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The Structure of the Limit Cycles in Sigma Delta 
Modulation 

Abstract-It is shown that when the input to a sigma delta modulator is 
a de level which can be expressed as a rational number b/a, when 
normalized with respect to the quantizer step, the output bit string is 
periodic with a period which is a multiple of the denominator a. Based on 
number theory, the structure of these cycles for single loop modulators is 
determined and the noise contribution is computed. Around such levels 
the noise has two peaks, for which the maximum value and the width are 
proportional to the relative signal bandwith and to the inverse of the 
period of the cycle, respectively. The effect of the limit cycles on the 
performance of the A/D and D/A converters using sigma delta modula- 
tion is discussed. A comparison between single loop and double loop 
modulators from the point of view of this phenomena is made. 

I. INTRODUCTION 
HE principle of delta modulation is the spreading of the T quantization noise in a band which is much larger than that 

of the signal by oversampling and shaping the noise. Though 
delta modulation has been known for a long time, a renewed 
interest in the subject has shown during recent years because 
of its utilization in the design of PCM codecs. For VLSI 
technologies under 2p, such devices become competitive with 
charge redistribution codecs [5], [6]. Compared to the charge 
redistribution method, higher PCM sampling rates [7] or 
higher resolution can be obtained. 

Experimental measurements of the noise versus the dc 
input level for sigma delta modulators [l] and for digital 
interpolators based on the same principle [2], show the 
existence of peaks of noise near dc input values which can be 
expressed as rational fractions, when normalized with respect 
to the quantizer step. A characteristic shape of such a noise 
peak is shown in Fig. 1 .  

Based on an equivalent model of the sigma delta modulator, 
Candy and Benjamin [ 11 have determined the baseband noise 
and the value of such peaks, as well as their influence on the 
overall performance for slow changing dynamic inputs. 
Section I1 of this paper contains a proof of the fact that, for 
input dc values which can be expressed as rational fractions, 
the output bit string is periodic. This phenomenon is reminis- 
cent of the limit cycles of digital filters due to finite signal 
word length. In Section 111, an algorithmic procedure based on 
the Euclid algorithm is given, which derives the structure and 
the z transform of these cycles for first-order sigma delta 
modulators. This makes it possible, for this particular case, to 
compute the noise spectrum based on the output bit stream 
sequence. In the general case, the noise contribution is 
determined on the basis of an equivalent circuit such as the 
infinite staircase model of van de Weg [3] or the discrete pulse 
phase model [4]. In Section IV, the noise spectrum and the 
noise contribution are determined for all these dc levels. 
Finally, in Section V, the effect of the limit cycles on the 
performance of the A / D  and D/A converters based on sigma 
delta modulation is discussed. 
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Fig. 1. A characteristic shape of a pair of noise peaks. 

11. THE GENERATION OF LIMIT CYCLES IN SIGMA DELTA 
MODULATION 

We will consider the double loop sigma delta modulator 
shown in Fig. 2. The z transform of the state variable Y is 

(2.1) 
Taking into account that 

Yl (n)=sgn  Y ( n )  
where sgn is the sign function defined as 

sgn ( x ) =  1 for x 1 0  

sgn ( x ) = O  for x<O 

then the following difference equation will describe the 
behavior of the circuit: 

Y(n)  - 2 Y(n - 1 )  + Y ( n  - 2) = G1 G2(X(n  - 1 )  - sgn 

* Y(n - 1 ) )  - G2 (sgn Y (n  - 1 )  - sgn Y ( n  - 2)). (2.2) 
We will consider the case when, for a dc input bias X (  i )  = X ,  
X E [0, 11, there is a limit cycle of period L .  Equation (2.2), 
written for each of the state variables Y(O), Y(1), Y(L - 
l),  will lead to the following equation system: 

Y(0) - 2 Y ( L  - 1 )  + Y ( L  - 2) = G1 G 2 ( X -  sgn Y ( L  - 1 ) )  

- G2 (sgn Y ( L  - 1 )  - sgn Y ( L  - 2)) 

Y(1) -2Y(O)+ Y ( L -  l ) = G l G 2 ( X - s g n  Y(0)) 

- G 2  (sgn Y(0)-sgn Y ( L -  1 ) )  

(2.3) 

( X -  sgn Y ( L  - 2)) - G2 (sgn Y ( L  - 2) - sgn Y ( L  - 3 ) ) .  

