco_center_freq = VCO oscillation frequency [Hz]

phase_detect_type = type of phase detection cell to be used []

vout_filt_bandwidth = bandwidth of the low-pass filter on output [Hz]
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PM Demodulator

Terminals

vin: PM RF input signal [V,A]

vout: demodulated signal [V,A]

Description

Demodulates the signal in vin and outputs it as vout.

Consists of four stages in series:

1. RF amp stage amplifiers vin.

2. Detector stage is a phase locked loop (PLL)—the phase detector output is tapped.

3. AF filters stage is a low-pass filter that extracts the AF signal—has gain of one, and two 
poles at af_wn [rad/s].

4. AF amp stage amplifies by af_gain and adds af_lev_shift.

Instance Parameters

rf_gain = gain of RF (radio frequency) stage []

pll_out_bw = bandwidth of PLL output filter [Hz]

pll_vco_gain = gain of the PLL’s VCO []

pll_vco_cf = the center frequency of the PLLs [Hz]

af_wn = location of both AF (audio frequency) filter poles [Hz]

af_gain = gain of the audio amplifier []

af_lev_shift = added to AF signal after amplification and filtering [V]
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PM Modulator

Terminals

vin: input signal [V,A]

vout: modulated signal [V,A]

Description

vout = amp * sin(2 * PI * f_carrier * time + phase_max * vin_adjusted)

where vin_adjusted is scaled version of vin that lies within the +/-1 range.

Before scaling, vin is limited to the range between vin_max and vin_min by clipping.

Instance Parameters

f_carrier = carrier frequency [Hz]

amp = amplitude of the PM modulator output []

vin_max = maximum acceptable input (clipping occurs above this) [V]

vin_min = minimum acceptable input (clipping occurs above this) [V]

phase_max = the phase shift produced when the modulating signal is at vin_max [rad]
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QAM 16-ary Demodulator

Terminals

vin: input [V,A]

vout_bit[0-4]: demodulated codes [V,A]

Description

This model is of a QPSK (quadrature phase shift key) modulator.

Demodulates a 16ary encoded QAM signal by separately sampling the input signal at 90 
degrees (q-phase) and 180 degrees (i-phase).

This model does not contain a dynamic synchronizing mechanism for ensuring that sampling 
occurs at the correct time points. Synchronizing can be statically adjusted by changing 
tstart. tstart should correspond to when the input QAM signal is at 0 degrees.

The i-phase contains the two MSBs. The q-phase contains the two LSBs. 

The constellation diagram representing this relationship follows.

^
/ \
| Q phase

_____________|______________
| | | | |
| 0011 | 0111 | 1011 | 1111 |

0 |______|______|______|______|
| | | | |

V | 0010 | 0110 | 1010 | 1110 |
o ___|______|______|______|______|___________\ I Phase
l | | | | | /
t | 0001 | 0101 | 1001 | 1101 |
s |______|______|______|______|

| | | | |
| 0000 | 0100 | 1000 | 1100 |
|______|______|______|______|

|
|

0 Volts

Each code box is vbox_width volts wide.

Instance Parameters

freq = demodulation frequency [Hz]
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vbox_width = width of modulation code box in constellation diagram [V]

vlogic_high = output voltage for high [V]

vlogic_low = output voltage for low [V]

tdel, trise, tfall = {usual} [s]
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Quadrature Amplitude 16-ary Modulator

Terminals

vin_b[0-3]: bits of input code [V,A]

vout: modulated output [V,A]

Description

This model does 16 value (4-Bit) QAM.

It encodes the MSBs on the i-phase and the LSBs on the q-phase. Its constellation diagram 
can be represented as 

/ \
| Q phase

_____________|______________
| | | | |
| 0011 | 0111 | 1011 | 1111 |

0 |______|______|______|______|
| | | | |

V | 0010 | 0110 | 1010 | 1110 |
o ___|______|______|______|______|___________\ I Phase
l | | | | | /
t | 0001 | 0101 | 1001 | 1101 |
s |______|______|______|______|

| | | | |
| 0000 | 0100 | 1000 | 1100 |
|______|______|______|______|

|
0 Volts

The two MSBs are encoded on the i-phase. The two LSBs are encoded on the q-phase.

The modulating formula is Vout = i_phase * cos(wt) + q_phase * sin(wt)

i_phase and q_phase vary between -phase_ampl and phase_ampl.

Instance Parameters

freq = modulation frequency [Hz]

phase_ampl = amplitude of the i-phase and q-phase signals [V]

vtrans = voltages above this at input are considered high [V]

tdel, trise, tfall = {usual} [s]
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QPSK Demodulator

Terminals

vin: input [V,A]

vout_i: i-phase output [V,A]

vout_q: q-phase output [V,A]

Description

Does a QPSK demodulation on the input signal. It does not contain a dynamic synchronizing 
mechanism. Synchronizing can be adjusted by changing tstart.

Detection works by separately sampling the i-phase of vin and the q-phase of vin at freq 
Hz and 90 degrees out of phase. The first i-phase sample is done at tstart + 0.5/freq, the 
next 1/freq seconds later, etc. Similarly, the first q-phase sample is done at tstart + 0.25/
freq, the next 1/freq seconds later, and so on.

For the i-phase, a high is detected if the sample < -vthresh. For the q-phase, a high is 
detected if the sample > vthresh.

Instance Parameters

freq = demodulation frequency [Hz]

vthresh = threshold detection voltage [V]

vlogic_high = output voltage for high [V]

vlogic_low = output voltage for low [V]

tstart = time at which demodulation starts [s]

tdel, trise, tfall = {usual} [s]
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QPSK Modulator

Terminals

vin_i, vin_q: quadrature inputs [V,A]

vout: modulator output [V,A]

Description

This takes two sampled quadrature inputs and does QPSK modulation on them.

Instance Parameters

freq = modulation frequency [Hz]

amp = modulator amplitude [V]

vtrans = voltages above this at input are considered high [V]

tdel, trise, tfall = {usual} [s]
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Random Bit Stream Generator

Terminal

vout: [V,A]

Description

This model generates a random stream of bits.

Instance Parameters

tperiod = period of stream [s]

seed = random number seed []

vlogic_high = output voltage for high [V]

vlogic_low = output voltage for low [V]

tdel, trise, tfall = {usual} [s]
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Transmission Channel

Terminals

vin: AM input signal [V,A]

vout: rectified AM signal [V,A]

Description

vin has noise_amp noise added to it and the resultant is attenuated by attenuation [dB].

Instance Parameters

attenuation = 20log10 attenuation [dB]

noise_amp = amplitude of noise added to vin before attenuation [V]
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Voltage-Controlled Oscillator

Terminals

vin: oscillation-controlling voltage [V,A]

vout: [V,A]

Instance Parameters

amp = amplitude of the output signal [V]

center_freq = center frequency of oscillation frequency when vin = 0 [Hz]

vco_gain = oscillator conversion gain [Hz/volt]
December 2011 437 Product Version 11.1



Cadence Verilog-AMS Language Reference
Sample Model Library
December 2011 438 Product Version 11.1



Cadence Verilog-AMS Language Reference
D
Verilog-AMS Keywords

This appendix contains the list of the Cadence® Verilog®-AMS language keywords. 
Keywords are predefined nonescaped identifiers that you use to define the language 
constructs. 

The simulator does not interpret a Verilog-AMS keyword preceded by a backslash character 
as a keyword. For more information, see “Identifiers” on page 50.
above
abs
absdelay
acos
acosh
ac_stim
aliasparam
always
analog
analysis
and
asin
asinh
assign
atan
atan2
atanh
begin
bound_step
branch
buf
bufif0
bufif1
case
casex
casez
ceil

cmos
connectrules
cos
cosh
cross
ddt
ddx
deassign
default
defparam
delay
disable
discipline
discontinuity
driver_update
edge
else
end
endcase
endconnectrules
enddiscipline
endfunction
endmodule
endnature
endparamset
endprimitive
endspecify

endtable
endtask
event
exclude
exp
final_step
flicker_noise
floor
flow
for
force
forever
fork
from
function
generate
genvar
ground
highz0
highz1
hypot
idt
idtmod
if
ifnone
inf
initial
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initial_step
inout
input
integer
join
laplace_nd
laplace_np
laplace_zd
laplace_zp
large
last_crossing
limexp
ln
localparam
log
macromodule
max
medium
min
module
nand
nature
negedge
net_resolution
nmos
noise_table
nor
not
notif0
notif1
or
output
parameter
pmos

posedge
potential
pow
primitive
pull0
pull1
pullup
pulldown
pwr
rcmos
real
realtime
reg
release
repeat
rnmos
rpmos
rtran
rtranif0
rtranif1
scalared
sin
sinh
slew
small
specify
specparam
sqrt
strobe
strong0
strong1
supply0
supply1
table

table_model
tan
tanh
task
temperature
time
timer
tran
tranif0
tranif1
transition
tri
tri0
tri1
triand
trior
trireg
vectored
vt
wait
wand
weak0
weak1
while
white_noise
wire
wor
wreal
xnor
xor
zi_nd
zi_np
zi_zd
zi_zp
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Keywords to Support Backward Compatibility

Cadence provides the keywords in this section for backward compatibility only.
abstol
access
bound_step
ddt_nature

delay
discontinuity
idt_nature
temperature

units
vt
Discipline and Nature Keywords

Use the following keywords between the keywords discipline and enddiscipline (for 
a discipline) and between the keywords nature and endnature (for a nature) only. 
abstol
access
continuous

ddt_nature
discrete
domain

idt_nature
units
Connect Rules Keywords

Use the following connect rules keywords between the keywords connectrules and 
endconnectrules only. 
connect
merged

resolveto
split
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E
Unsupported Elements of Verilog-AMS

The Cadence® Verilog®-AMS language is specified in the Verilog-AMS Language 
Reference Manual: Analog & Mixed-Signal Extensions to Verilog HDL, produced by 
Open Verilog International. The Cadence implementation of Verilog-AMS does not support 
all of the specified elements of the Verilog-AMS language in all the contexts in which the 
language specification says they are to be supported. 

The tables in this section list the unsupported elements according to the following 
classifications:

■ Unsupported elements that should be supported in behavioral contexts, such as: 
expressions; initial, always, and analog blocks; and user-defined tasks and functions.

■ Unsupported elements that should be supported in analog contexts, such as analog 
blocks and analog functions.

■ Unsupported elements that should be supported in structural contexts such as those that 
exist outside behavioral contexts and have to do with hierarchy, natures, and disciplines.

■ Unsupported elements that should be supported in digital contexts, such as initial and 
always blocks, and user-defined digital tasks and digital functions.
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Unsupported Elements for Behavioral Contexts

Feature Comment

Net attributes, except for 
net.potential.abstol and 
net.flow.abstol, which are supported

String variables Cannot be assigned in analog block. Cannot 
be used in $strobe in the analog block.

Using probes containing vector net elements 
in a digital block.

Out-of-module references Not supported to analog nets, branches, or 
nature attributes.

Standard math and transcendental functions  Inside the analog block, expressions that 
contain hierarchical references are not 
supported. Domain ranges are checked only 
for exp, sqrt, pow, and atan2.

$rdist functions Supported in analog contexts but not in 
digital contexts.

Global events The @analog_identifier form is not 
supported.

@timer Not supported in the digital context.

$realtime Not supported in the analog context. Use 
$abstime instead, in the analog context.

Unsupported Elements for Behavioral Analog Contexts

Feature Comment

Parameters used to specify ranges for the 
generate statement

Parameter declarations Not supported in analog user-defined 
functions.

The genvar statement

Arrays passed to functions
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ddt (time derivative) operator Nesting is not allowed. For example, 
ddt(ddt()) is prohibited. The abstol 
argument has no effect. A nature cannot be 
used as an argument.

Laplace transform filters Parameter-sized array arguments are not 
supported.

Analog functions Parameters are not allowed as arguments.

Analog vector nets Not supported for the Tcl value command.

Digital transition sensitivities Transition sensitivities such as @dVal are 
not supported in analog contexts. Event 
sensitivities such as

@(posedge dVal or negedge dVal)

must be used instead.

The concatenation operator

$stime

$time

$monitor and $fmonitor 

$monitor off/on

$printtimescale

$timeformat

$bitstoreal

$itor

$realtobits

$rtoi

$readmen used with the %b, %h, and %r 
specifications.

Unsupported Elements for Behavioral Analog Contexts

Feature Comment
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Unsupported Elements for Structural Contexts

Feature Comment

Derived natures

Overriding nature attributes from disciplines

Array ranges for nets

Array ranges for ground nodes

Parameter arrays Parameter array declarations are not 
supported. Parameter array assignments are 
supported only in analog primitives.

Module instantiation inside a generate 
block

Generate blocks, because they can be 
used only in analog blocks, can contain 
only behavioral code.

Parameter-sized vector nets

User-defined attributes Only the Cadence huge, blowup, and 
maxdelta attributes are supported.

Vector branches

Vector arguments for simulator functions

Vector ground nodes

Parameter-sized ports

Out-of-module references Supported for voltage probes on nets. Not 
supported for branches, or for nature 
attributes.

Discipline resolution If out-of-module references are used in port 
connections, the port discipline is not used to 
determine the discipline of the out-of-module 
reference.

net_resolution

Nodesets on continuous nets
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The next list contains only VPI functions. The unsupported aspect of these functions is that 
they cannot be called with wreal arguments, digital real vectors, or analog arguments of any 
kind.

Unsupported Elements for Behavioral Digital Contexts When wreal Arguments Are 
Used

Feature Comment

@timer

$compare

$strobe_compare

$countdrivers

$deposit

$incpattern_read

$async$and$array

$async$nand$array

$async$or$array

$async$nor$array

$sync$and$array

$sync$nand$array

$sync$or$array

$sync$nor$array

$async$and$plane

$async$nand$plane

$async$or$plane

$async$nor$plane

$sync$and$plane

$sync$nand$plane

$sync$or$plane

$sync$nor$plane

$q_initialize
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$q_full

$q_remove

$q_add

$q_exam

$scope

$dumpports

$dumpports_close

$lsi_dumpports

$lsi_close

$writememb

$writememh

$recordvars

$recordfile

$recordon

$recordoff

$signalscan

$signalscankill

$signalscanabort

$recordabort

$recordclose

$recordfilecopy

$recordfilechange

$signalscanconnect

$signalscancommand

$recordsetup

Unsupported Elements for Behavioral Digital Contexts When wreal Arguments Are 
Used, continued

Feature Comment
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Unsupported Elements of Verilog-AMS
The Cadence™ Verilog®-AMS language is specified in Annex C of the Verilog-AMS 
Language Reference Manual: Analog & Mixed-Signal Extensions to Verilog HDL, 
produced by Open Verilog International. The Cadence implementation of Verilog-AMS does 
not support all of the specified elements of the Verilog-AMS language in all the contexts in 
which the language specification says they are to be supported. 

The tables in this section list the unsupported elements according to the following 
classifications:

■ Unsupported elements that should be supported in behavioral contexts, such as 
expressions; initial, always, and analog blocks; user-defined tasks and functions.

■ Unsupported elements that should be supported in analog contexts, such as analog 
blocks and analog functions.

■ Unsupported elements that should be supported in structural contexts such as those 
outside behavioral contexts, and having to do with hierarchy, natures, and disciplines.

■ Unsupported elements that should be supported in digital contexts, such as initial and 
always blocks, and user-defined digital tasks and digital functions.
December 2011 449 Product Version 11.1



Cadence Verilog-AMS Language Reference
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Unsupported Elements for Behavioral Contexts

Feature Comment

Hierarchical names, except for 
node.potential.abstol and 
node.flow.abstol, which are supported

Using 1’b1 constant specification

String variables Cannot be assigned in analog block. Cannot 
be used in $strobe in the analog block.

Using probes containing vector net elements 
in a digital block.

String variables

The %b and %B format characters

The \ddd octal specification of a character

The concatenation operator

Enforcement of input, output, and inout

Out-of-module references Not supported to analog nets, branches, or 
nature attributes.

Case equality (=== and !==) operators

casex and casez statements

Standard math and transcendental functions Outside the analog block, arguments to 
functions must be constant expressions. 
Inside the analog block, expressions that 
contain hierarchical references are not 
supported. Domain ranges are checked only 
for exp, sqrt, pow, and atan2.

$rdist functions

Global events The @analog_identifier form is not 
supported.

@timer Not supported in the digital context.

Driver access functions Driver_update is not supported.

$realtime Not supported in the analog context. In that 
context, use $abstime instead.
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$stime

$time

$monitor and $fmonitor 

The %b, %o, and %h specifications for 
$display, $fdisplay, $write, $fwrite, 
$monitor, $fmonitor, $strobe, and 
$fstrobe

$monitor off/on

$printtimescale

$timeformat

$bitstoreal

$itor

$realtobits

$rtoi

$readmen used with the %b, %h, and %r 
specifications.