........................................................................... 
Y ( L  - 1 )  - 2 Y ( L  - 2) + Y ( L  - 3 )  = G1 G2 
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Fig. 3. First-order sigma delta modulator. 

Fig. 2. Second-order sigma delta modulator. 

Adding together the equations of the system (2.3), the left side 
and the last term of the right side will cancel and we will obtain 

(a) r = L - l  

P" P'P N N" 
I / x  

P b  x= 1=0 --=- - 
L L a  

2 sgn Y ( i )  
(2.4) 

where P is the number of positive bits of the output limit cycle, 
and a and b are relative prime integers, i.e., their greatest 
common divisor is 1 .  

The necessary condition for the existence of a limit cycle is 
that the input must be a rational number. The length of the 
cycle is a multiple of the denominator. These results are 
independent of the value of the gains G 1 ,  G2. In the relation 
(2.4), X was normalized with respect to the quantizer step. If 
in the circuit from Fig. 2 the quantizer level is A instead of 
unity, then the value of X corresponding to that from the 
relation (2.4) is 

b 
a 

X = - A .  (2.4. a) 

This result is identical with that previously reported [8] for the 
single loop modulator (shown in Fig. 3), described by the 
difference equation 

Y(n) - Y(n  - 1 )  = X ( n  - 1) - sgn Y(n  - 1 ) .  (2.5) 
It can be also obtained by using a similar proof as that for the 
double loop modulators. We will try to determine the 
sufficient conditions for the existence of the limit cycle. We 
will consider the set of rational numbers { b / a }  where a is 
fixed and b can be any integer. This set is isomorphic with the 
set of integer numbers. For the single loop delta modulator 
described by (2.5), if the dc input X ( n )  is an element of the 
set { b / a } ,  then the right term of the equation will be an 
element of the same set, since the sign function is an integer. 
For the initial condition Y(0) = yo, Y( 1) will belong to the set 
yo + { b / a } ,  and if Y(n - 1) is an element of the set yo + 
{ b / a } ,  then Y ( n )  will belong to the same set. Therefore, the 
values Y(n) can take are situated at intervals lla apart. If the 
state variable Y(n) is limited to a finite interval of length M, 
then the number of acceptable values is finite and equal to Ma, 
after a finite number of steps Y will repeat itself. For a single 
loop sigma delta modulator, the range the state variable can 
take is less than two (Fig. 4). But we have seen that the period 
of the limit cycle must be a multiple of a. Therefore, for a 
single loop sigma delta modulator, the period of the limit cycle 
is equal to the denominator a and is independent of the initial 
condition. 

This is not the case for double loop sigma delta modulation. 
For simplicity, we will consider the modulator shown in Fig. 2 
with G1 = G2 = 1 ,  described by the equation 

Y ( n ) =  2 Y(n  - 1) - Y(n  - 2) 

- 2 sgn Y ( n  - 1) + sgn Y ( n  - 2)  + X .  (2.6) 
If X belongs to the set { b / a } ,  then the quantity 2 sgn Y(n - 
1) - sgn Y ( n  - 2) - X will be an element of the same set, 
since the sign function takes only integer values. By using the 
same approach, as for a single loop modulator, it can be easily 
shown that, with the initial conditions Y(0) = yo ,  Y(l) = y ,  , 

I I I I I I I I I 

( 4  
Fig. 4. (a) First-order sigma delta modulator with trigger circuit. (b) The 

integrated error waveforms for the asynchronous modulator (c) The 
integrated error waveform for the modulator synchronized by the clock (d). 