$random The seed must be an integer constant 
expression, not an unsigned integer.

Unsupported Elements for Behavioral Contexts

Feature Comment
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Unsupported Elements of Verilog-AMS
Unsupported Elements for Behavioral Analog Contexts

Feature Comment

Parameters used to specify ranges for the 
generate statement

Parameter declarations Not supported in analog user-defined 
functions.

The genvar statement

Arrays passed to functions

Accessing X and Z bits of a discrete net from 
a continuous context.

ddt (time derivative) operator Nesting is not allowed. For example, 
ddt(ddt()) is prohibited. The abstol 
argument has no effect. A nature cannot be 
used as an argument.

idt (time integral) operator The abstol argument has no effect. A 
nature cannot be used as an argument.

idtmod (circular integrator) operator The abstol argument has no effect. A 
nature cannot be used as an argument.

Transition filter The time_tol argument is not supported.

Laplace transform filters Parameter-sized array arguments are not 
supported.

Analog functions Parameters are not allowed as arguments.

‘default_transition directive

analog vector nets Not supported for the Tcl value command.

Unsupported Elements for Structural Contexts

Feature Comment

Ordered parameter lists in hierarchical 
instantiation

Not supported for analog primitives.

Named nodes in hierarchical instantiation
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Unsupported Elements of Verilog-AMS
Connecting the ports of instantiated analog 
primitives to digital wires

Derived natures

Overriding nature attributes from disciplines

Array ranges for nets

Array ranges for ground nodes

Parameter arrays Parameter array declarations are not 
supported. Parameter array assignments are 
supported only in analog primitives.

Parameter-sized vector nets

The defparam statement

The ground declaration

User-defined attributes Only the Cadence huge, blowup, and 
maxdelta attributes are supported.

Vector branches

Vector arguments for simulator functions

Vector ground nodes

Parameter-sized ports

Out-of-module references Not supported to analog nets, branches, or 
nature attributes.

Discipline resolution If out-of-module references are used in port 
connections, the port discipline is not used to 
determine the discipline of the out-of-module 
reference.

net_resolution

Unsupported Elements for Structural Contexts

Feature Comment
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Unsupported Elements of Verilog-AMS
Many of the items in the next list are VPI functions. The unsupported aspect of these functions 
is that they cannot be called with wreal arguments, digital real vectors, or analog arguments 
of any kind.

Unsupported Elements for Behavioral Digital Contexts

Feature Comment

Analog transition sensitivity Not supported in digital contexts.

$compare

$strobe_compare

$countdrivers

$deposit

$incpattern_read

$async$and$array

$async$nand$array

$async$or$array

$async$nor$array

$sync$and$array

$sync$nand$array

$sync$or$array

$sync$nor$array

$async$and$plane

$async$nand$plane

$async$or$plane

$async$nor$plane

$sync$and$plane

$sync$nand$plane

$sync$or$plane

$sync$nor$plane

$q_initialize

$q_full
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Unsupported Elements of Verilog-AMS
$q_remove

$q_add

$q_exam

$scope

$dumpports

$dumpports_close

$lsi_dumpports

$lsi_close

$writememb

$writememh

$recordvars

$recordfile

$recordon

$recordoff

$signalscan

$signalscankill

$signalscanabort

$recordabort

$recordclose

$recordfilecopy

$recordfilechange

$signalscanconnect

$signalscancommand

$recordsetup

Unsupported Elements for Behavioral Digital Contexts

Feature Comment
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Unsupported Elements of Verilog-AMS
The items in the next list are deprecated features. The Cadence implementation of 
Verilog-AMS supports these features, but might not in the future. These features are no 
longer supported in the standard specification of the language.

The items in the next list are Cadence extensions. These features are not part of the standard 
specification of the language.

Deprecated features

Deprecated feature To comply with the current standard,... 

$dist_ functions in the analog block Consider using the $rdist functions.

generate statement in the analog block Use the genvar statement.

The second argument of the cross operator 
being a non-integer type

Change the second operator to an integer 
type.

Using for, while and repeat loop statements 
for the timer function

Use a genvar loop for the timer function.

Unassigned variables Assign each variable. Unassigned variables 
are considered digital variables.

generate Use a genvar loop instead.

The second argument of the 
last_crossing operator being a non-
integer type

Change the second operator to an integer 
type.

Cadence extensions

Feature

Cadence syntax for attributes

mfactor attribute

dynamicparams

$cds_iprobe

Inherited parameters
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F
Updating Verilog-A Modules

The Verilog®-A language is a subset of Verilog-AMS, but some of the language elements in 
that subset have changed since Verilog-A was released by itself. As a consequence, you 
might need to revise your Verilog-A modules before using them as Verilog-AMS modules. The 
following table highlights the differences.

Feature Independent
Verilog-A Verilog-AMS Change 

type

Analog time $realtime $abstime new

Empty discipline Predefined as type wire Type not defined default 
definition

Implicit nodes ’default_nodetype 
discipline_identifier
default: wire

default type: empty 
discipline, no domain type

default 
definition

initial_step Default = TRAN Default = ALL default 
definition

final_step Default = TRAN Default = ALL default 
definition

$realtime $realtime:
timescale =1 sec

$realtime:
timescale= ’timescale 
def=1n. See $abstime 

definition

Discontinuity 
function

discontinuity(x) $discontinuity(x) syntax

Limiting 
exponential 
function

$limexp(expression) limexp(expression) syntax
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Updating Verilog-A Modules
Suggestions for Updating Models

The remainder of this appendix describes some of these changes in greater detail and 
suggests ways of modifying your existing Verilog-A models so that they work in version 4.4.6 
of Verilog-A and in version 1.0 of Verilog-AMS. The changes recommended here might not 
work with 4.4.5 or earlier versions of Verilog-A.

Port branch access I(a,a)

Note: Cadence® Verilog-A 
supports only this form.

I(<a>)

Note: This form is not 
supported in Cadence 
Verilog-A.

syntax

Timestep control 
(maximum 
stepsize)

bound_step(const_
expression)

$bound_step(expr) syntax

Continuous 
waveform delay

delay() absdelay() syntax

User-defined 
analog functions

Function Analog function syntax

Discipline domain N/A, assumed continuous Now continuous (default) 
and discrete

Extension

Time tolerance on 
timer functions

N/A Supports additional time 
tolerance argument for 
timer()

Extension

Time tolerance on 
transition filter

N/A Supports additional time 
tolerance argument for 
transition()

Extension

’default_nodetype ’default_nodetype ’default_discipline Obsolete

Generate 
statement

generate N/A Obsolete

Null statement ; Limited to case, 
conditional, and 
event statements

Obsolete

Feature Independent
Verilog-A Verilog-AMS Change 

type
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Updating Verilog-A Modules
Current Probes

OVI Verilog-A 1.0 syntax for a current probe is I(a,a). OVI Verilog-AMS 2.0 changes this to 
I(<a>).

Suggested change: Put I(<a>) inside an ̀ ifdef __VAMS_ENABLE__, which makes the 
syntax effective only for Verilog-AMS. For example, change

iin_val = I(vin,vin);

to

`ifdef __VAMS_ENABLE__ 
iin_val = I(<vin>);   

`else       
iin_val = I(vin,vin);   

`endif

Verilog-A warning: None

Analog Functions

OVI Verilog-A 1.0 declaration of an analog function is

function name; 

OVI Verilog-AMS 2.0 uses the syntax 

analog function name;

Suggested change: Prefix all function declarations by the word analog. For example, 
change

function real foo;

to

analog function real foo;

Verilog-A warning: None

NULL Statements

OVI Verilog-A 1.0 allows NULL statements to be used anywhere in an analog block. OVI 
Verilog-AMS 2.0 allows NULL statements to be used only after case statements or event 
control statements.

Suggested change:

Remove illegal NULL statements. For example, change
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Updating Verilog-A Modules
begin
end;

to

begin
end

Verilog-A warning: None

inf Used as a Number

Spectre Verilog-A allows 'inf to be used as a number. OVI Verilog-AMS 2.0 allows 'inf to 
be used only on ranges.

Suggested change:

Change all illegal references to 'inf to a large number such as 1M. For example, change;

parameter real points_per_cycle = inf from [6:inf];

to

parameter real points_per_cycle = 1M from [6:inf];

Verilog-A warning: None

Changing Delay to Absdelay

OVI Verilog-A 1.0 uses delay as the analog delay operator but OVI Verilog-AMS 2.0 uses 
absdelay.

Suggested change: Change delay to absdelay. This change usually leads to faster, 
better results.

Verilog-A warning: None

Changing $realtime to $abstime

OVI Verilog-A 1.0 uses $realtime as absolute time but OVI Verilog-AMS 2.0 uses 
$abstime.

Suggested change: Change $realtime to $abstime.

Verilog-A warning: Yes
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Updating Verilog-A Modules
Changing bound_step to $bound_step

OVI Verilog-A 1.0 uses bound_step for step bounding but OVI Verilog-AMS 2.0 uses 
$bound_step.

Suggested change: Change bound_step to $bound_step.

Verilog-A warning: None

Changing Array Specifications

OVI Verilog-A 1.0 uses [] to specify arrays but OVI Verilog-AMS 2.0 uses {}.

Suggested change: Change [] to {}. For example, change

svcvs #(.poles([-2*`PI*bw,0])) output_filter

to

svcvs #(.poles({-2*`PI*bw,0})) output_filter

Verilog-A warning: None

Chained Assignments Made Illegal

Spectre-Verilog-A allows chained assignments, such as x=y=z, but OVI Verilog-AMS 2.0 
makes this illegal.

Suggested change: Break chain assignments into single assignments. For example, 
change

x=y=z;

to

y = z; x = y;

Verilog-A warning: None

Real Argument Not Supported as Direction Argument

Spectre-Verilog-A allows real numbers to be used for the arguments of @cross and 
last_crossing but OVI Verilog-AMS 2.0 makes this illegal.

Suggested change: Change the real numbers to integers. For example, change

@(cross(V(in),1.0) begin
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Updating Verilog-A Modules
to

@(cross(V(in),1) begin

Verilog-A warning: None

$limexp Changed to limexp

OVI Verilog-A 1.0 uses $limexp, but OVI Verilog-AMS 2.0 uses limexp.

Suggested change: Change $limexp to limexp. For example, change

I(vp,vn) <+ is * ($limexp(vacross/$vt) - 1);

to

I(vp,vn) <+ is * (limexp(vacross/$vt) - 1);

Verilog-A warning: None

'if 'MACRO is Not Allowed

Spectre-Verilog-A allows users to type 'if 'MACRO, but OVI Verilog-AMS 2.0, 1.0 and 1364 
say this is illegal.

Suggested change: Change 'if 'MACRO to 'if MACRO (Do not use the tick mark for 
the macro). For example, change

`ifdef `CHECK_BACK_SURFACE

to

`ifdef CHECK_BACK_SURFACE

Verilog-A warning: None

$warning is Not Allowed

Spectre-Verilog-A supports $warning, but OVI Verilog-AMS 2.0, 1.0 and 1364 do not 
support this as a standard built-in function.

Suggested change: Change $warning to $strobe.

Verilog-A warning: None
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Updating Verilog-A Modules
discontinuity Changed to $discontinuity

OVI Verilog-A 1.0 uses discontinuity, but OVI Verilog-AMS 2.0 uses $discontinuity.

Suggested change: Change discontinuity to $discontinuity.

Verilog-A warning: None
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Glossary

A

analog context
The context of statements that appear in the body of an analog block.

analog HDL
An analog hardware description language for describing analog circuits and functions.

analog port
A port whose connections are both analog.

analog signal
A hierarchical collection of interconnected nets, where all the nets are of a continuous 
discipline.

B

behavioral description
The mathematical mapping of inputs to outputs for a module, including intermediate 
variables and control flow.

behavioral model
A version of a module with a unique set of parameters designed to model a specific 
component.

block
A level within the behavioral description of a module, delimited by begin and end.

branch
A path between two nodes. Each branch has two associated quantities, a potential and 
a flow, with a reference direction for each.
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Glossary
C

component
The fundamental unit within a system. A component encapsulates behavior and 
structure. Modules and models can represent a single component, or a component with 
many subcomponents.

connect module
A module automatically or manually inserted by using the connect statement, which 
contains the code required to translate and propagate signals between the analog and 
digital nets comprising a signal.

constitutive relationships
The expressions and statements that relate the outputs, inputs, and parameters of a 
module. These relationships constitute a behavioral description.

continuous context

continuous net
A net of a continuous discipline.

continuous variable
A variable whose value is calculated in the continuous domain.

control flow
The conditional and iterative statements that control the behavior of a module. These 
statements evaluate variables (counters, flags, and tokens) to control the operation of 
different sections of a behavioral description.

child module
A module instantiated inside the behavioral description of another, “parent” module.

D

declaration
A definition of the properties of a variable, node, port, parameter, or net.

digital context
The context of statements that appear in a location other than an analog block.
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Glossary
digital island
The set of drivers and receivers interconnected by a digital net or a contiguous collection 
of digital nets.

digital port
A port whose connections are both digital.

digital signal
A hierarchical collection of interconnected nets where all the nets are of a discrete 
discipline.

discipline
A user-defined binding of potential and flow natures and other attributes to a net. 
Disciplines are used to declare analog nets and can also be used as part of the 
declaration of digital nets.

discipline resolution
The process of assigning a domain and discipline to nets whose domain and discipline 
are otherwise unknown (or whose discipline is wire.)

discrete context
The context of statements that appear in a location other than an analog block.

discrete net
A net of a discrete discipline.

discrete variable
A variable whose value is calculated in the discrete domain.

driver-receiver segregation
The conceptual severing of the connections between drivers and receivers that occurs in 
mixed nets. When driver-receiver segregation occurs, digital signals propagate only 
through connect modules inserted between the drivers and receivers.

dynamic expression
An expression whose value is derived from the evaluation of a derivative (the ddt 
function). Dynamic expressions define time-dependent module behavior. Some 
functions cannot operate on dynamic expressions.
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Glossary
E

element
The fundamental unit within a system, which encapsulates behavior and structure (also 
known as a component).

F

flow
One of the two fundamental quantities used to simulate the behavior of a system. In 
electrical systems, flow is current.

G

global declarations
Declarations of variables and parameters at the beginning of a behavioral description.

ground
The reference node, which has a potential of zero.

instance
A named occurrence of a component created from a module definition. One module 
definition can occur in multiple instances. 

instantiation
The process of creating an instance from a module definition or simulator primitive, and 
defining the connectivity and parameters of that instance. (Placing an instance in a circuit 
or system.)

H

hierarchical system
A system in which the components are also systems.

K

Kirchhoff’s Laws
Physical laws that define the interconnection relationships of nodes, branches, 
potentials, and flows. Kirchhoff’s Laws specify a conservation of flow in and out of a node 
and a conservation of potential around a loop of branches.
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Glossary
L

level
One block within a behavioral description, delimited by a pair of matching keywords such 
as begin-end, discipline-enddiscipline.

leaf component
A component that has no subcomponents.

M

mixed port
A port with one analog connection and one digital connection.

mixed signal
A hierarchical collection of interconnected nets that includes nets associated with both 
continuous and discrete disciplines.

module
A definition of the interfaces and behavior of a component.

N

nature
A named collection of attributes consisting of units, tolerances, and access function 
names.

NR method
Newton-Raphson method. A generalized method for solving systems of nonlinear 
algebraic equations by breaking them into a series of many small linear operations 
ideally suited for computer processing.

net
An expression, which can include registers and variables, and nets of both continuous 
and discrete disciplines.

node
A connection point of two or more branches in a graph. In an electrical system, and 
equipotential surface can be modeled as a node.
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Glossary
nondynamic expression
An expression whose derivative with respect to time is zero for every point in time. 

P

parameter
A variable used to characterize the behavior of an instance of a module. Parameters are 
defined in the first section of a module, the module interface declarations, and can be 
specified each time a module is instantiated.

parameter declaration
The statement in a module definition that defines the instance parameters of the module.

port
The physical connection of an expression in an instantiating (parent) module with an 
expression in an instantiated (child) module. A port of an instantiated module has two 
nets, the upper connection, which is a net in the instantiating module, and the lower 
connection, which is a net in the instantiated module.

potential
One of the two fundamental quantities used to simulate the behavior of a system. In 
electrical systems, potential is voltage. 

primitive
A basic component that is defined entirely in terms of behavior, without reference to any 
other primitives.

probe
A branch introduced into a circuit (or system) that does not alter the circuit’s behavior, but 
lets the simulator read the potential or flow at that point.

R

reference direction
A convention for determining whether the flow through a branch, the potential across a 
branch, or the flow in or out of a terminal, is positive or negative.

reference node
The global node (which has a potential of zero) against which the potentials of all single 
nodes are measured. In an electrical system, the reference node is ground.
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Glossary
run-time binding (of sources)
The conditional introduction and removal of potential and flow sources during a 
simulation. A potential source can replace a flow source and vice versa.