Y(n) will be equal to 

Y ( n ) = n y , - ( n - 1 ) y o - - .  b n  
a 

If there is a limit cycle of period L then 

b n + L  

a 
Y (n  + L )  = (n + L ) y ,  - ( n  + L - 1)yo--= Y(n)  

(2.8) 
which leads to 

for any integer n > 0. The period of the cycle depends on the 
initial conditions. For instance, for X = 0.5 with the initial 
condition Y(l) = 0 and Y(0) = 0.5 and Y(0) = 0.75, the 
period of the cycle will be equal to 4 and 8, respectively. In 
fact, if the difference 

Yl -Yo (2.10) 
in (2.9) is such that L is not an integer, there will be no limit 
cycle. This will occur when the difference (2.10) is an 
irrational number. 

111. THE STRUCTURE OF THE LIMIT CYCLE 

We will consider first the same model of single loop sigma 
delta modulator analyzed in [l], which is shown in Fig. 4(a). 
A positive pulse is generated by the trigger circuit when its 
input is equal to or greater than zero. For the asynchronous 
modulator which uses no timing clocks when the input is a 
constant dc level X ,  then the characteristic waveform of the 
error Y will be a sawtooth of amplitude unity and period 1lX. 
In Fig. 4(b) such a waveform (drawn with unbroken line) for 
the initial condition Y(0) = 0 is represented. If the modulator 
is synchronized by a clock [Fig. 4(d)], then the decisions 
concerning the output are taken at fixed intervals determined 
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The total number of strings is b, ro of them are of the type 
So,l. In order that the ones in the output sequence of the 
modulator be distributed as uniformly as possible, the same 
thing should happen with the strings So,o, SOPI. The second step 
of the Euclid algorithm, 

b= r041+ rl= (ro- r1)41+ r1(41+ I), 
will lead to the generation of more complex structures. ro - rl 
strings with the structure [ (ql  - l)SO,O]SO,l and rl strings 
Sl.1 with the structure [qISo,o]So,I will be generated where 
[nSi]Sj means that the string Si is repeated n times and 
concatenated with the string Si. The length of the two strings is 

11.0 = (41 - 1) 10, + 10.1 = 41 4 0  + 1 

11.1 = 41 10,o + 10.1 = 41 40 + 4 0  + 1 . 
Continuing the same procedure, i.e., dividing ro by rl , more 
complex strings will be generated. k t  n + 1 be the number of 
steps of the Euclid algorithm. Since a and b are relative prime 
then r, = 1 and the last two steps will be 

m-2=r,-14,+1=(r,-1-1)4,+(4,+1) 

rn- 1 = 4 n +  1. (3.3) 
The strings Sn,0, will have the structure 

Sn,o= K 4 n -  ~ ~ ~ n - l , o l ~ n - l , l  

by the clock edge [Fig. 4(c)]. The two waveforms for 
synchronous and asynchronous modulators are related. If a 
positive pulse is generated for the asynchronous modulator in 
the interval between two clock edges, then the corresponding 
pulse for the synchronous modulator will be generated at the 
next clock edge. Because of this, the error waveform for the 
synchronous modulator overshoots in the positive region 
before returning to the same value as in the asynchronous case. 

If the initial condition is positive, both error waveforms will 
slide to the left, the distance from their previous position 
measured along the vertical axis is equal to Y(0). For very 
small values of Y(O), the point P which is the nearest to the 
preceeding clock edge when a pulse is generated by the 
asynchronous modulator will move closer to the clock edge 
and become P' , but it will remain in the same interval. The 
same thing will happen with the rest of the peaks. As a result 
the limit cycle of the synchronous modulator remains un- 
changed, 10101101 in our case. When Y(0) is sufficiently 
large, then the point P will move on the clock edge to the 
position P" , and the corresponding synchronous pulse will be 
generated one clock period earlier. But the asynchronous and 
synchronous waveforms generated in this case are identical to 
those for zero initial condition with the origin translated in P" . 
The new limit cycle 10110101 can be obtained from the 
previous one by shifting it three bit positions to the right. 
Similar considerations can be made for negative initial 
conditions, for the point N closest to the following clock edge. 