S

scope
The current nesting level of a block. 

seed
A number used to initialize a random number generator, or a string used to initialize a list 
of automatically generated names, such as for a list of pins.

signal
1. A hierarchical collection of nets that, because of port connections, are contiguous.
2. A single valued function of time, such as voltage or current in a transient simulation.

structural definitions
Instantiating modules inside other modules through the use of module definitions and 
declarations to create a hierarchical structure in the module’s behavioral description.

source
A branch introduced between two nodes to contribute to the potential and flow of those 
nodes.

system
A collection of interconnected components that produces a response when acted upon 
by a stimulus.

V

Verilog®-A
A language for the behavioral description of continuous-time systems that uses a syntax 
similar to digital Verilog.

Verilog-AMS
A mixed-signal language for the behavioral description of continuous-time and discrete-
time systems that uses a syntax similar to digital Verilog.
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Index
Symbols
` (accent grave) 233
`default_nodetype compiler directive 240
`define compiler directive

syntax 234
tested by `ifdef compiler directive 236

`ifdef compiler directive 236
`include compiler directive 237
`resetall compiler directive 242
`timescale compiler directive 238, 242
`undef compiler directive 235
^ (bitwise binary exclusive OR) 100
^~ (bitwise binary exclusive NOR) 100
_ (underscore), in identifiers 51
! (logical negation) 97
!= (not equal to) 100
- (binary minus) 99
- (unary minus) 97
? and : (conditional operator) 103
" (double quote character), displaying 175
( (left parenthesis) 61
(* attributes

cds_inherited_parameter 59
desc 56, 57, 59, 74
groundSensitivity 37
inh_conn_def_value 41
inh_conn_prop_name 41
library_binding 128
passed_mfactor 202
supplySensitivity 37

(tab character), displaying 175
) (right parenthesis) 61
[ (left bracket), using to include end point in 

range 61
] (right bracket), using to include end point in 

range 61
@ (at-sign) operator 110
* (multiply) 99
/ (divide) 99
/* (slash, asterisk), as comment marker 50
// (double slash), as comment marker 50
/f 468
\ (backslash)

continuing macro text with 234
displaying 175

in escaped names 51
& (bitwise binary and) 100
&& (logical and) 100
% (modulo) 99
% (percent character), displaying 175
+ (binary plus) 99
+ (unary plus) 97
< (less than) 99
<+ (branch contribution operator) 84
<< (shift bits left) 101
<= (less than or equal) 99
== (logical equals) 99
> (greater than) 99
>= (greater than or equal) 99
>> (shift bits right) 101
| (bitwise binary or) 100
|| (logical or) 100
~ (bitwise unary negation) 97
~^ (bitwise binary exclusive nor) 100
$ (dollar sign), in identifiers 51
$abstime function 125
$display 177
$display task 177, 178
$dist_chi_square function 143
$dist_erlang function 144
$dist_exponential function 141
$dist_normal function 140
$dist_poisson function 142
$dist_t function 143
$dist_uniform function 140
$fclose task 185
$fdisplay 184
$fdisplay task 184
$fopen task 180

special formatting commands for 181
$fstrobe 184
$fstrobe task 183, 184
$fwrite 184
$limexp

analog operator 153
$limit function 123
$random simulator function 138
$realtime function 125
$strobe 174

description 174, 179
example of use 176
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$write 178

A
A 465
above event 114
abs function 106
absdelta function 116
absolute function 106
absolute tolerances

used to evaluate convergence 250
absolute value 344
absolute value model 344
abstol attribute

in convergence 250
description 66
requirements for 67

ac_stim simulator function 136
accent grave (`), compiler directive 

designation 233
access attribute

description 67
requirements for 67

access functions
name taken from discipline 128
syntax 127
using in branch contribution 

statement 85
using to obtain values 128
using to set values 128

acos function 107
acosh function 107
ADC

8-bit differential nonlinearity 
measurement 361

8-bit integral nonlinearity 
measurement 362

definition 361
ADC model

8-bit 388
8-bit (ideal) 389
8-bit differential nonlinearity 

measurement 361
8-bit integral nonlinearity 

measurement 362
adder 345
adder model 345

four numbers 346
full 309
half 308

adder, 4 numbers 346
AM demodulator 408
AM demodulator model 408
AM modulator 409
AM modulator model 409
ammeter (current meter) 363
ammeter model 363
amplifier 317
amplifier model 317

current deadband 262
deadband differential 321
differential 322
limiting differential 329
logarithmic 330
operational 266
sample-and-hold (ideal) 394
variable gain differential 339
voltage deadband 276
voltage-controlled variable-gain 277

analog behavior, defining with control 
flow 43

analog blocks
multiple blocks not allowed 42
placement 42

analog components 261
analog events 109 to 118

absdelta 116
cross 113
detecting 110
detecting multiple 110
final_step 112
initial_step 111
timer 117

analog multiplexer 261
analog multiplexer model 261
analog operators 152

$limexp 153
not allowed in for loop 90
listed 152
not allowed in repeat loop 89
restrictions on 152
using in looping constructs 91
not allowed in while loop 90

analog systems 25
analog-to-digital converter

example 92
model, 8-bit 388
model, 8-bit (ideal) 389
model, 8-bit differential nonlinearity 

measurement 361
model, 8-bit integral nonlinearity 
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measurement 362
analyses

detecting first time step in 111
detecting last time step in 112

analysis function 135
analysis types 135
analysis-dependent functions 132
AND gate 294
AND gate model 294
arc-cosine function 107
arc-hyperbolic cosine function 107
arc-hyperbolic sine function 107
arc-hyperbolic tangent function 107
arc-sine function 107
arc-tangent function 107
arc-tangent of x/y function 107
arrays

arguments represented as 165
as parameter values 201
assignment operator for 84
of integers, declaring 56
of parameters 61
of reals, declaring 57
of wreals, declaring 78

asin function 107
asinh function 107
assignment operator, procedural 84
assignment statement 83
assignment statement, indirect branch 86
associated reference directions 26
association order, of operators 96
atan function 107
atan2 function 107
atanh function 107
attenuator model 410
attributes

abstol 66
access 67
blowup 67
ddt_nature 67
huge 67
idt_nature 67
requirements 67
units 67
user-defined 66
using to define base nature 66

audio source 411
audio source model 411

B
B 465
backward compatibility 441
base natures

declaring 66
description 66

basic components 278
behavioral characteristics, defining with 

internal nodes 47
behavioral description, definition 465
behavioral model, definition 465
bidirectional ports 35
binary operators 99
binding, run-time, definition 471
bit error rate calculator model 412
bitwise operators 102

AND 102
exclusive NOR 102
exclusive OR 102
inclusive OR 102
unary negation 103

blanks, as white space 50
block comment 50
blocks

analog 42
definition 465

blowup attribute, description 67
bound_step simulator function 123
braces, meaning of in syntax 22
brackets ( [ ] ) 61
branch contribution statement

compared with procedural assignment 
statement 85

cumulative effect of 85
evaluation of 85
incompatible with indirect branch 

assignment 87
syntax 84

branch data type 80
branch terminals 80
branches

declaring 80
definition 465
flow, default value for 255
reference directions for 26
switch, creating 86
switch, defined 255
switch, equivalent circuit model for 255
values associated with 26
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built-in primitives 248
buses 74

C
c or C format character 176
capacitor model 279

untrimmed 273
case construct 88
case statement 88
CDF, definition 260
cds_inherited_parameter attribute 59
channel_descriptor, returned by 

$fopen 180
charge meter model 374
charge pump model 413
child modules

definition 466
chi-square distribution function 143
circuit fault model

open 265
short 268

circular integrator operator
example 157
using 155

clamp model
hard current 263
hard voltage 264
soft current 269
soft voltage 270

clocked JK flip-flop model 302
closing a file 185
code generator model

2-bit 414
4-bit 415

comments 50
in modules 50
in text macros 234

comparator 318
example 160
model 318

compatibility
of disciplines 71, 70

compensator model
lag 287
lead 288
lead-lag 289

compilation, conditional 236
compiler directives

`default_nodetype 240

`define 234
`ifdef 236
`include 237, 238, 242
`resetall 242
`timescale 238, 242
`undef 235
designated by accent grave (`) 233
list of 233
resetting to default values 242

components
definition 466

conditional compilation 236
conditional operator 103
conditional statement 88
connect modules

digital islands 230
driver-receiver segregation 227

connecting instances
example 196
rules for 197

connecting the ports of module 
instances 195

conservative discipline 69
conservative systems 25

conservative disciplines used to 
define 75

defined 25
values associated with 26

constant expression 96
constant power sink model 267
constants

integer 52
real 52
string, used as parameters 201

constitutive relationships
definition 248, 466
use in nodal analysis 249

constructs
case 88
looping 91
procedural control 83

contribution statements, format 42, 84
control components 286
control flow

definition 466
describing behavior with 44

controlled integrator model 319
controlled sources 254
controller model

proportional 290
proportional derivative 291
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proportional integral 292
proportional integral derivative 293

conventions, typographical 21
convergence 249
conversion specifications 175
converting real numbers to integers 57
core model, magnetic 340
cos function 107
cosh function 107
cosine function 107
cross event 113
cross function

syntax 113
cube model 347
cubic root model 348
current

access function 129
accessing branch current 129
accessing the current of an out-of-

module port 131
flow into module through a port 129

current analysis type, determining 135
current clamp model

hard 263
soft 269

current deadband amplifier model 262
current meter model 363
current source model

current-controlled 284
voltage-controlled 283

current-controlled current source 255, 284
current-controlled current source 

model 284
current-controlled voltage source 254, 282
current-controlled voltage source 

model 282

D
d or D format character 176
DAC model

8-bit 391
8-bit (ideal) 392
8-bit differential nonlinearity 

measurement 364
8-bit integral nonlinearity 

measurement 365
DAC, definition 364
damper model 382
data types

branch 80
discipline 68
integer number 56
nature 65
parameter 58
real number 56

DC analysis
value returned by idt during 154

DC motor model 314
ddt operator (time derivative) 45, 153
ddt_nature attribute

description 67
requirements for 68

deadband amplifier model
current 262
voltage 276

deadband differential amplifier model 321
deadband model 320
decider model 416
decimal logarithm function 106
decimator model 390
declarations

definition 466
global, definition 468

.def filename extension 259
default values, required for parameters 59
`default_nodetype compiler directive 240
`define compiler directive

syntax 234
defparam statement

overriding parameter values with 199
precedence of 200

delay operator 158
delaying continuously valued 

waveform 158
delta probe model 366
demodulator model

8-bit PCM 424
AM 408
FM 419
PM 428
QAM 16-ary 430
QPSK 433

derivative controller model
proportional 291
proportional integral 293

derivative, time 153
derived nature 66
desc attribute 56, 57, 59, 74
describing a system 24
description attribute
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for integers 56
for net disciplines 74
for parameter declarations 58
for reals 57

differential amplifier (opamp) 322
differential amplifier model 322

deadband 321
limiting 329
variable gain 339

differential signal driver 323
differential signal driver model 323
differentiator model 324
digital islands 230
digital phase locked loop model 417
digital to analog converter example 163
digital voltage controlled oscillator 

model 418
digital-to-analog converter model

8-bit 391
8-bit (ideal) 392
8-bit differential nonlinearity 

measurement 364
8-bit integral nonlinearity 

measurement 365
diode model 400

Schottky 407
direction of ports, declaring 34
directions, reference 470
directives. See compiler directives
disciplines 68

compatibility of 71 to 73
conservative 69
declaring 68
definition 467
empty 69, 70
empty, declaring terminals with 75
scope of 69
signal-flow 69

discontinuities
announcing 121
in switch branches 256

discontinuity function
not required for switch branches 256
syntax 121

discrete-time finite difference 
approximation 249

$display task 177, 178
displaying

information 174
results 174

$dist_chi_square function 143

$dist_erlang function 144
$dist_exponential function 141
$dist_normal function 140
$dist_poisson function 142
$dist_t function 143
$dist_uniform function 140
distributions

chi-square 143
Erlang 144
exponential 141
gaussian 141
normal 140
Poisson 142
Student’s T 143
uniform 140

divider model 349
DNL, definition 361
dollar signs, in identifiers 51
domain

of hyperbolic functions 107
of mathematical functions 106
of trigonometric functions 107

driver model
differential signal 323

driver_count function 133
driver_state function 133
driver_strength function 133
driver-receiver segregation 227

definition 467
drivers

definition 132
number of, determining 133
numbering system for 132
strength contribution of, 

determining 133
value contribution of, determining 133

D-type flip-flop model 301
dynamic expression, definition 467
dynamic parameters

declaring 62

E
E 468
e or E format character 176
8-bit parallel register model 312
8-bit serial register model 313
electromagnetic components 314
electromagnetic relay 315
electromagnetic relay model 315
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element, definition 468
else statement, matching with if 

statement 88
empty disciplines

compatibility of 71
definition 69
example 70
predefined (wire) 70

endmodule keyword 29, 30
entering interactive Tcl mode 186
enumerated values, as parameter 

values 201
environment functions 125
Erlang distribution 144
Erlang distribution function 144
error calculation block 286
error calculation block model 286
escaped names 51

defined 51
using keywords as 439

event OR operator 110
events

detecting analog 110
detecting and using 109

events, analog 109 to 118
examples

$strobe formatting 176
analog-to-digital converter 92
ideal relay 256
ideal sampled data integrator 173
inductor 45
RLC circuit 47
sources and probes 257
voltage deadband amplifier 44

exclude keyword 61
exiting to the operating system 185
exp function 106
exponential distribution function 141
exponential function 106
exponential function model 350
exponential function, limited 153
expressions

constant 96
definition 96
dynamic, definition 467
short circuiting of 104

F
F 466

f or F format character 176
fault model

open circuit 265
short circuit 268

$fclose task 185
$fdisplay task 184
files

closing 185
including at compilation time 237
opening 180
writing to 183

files, working with 180
filters

slew 163
transition 159

final_step event 112
find event probe 367
find event probe model 367
find slope 369
find slope model 369
finite-difference approximation 249
flicker_noise function 137
flicker_noise simulator function 137
flip-flop model

clocked JK 302
D-type 301
JK-type 304
RS-type 306
toggle-type 307
trigger-type 307

flow
default value for 255
definition 468
in a conservative system 26
probes, definition 252
sources, definition 253
sources, equivalent circuit model 

for 254
sources, switching to potential 

sources 255
flow law. See Kirchhoff’s Laws, Flow Law
flow-to-value converter model 325
FM demodulator 419
FM demodulator model 419
FM modulator model 420
$fopen task 180
for loop statement 90
for statement 90
formatting output 175
four-number adder model 346
four-number subtractor model 360
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frequency meter model 370
frequency-phase detector model 421
$fstrobe task 183, 184
full adder model 309
full subtractor model 311
full wave rectifier model, two phase 397
functional blocks 317
functions

access 127
defining 187
environment 125
mathematical 105
user-defined 187

G
G 468
g or G format character 176
gain block 192
gap model, magnetic 341
gaussian distribution 141
gearbox model 381
generate statement 91
generating random numbers 138
generating random numbers in specified 

distributions 139
genvars 64
global declarations, definition 468
ground nodes

as assumed branch terminal 80
potential of 26

groundSensitivity and supplySensitivity 
attributes 37

grouping parameter overrides 199

H
H 468
h or H format character 176
half adder model 308
half subtractor model 310
half wave rectifier model, two phase 398
hard current clamp model 263
hard voltage clamp model 264
hierarchical name, displaying 175
hierarchy level

parameter override precedence 
and 200

higher order systems 48

huge attribute, description 67
hyperbolic cosine function 107
hyperbolic functions 106
hyperbolic sine function 107
hyperbolic tangent function 107
hypot function 107
hypotenuse function 107
hysteresis model, rectangular 326