In conclusion, for the single loop sigma delta modulation, 
not only is the period of the cycle invariant of the initial 
condition, but the structure of the cycle remains unchanged, 
except for a translation in time. 

From Fig. 4(c), it can be noticed that in the case of the 
synchronous modulator, while the sequence of positive pulses 
cannot be uniformly distributed because of the constraints 
imposed by the utilization of the clock, it is as close as possible 
to such a distribution. There is also another explanation for 
this assumption. For such a sequence the error between the 
constant input and the average value of any segment of the 
output bit stream of length N, Le., 

is minimal. For a complete limit cycle this error is 0 [8]. The 
structure of the limit cycle will be determined by finding the 
sequence of length a containing b ones distributed as uni- 
formly as possible among b-a zeros. Dividing the sequence 
length a by the number of ones b, 

a =  bqo + ro (3.1) 

where qo and ro are integers and ro < b, it results that the input 
level X = 1 /( q o  + (ro / b ) )  belongs to the interval [ l/qo, 1 / q o  
+ 11, the extremities of which are characterized by the cycles 
containing a one followed by qo - 1 zeros, and containing a 
one followed by qo zeros, respectively. The first step of the 
Euclid algorithm [lo], written in a modified form: 

a = bqo + ro = ( b  - r0)q'O + ro( 4 0  + 1) (3.2) 
gives the number of such strings. There are: 
- b - ro strings S0,o of length l0.0 = q o  with the structure 

l [ (qo  - 1)Ol and z transform SO,O(Z) = 1 .  
- ro strings  SO,^ of length l0.l = qo + 1 with the structure 

1 [ qoO] and z transform SOJ ( z )  = 1 where nO means the zero 
value repeated n times. The number of ones is equal to the 
total number of strings b, each string containing only a one 
value, while the relation (3.2) ensures that the total number of 
bits contained in these strings is equal with the period a. The 
way the two strings were chosen ensures the uniform distribu- 
tion of ones by subsequent concatenation. 

&,1= [ 4 n S n -  1,OlS"- 1.1 

1n.o = (4 ,  - 111"- 1.0 + 1"- 1.1 

/",I = 4 n  1, - 1 ,o + 1, - 1, I .  

and the lengths are given by 

The z transform of the string Sn,0 is 

Sn,o(z) = S,- I,O(Z) 

(3.4) 

(3.5) 

and similarly 

Finally, from (3.3), the limit cycle C will consist of rn- - 1 
strings S,,O and one string Sn,l. 

Sn+l.o=C= [(rn-l- 1)S"*ol~n*l. (3.7) 

(3.8) 

Its length a and z transform C ( z )  will be equal to 

1, + 1.0 = a = (m- I - 1)ln.O + In,l 

(3.9) 
As an example, for the input X equal to 35/8 1 ,  the algorithmic 
procedure described will lead to the following results: 

-1st step: 24 strings S0.0 = 10 and 11  strings = 100. 
-2nd step: 9 strings = (2S0,0)S0,1 and 2 strings = 

(3So,o)S0,1. 
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0.5 
7/15 

0.4 

DFT of this sequence 

1 1 k 
a a 

A ( k ) = ;  I C(eikwoT)I =- I c ( ( Y k ) l  Q k = -  (4.1) 
0.3 

where wo = 27rf,/a, f ,  is the sampling frequency. 
The dc component A(0) represents the input level X, and 

the harmonics A (k) constitute the noise. If ko is the highest 
harmonic in the baseband, then the noise power will be equal 

0.2 

975 

- q, = 2  
b = 7  

\ 0 -15  / 
-\\ a =  bq, t I I 

t 
I 

I I 
I 

- \ I I 
I I 

- I I I 
I I 
I 

I 

I 
I 

-3rd step: one string S2,o = (~SI,O)SI,I  and one string 
&,I = (5Sl,o)S1,1. C = Sz,oS2,1 = (~SI,O)SI,I(~SI,O)SI.I  = 
4[(2 SO,O) SO,] 1(3 SO,O) &,I 5[(2 SO,O) %I I O  &,o) SO,I . This result is 
identical with that obtained by computer simulation. We could 
have chosen as well, So,o = 01, So,] = 001. This corresponds 
to a one bit position shift to the left, or SO,O = 01, So,l = 010, 
which corresponds to a one bit position shift to the right. 
Obviously, So,o = 01, So,l = 100, would not work because by 
concatenation the distribution of ones among zeros will not be 
uniform. Similar choices can be made at every step, and they 
will correspond to translations of the limit cycle in time. 

0.51 

0.2 

0.1 7 
L 

I v .  THE OUTPUT SPECTRUM AND THE NOISE CONTRIBUTION 0 

We will define first-order spectra as those output spectra for 
which the Euclid algorithm applied to the dc input X consists 
of one equation. 

a=bqo+ 1 (4.3) 

b 1  
a 1 

40+- b 

X = - =  (4.4) 

The limit cycle of such spectra has the structure 

c= [ (b-  1 ) ~ 0 , O l ~ O , l .  (4.5) 

,' 
b = 7  I 
a - 1 3  / 

I 
I 
I 

I 

(C) The noise contribution for X < Xc = l / q o ,  can be examined, 
letting b take values on the set of natural numbers. Substituting 
Sn,0(z) = Sn,l(z) = 1 in (3.9) we have 

Fig. 5. First-order spectra (a), (b) X < X,. (c) X > X,. 

In Fig. 5(a), (b), the spectra for q o  = 2 and b = 3 and b = 
7 are shown, the ' dc value, (ao = 0) b / a  is equal to X, the 
distance between the kth zero of the envelope k / a  - 1 and the 
preceeding spectral line (Yk = k / a  is dk = k/a(a - 1). If b is 
very large, then the period of the cycle a is large, and the noise 
spectral lines are canceled by the zeros of the envelope 
function. Decreasing the value of b causes the power of the 
noise spectral lines to increase (this explains the noise peaks 
from Fig. l), and at the same time the number of these 
components in the baseband will decrease. The discontinuities 
in the peak region are due to such components leaving the 
band, and finally for values of b sufficiently low there is no 
noise component in the band of interest. In the majority of the 
applications the cutoff frequency f ,  of the low-pass filter is 
very small compared to the sampling frequency, (a, = f c / f s  

B 11. If qoa, 4 1 ,  the relation (4.7) becomes 

1 
A ( k ) = -  

a 

sin (1 --!) ka 

40 k 
sin - a 

(4.8) 

I 
a, = qo is the period of the cycle corresponding to the center 
value X,  of the peak region. The number of spectral 
components in the baseband is [a ,a] ,  the brackets indicating 
the integer part. The noise power (4.2) will be equal to 

Taking into account that lla I ac, the noise power will have a 
maximum for a = l /ac .  
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dB 

a=bq, - I  1 

4 b  

Fig. 6. Signal-to-noise ratio for first-order spectra noise peaks, fs = 256 
K H Z , f ,  = 4 KHZ. 

The value of the input dc level at which the peak noise power 
occurs is 

becomes identical with that for the first-order spectra (4.5) in 
which the strings So,o, So,] are interchanged. An identical 
relation with (4.7) will be obtained for the right side peak, the 

b 1 1 1-a, 1) proof is given in the Appendix. The difference consists of the 
period of the limit cycle which is Q = bg - 1. As a result the 
relative position of the zeros of the envelope and the spectral Q 4 0  040 4 0  

lines is reversed [Fig. 5(c)], and there is a slight asymetry 
between the two peaks (Fig. 6). Fig. 7 shows the noise power 
plotted against the dc input level. Most of the discontinuities 
from the plots from Fig. 6, in Fig. 7 are smoothed by the 
characteristic of the real filters, which do not have the abrupt 
cutoff assumed by the theory [ 11. 