I
IC analysis, value returned by idt 

during 154
ideal relay example 256
ideal sampled data integrator example 173
identifiers 50
idt operator

example 46
using in feedback configuration 155

idt_nature attribute
description 67
requirements for 68

idtmod operator
example 157
using 155

`ifdef compiler directive 236
ignored code, restrictions on 236
impedance meter model 380
implicit branches 81
implicit models 258
`include compiler directive 237
indirect branch assignment statement 86
inductor model 280

module describing 45
untrimmed 274

-inf (negative infinity) 61
infinity, indicating in a range 61
inh_conn_def_value attribute 41
inh_conn_prop_name attribute 41
inherited connections

definition 41
supply sensitivity attributes, with 41

inherited_mfactor attribute 202
initial_step event 111

syntax 111
instances

connecting with ports 195, 196
creating 192
creating and naming 192
definition 468
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overriding parameter values in 197
instantiating

analog primitives 199
analog primitives that use array valued 

parameters 201
modules that use unsupported parameter 

types 201
instantiation

definition 468
of non-Verilog-A modules 201
statement. See module instantiation 

statement example
syntax 192

integer
attributes for 56
constants 52
data type 56
declaring 56
numbers 52, 55
range allowed in Verilog-A 56

integral controller model, proportional 292
integral derivative controller model, 

proportional 293
integral, time 154
integration and differentiation with analog 

signal, using 45
integrator 327
integrator model 327

controlled 319
saturating 334
switched capacitor 396

interconnection relationships 248
interface declarations, example 33
internal nodes

for higher order derivatives 45
in higher order systems 48
use 47

internal nodes in behavioral definitions, 
using 47

internal nodes in higher order system, 
using 48

internal nodes in modules, using 47
interpolating with table models 145

J
JK-type flip-flop model 304

K
keywords, list of 439
Kirchhoff’s Laws 248

definition 468
Flow Law 25, 248, 249, 250
illustrated 248
use in nodal analysis 249
Potential Law 25, 248

L
L 469
lag compensator model 287
Laplace transforms

numerator-denominator form 167
numerator-pole form 167
s-domain filters 164
zero-denominator form 166
zero-pole form 165

laplace_nd Laplace transform 167
laplace_np Laplace transform 167
laplace_zd Laplace transform 166
laplace_zp Laplace transform 165
last_crossing simulator function

improving accuracy of 124
setting direction for 113, 124
syntax 124

laws, Kirchhoff’s. See Kirchhoff’s Laws
lead compensator model 288
lead-lag compensator model 289
left justifying output 175
level shifter model 305, 328
level, definition 469
library_binding attribute 128
$limexp analog operator 153
limited exponential function 153
limiting differential amplifier model 329
linear conductor model 257
linear resistor model 258
ln function 106
local parameters

declaring 64
log function 106
logarithm function

decimal 106
natural 106

logarithmic amplifier model 330
logic components 294
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logic table 304, 306, 307
LPF, definition 417

M
M 469
m factor (multiplicity factor)

example of using 202
using 202

macros. See text macros
magnetic components 340
magnetic core 340
magnetic core model 340
magnetic gap 341
magnetic gap model 341
magnetic winding 342
magnetic winding model 342
mapping instance ports to module 

ports 194
mapping ports with ordered lists 194
mass model 383
math domain errors, controlling 107
mathematical components 344
mathematical functions 106
maximum (max) function 106
measure components 361
measurement model

offset 371
slew rate 371, 376

mechanical damper 382
mechanical damper model 382
mechanical mass 383
mechanical mass model 383
mechanical restrainer 384
mechanical restrainer model 384
mechanical spring 386
mechanical spring model 386
mechanical systems 381
minimum (min) function 106
mixed conservative and signal-flow 

systems 26
mixed-signal components 388
mixer 422
mixer model 421, 422
models

library of samples 259
modulator model

8-bit PCM 425
AM 409
FM 420

PM 429
QPSK 434
quadrature amplitude 16-ary 432

module instantiation statement
overrides by, subordinate to 

defparam 200
module keyword 29
modules

analog behavior of
defining 42

behavioral description 42
capacitor example 45
child, definition 466
declaring 30
definition 30, 469
format 29
hierarchy of 191
instantiating in other modules 192
instantiation statement, example 193, 

196
interface declarations 33
interface, declaring 33
internal nodes in 47
name 33
using nodes in 75
non-Verilog-A 201
overview 29
RLC circuit example 47, 48
top-level 191
transformer example 192
voltage deadband amplifier example 44

MOS thin-film transistor 403
MOS thin-film transistor model 403
MOS transistor (level 1) 401
MOS transistor model (level 1) 401
motor model

DC 314
three-phase 316

multiplexer model 331
multiplier model 351

N
N 469
N JFET transistor model 404
name pairs

mapping instance nodes with 195
rules for, when mapping instance 

nodes 195
named branches 76
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names, escaped 51
NAND Gate 295
NAND gate model 295
natural log function model 352
natural logarithm function 106
natures 65

access function for 67
attributes 66
base, declaring 66
base, definition 66
binding with potential and flow 69
declaring 65
definition 469
deriving from other natures 66
requirements for 65

net disciplines 74
description attribute for 74

new-line characters
as white space 50
displaying 175

Newton-Raphson method
definition 469
used to evaluate systems 249

nodal analysis 249
node data type 74
nodes 25

assumed to be infinitely small 248
connecting instances with 195
declaring 74
definition 469
identifier, used in name pair 195
instance, mapping with name pairs 195
matching sizes required when 

connected 197
as module ports 75
reference, definition 470
reference, potential of 26
scalar 74
values associated with 26
vector, declaring 74
vector, definition 74
ways of using 75

noise functions
flicker_noise 137
noise_table 138

noise source model 423
noise_table function 138
noise_table simulator function 138
nonlinearities, announcing and 

handling 123
NOR Gate 298

NOR gate model 298
normal (gaussian) distribution 140
normal distribution function 140
NOT Gate 297
NOT gate model 297
NPN bipolar junction transistor model 405
NR method, definition 469
numbers 52
numerator-denominator Laplace 

transforms 167
numerator-denominator Z-transforms 172
numerator-pole Laplace transforms 167
numerator-pole Z-transforms 172

O
o or O format character 176
offset measurement 371
offset measurement model 371
one-line comment 50
opamp model 266, 322
open circuit fault 265
open circuit fault model 265
opening

file 180
operational amplifier model 266
operators 95 to 103

analog 152
association of 96
binary 99
bitwise 102
circular integrator 155
delay 158
idtmod 155
precedence 104
precedence of 96, 104
ternary 103
time derivative 153
time integral 154
unary 97

or (event OR) 101
OR Gate 296
OR gate model 296
OR operator, event 110
order of evaluation, changing 96
ordered lists, mapping nodes with 194
ordinary identifiers 51
oscillator model

digital voltage controlled 418
voltage-controlled 437
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out-of-module current access 131
overriding parameter values 197, 

?? to 200
by name 198
from the instantiation statement 197
grouping override statements 

together 199
in instances 197
precedence rules 200

overview
analog events 109
operators 95

overview of probes and sources 252

P
P 470
parallel register model, 8-bit 312
parallel register, 8-bit 312
parameters 36, 58

aliases 64
array values as 201
arrays of 61
attributes for 58
changing during compilation 58
must be constants 58
declaration, definition 470
declaring 58
default value required 59
definition 470
dependence on other parameters 58
enumerated values as 201
names 36
overriding values with defparam 

statement 199
overriding values with module 

instantiation statement 197
permissible values for, specifying 60
string values as 201
type specifier optional 59
type, specifying 59

parentheses
changing evaluation order with 96
using to exclude end point in range 61

passed_mfactor attribute 202
PCM demodulator model, 8-bit 424
PCM demodulator, 8-bit 424
PCM modulator model, 8-bit 425
PCM modulator, 8-bit 425
pending value of a driver 132

period of signal, example of 
calculating 125

permissible values for parameters, 
specifying 60

permissible values, specifying 60
phase detector

model 426
phase locked loop model 427

digital 417
PLL model 427

digital 417
PLL, definition 419
PM demodulator 428
PM demodulator model 428
PM modulator 429
PM modulator model 429
Poisson distribution 142
Poisson distribution function 142
polynomial 353
polynomial model 353
port branches 253

monitoring flow with 252
port bus, defining 75
port connection rules 197
port declaration example 35
port direction 34
port type 34
ports 33

bidirectional 35
declaring 33
defining by listing nodes 75
direction, declaring 34
instance, mapping to defining module 

ports 194
names, using to connect instances 196
type of, declaring 34
undeclared types as 34

potential
definition 470
in electrical systems 26
probes 252
sources, definition 253
sources, equivalent circuit model 

for 254
sources, switching to flow sources 255

potential law. See Kirchhoff’s Laws 25
power (pow) function 106
power consumption, specifying 178
power electronics components 397
power function model 354
power meter model 372
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power sink model, constant 267
precedence of operators 96, 104
precedence rules

for overriding parameter values 200
primitives

definition 470
instantiating in Verilog-A modules 200

probe model
delta 366
find event 367
signal statistics 367, 369, 377

probes 252
definition 252, 470
flow 252
potential 252
reasons for using 252

procedural assignment statement 84
procedural assignment statements in the 

analog block 84
procedural control constructs 83
proportional controller model 290
proportional derivative controller 291
proportional derivative controller 

model 291
proportional integral controller model 292
proportional integral derivative controller 

model 293
pump model, charge 413

Q
Q (charge) meter model 374
QAM 16-ary demodulator model 430
QPSK demodulator model 433
QPSK modulator model 430, 434
QPSK, definition 430
quadrature amplitude 16-ary modulator 

model 432
quadrature phase shift key demodulator 

model 433
quadrature phase shift key modulator 

model 434
quantizer model 332
querying the simulation environment 125

R
R 470
random bit stream generator model 435

random numbers, generating 138
$random simulator function 138
range

for integer numbers 56
for real numbers 57

rate of change, controlling with slew 
filter 163

reading from a file 183
real constants

scale factors for 53
syntax 52

real numbers 52, 56
attributes for 57
converting to integers 57
declaring 56
range permitted 57

reciprocal model 355
rectangular hysteresis model 326
reference directions 26

associated 26
definition 470
illustrated 26

reference nodes 26
definition 470
potential of 26

relative tolerance 250
relay

example 122
model, electromagnetic 315

reltol (relative tolerance) 250
repeat loop statement 89
repeat statement 89
repeater 333
repeater model 333
`resetall compiler directive 242
resistor model 278

self-tuning 271
untrimmed 275

restrainer model 384
restrictions on using analog operators 152
rise times, setting default for 242
RLC Circuit 258
RLC circuit 47, 48
RLC circuit model 258
rms, definition 363
road model 385
RS-Type Flip-Flop 306
RS-type flip-flop model 306
rules, for connecting instances 197
run time binding, definition 471
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S
S 471
s or S format character 176
sample-and-hold amplifier model 

(ideal) 394
sampler model 375
saturating integrator model 334
scalar node 74
scale factors, for real constants 53
Schottky Diode 407
Schottky diode model 407
scope

definition 471
named block defines new 87
of discipline identifiers 69
rules 51

self-tuning resistor 271
self-tuning resistor model 271
semiconductor components 400
sensitivity attributes 37
sequential block statement 87
serial register model, 8-bit 313
serial register, 8-bit 313
shifter model, level 305, 328
short circuit fault 268
short circuit fault model 268
short circuiting, of expressions 104
sigma-delta converter (first-order) 393
sigma-delta converter model (first 

order) 393
signal driver model, differential 323
signal statistics probe 377
signal statistics probe model 367, 369, 377
signal values

modifying with branch contribution 
statement 84

obtaining and setting 128
signal values, obtaining and setting 127
signal-flow discipline 69
signal-flow systems 26

modeling supported by Verilog-A 26
signal-flow disciplines used to define 75

signed number 356
signed number model 356
signs, requesting in output 175
simple implicit diode 258
simple implicit diode model 258
simulating a system 249
simulation environment, querying 125

simulation time, obtaining current 125
simulator flow 27
simulator functions

$dist_chi_square 143
$dist_erlang 144
$dist_exponential 141
$dist_normal 140
$dist_poisson 142
$dist_t 143
$dist_uniform 140
$random 138
ac_stim 136
analysis 135
bound_step 123
discontinuity 121
flicker_noise 137
last_crossing 124
limiting function 123
noise_table 138
white_noise 137

sin function 107
sine function 107
single shot model 395
sinh function 107
sink model, constant power 267
sinusoidal source

swept, model 335
variable frequency, model 338

sinusoidal stimulus, implementing with 
ac_stim 136

sinusoidal waveforms, controlling with slew 
filter 163

sizes, of connected terminals and 
nodes 197

slew filter 163
slew rate measurement model 371, 376
small-signal AC sources 136
small-signal noise sources 136
smoothing piecewise constant 

waveforms 159
soft current clamp model 269
soft voltage clamp model 270
source model

audio 411
noise 423
swept sinusoidal 335
three-phase 336
variable frequency sinusoidal 338

sources 253
controlled 254
current-controlled current 255
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current-controlled voltage 254
definition 252, 471
flow 253
linear conductor model 257
linear resistor model 258
potential 253
reasons for using 252
RLC circuit model 258
simple implicit diode model 258
unassigned 255
voltage-controlled current 254
voltage-controlled voltage 254

space
displaying or printing 175
white 50

special characters 175
special characters, displaying 175
Spectre

primitives, instantiating in Verilog-A 
modules 200

spring model 386
sqr function 106
square brackets, meaning of, in syntax 22
square model 357
square root function 106
square root model 358
standard mathematical functions 106
strength contribution of drivers, 

determining 133
strings, as parameter values 201
$strobe

description 174, 179
example 176

structural definitions, definition 471
structural descriptions, undeclared port 

types in 34
Student’s T distribution 143
Student’s T distribution function 143
subtractor model 359

four numbers 360
full 311
half 310

supplySensitivity and groundSensitivity 
attributes 37

svcvs primitive 201
swept sinusoidal source

model 335
switch 285

branch, creating 86
branches 86, 255, 256
branches, value retention for 256

model 285
switched capacitor integrator model 396
syntax

definition operator (::=) 21
typographical conventions for 21

systems
conservative 25
definition 24

T
tab characters

as white space 50
displaying 175

table model file format 147
tan function 107
tangent function 107
tanh function 107
telecommunications components 408
temperature, obtaining current 

ambient 126
terminals

branch 80
ternary operator 103
text macros

defining 234
restrictions on 234
undefining 235

thermal voltage, obtaining 126
third-order polynomial function model 353
three-phase

motor model 316
source model 336

thyristor model 399
time derivative operator 153
time integral operator 154
time step, bounding 123
time-points, placed by transition filter 159
timer event 117
timer function 117
`timescale compiler directive

not reset by `resetall directive 242
syntax 238, 242

toggle-type flip-flop model 307
tolerances

absolute 250
relative 250

transformer model, two-phase 343
transient analysis 249
transistor model
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MOS (level 1) 401
MOS thin-film 403
N JFET 404
NPN bipolar junction 405

transition filter
not recommended for smoothly varying 

waveforms 161
syntax 159

transmission channel model 436
triangular wave source, example 121
trigger-type flip-flop model 307
trigonometric and hyperbolic functions 106
trigonometric functions 106
troubleshooting loops of rigid 

branches 257
two-phase transformer model 343
type specifier, optional on parameter 

declaration 59

U
unary operators 97

defined 97
precedence of 97

unary reduction operators 97
unassigned sources 255
`undef compiler directive 235
undefining text macros 235
underscore, in identifiers 51
uniform distribution 140
uniform distribution function 140
unit attribute

description 67
for integers 56
for parameters 58
for reals 57
requirements for 68

units (scale factors) for real numbers 53
untrimmed

capacitor model 273
inductor model 274
resistor model 275

user-defined functions 187
calling 188
declaring 187
declaring analog 187
restrictions on 187

V
V 471
value contribution of drivers, 

determining 133
value retention for switch branches 256
value-to-flow converter model 337
variable frequency sinusoidal source 

model 338
variable-gain amplifier model, voltage-

controlled 277
variable-gain differential amplifier 

model 339
VCO model 437
VCO, definition 417
vector nodes, definition 74
vectors, arguments represented as 164
Verilog-A

definition 471
language overview 24

vertical bars, meaning of, in syntax 22
voltage

access function 129
accessing potential across a 

branch 129
accessing potential difference 129

voltage clamp model
hard 264
soft 270

voltage deadband amplifier 44
model 276

voltage meter model 379
voltage source model

current-controlled 282
voltage-controlled 281

voltage-controlled current source 254
voltage-controlled current source 

model 283
voltage-controlled oscillator

model 437
model, digital 418

voltage-controlled variable-gain amplifier 
model 277

voltage-controlled voltage source 254
voltage-controlled voltage source 

model 281
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W
wheel 387
wheel model 387
while loop statement 90
while statement 90
white space 50
white_noise simulator function 137
winding model, magnetic 342
wire (predefined empty discipline) 70
wreal nets 77
wrealXState 78
wrealZState 78
writing to a file 183

X
XNOR Gate 300
XNOR gate model 300
XOR Gate 299
XOR gate model 299

Z
Z (impedance) meter 380
Z (impedance) meter model 380
zero crosses, detecting 113
zero-denominator Laplace transforms 166
zero-denominator Z-transforms 171
zero-pole Laplace transforms 165
zero-pole Z-transforms 170
zi_nd Z-transform filter 172
zi_np Z-transform filter 172
zi_zd Z-transform filter 171
zi_zp Z-transform filter 170
Z-transform filters 170
Z-transforms

introduction 170
numerator-denominator form 172
numerator-pole form 172
zero-denominator form 171
zero-pole form 170
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