In the Appendix, the Fourier coefficients for the nonde- 
generate second-order spectra are computed, the dc compo- 
nent is found to be equal to b/a = X ,  and the noise 
components are given by 

(4. 

Therefore, the width of the noise peak 6 X  will be equal to 

x- -=---=-* 
e- 

(4.12) 

The relations (4.10) and (4.12) are identical to the results 
obtained by Candy and Benjamin [I], except for a factor of 
two in (4.10) due to their use of single-sided spectra. On the 
left side of Fig. 6, the signal-to-noise ratio SIN = X 2 / N ,  
with N computed using the relation (4.2), is represented as a 

6x = x, - x, = - 
40 

(4.15) sin [ ( q l q O + q o +  1 h 7 d  sin (qlqoak$ sin [ (qoq1+ 1 ) a k 7 d  for k =  1 ,  . . .. 1 - 
sin [(aqO+ 1 h ~ l  sin ( w k 4  sin ( 4 0 % 4  

A ( k ) = -  

function of b for diverse values Of go . It can be noticed that for 
q o  = 16, the approximation made in determining the relation 
(4.8) does not hold anymore. The right side peak can be 
analyzed as a degeneracy of the second-order spectra, for 
which the Euclid algorithm has two steps: 

a = bqo + ro 
b=roq1+ 1 

When the center value x, is in the vicinity of a first-order 
spectra noise peak, its noise contribution will correspond to 
the characteristic of that peak. An infinite number of second- 
order spectra points will be generated between two values 
belonging to the first-order spectra by making ro in (4.14) take 
values on the set of natural numbers. Such intermediate values 
are shown in Fig. 7. Otherwise, new peaks similar to those 
from Fig. 7 will be generated. In Fig. 8, the structure of the 
noise peaks based on the order of the spectra is represented. x=-= b 1 - - are+ 1 We will analyze the noise region in the general case based 
on the following assumptions: 

-the maximum value of the noise peaks is attained before 
the last noise component leaves the baseband. 

(4.13) 

(4’ 14) 
a 1 r0(4041+ 1) + 4 0  

40+- 
1 

41 +- 
r0 1 1 

a,= (yl = - = (4.16) 

-the cutoff frequency of the low-pass filter is very small 

In the general case, the input X is equal with 

a ( r n - 1 -  1)4I,o+ h , I  with the limit cycle {[(ro - l)[[(ql - ~)SO,OISO,II}* 
[41SO,Ol~O,l. For 41 = 1 

X =  ro+ 1 - 1 - b b  - relative to the sampling frequency. -- 
(qo+l)(ro+l)-1 1 bq-1 a 

a-- 
1 x= . (4.16.a) - b  

q=qo+ 1 ,  b=ro+ 1 .  (4.14a) 1 
4 0  + 

1 By a translation in time the structure of the limit cycle 
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-1 
0 .4  

FIRST ORDER 
SPECTRA 

0 DEGENERATE 
SECOND ORDER 
SPECTRA 

X SECOND ORDER 
SPECTRA 

0.490 0.495 0.500 0.505 0.510 

Fig. 7.  The pair of noise peaks around x, = 0.5, = 256 KHz, fc = 3.5 
K H Z  . 

NOISE (dB1 

- -30 

2nd ORDER 
SPECTRA \ 

The relations (4.18) are identical with (3.5) used for determin- 
ing the string length. Both the length of the string and its 
spectral value could be determined using the same recursive 
procedure derived from (4.18): 

~ , , o ( ~ k ) = 4 n ~ , - I , o ( ~ k ) + ~ , - z , o ( ~ k )  

s n , l ( a k )  = S n , o ( a k )  + s n -  I , 0 ( 4 .  (4.19) 

The difference between the two series is given by the initial 
conditions. For the length of the cycle, they are ZO,O = 4 0 ,  ~ O , I  
= q1 qo + 1, this series being known in the theory of numbers 
[ 101 as the numerators P, of the continued fractions expansion 
of the number representation of the input X. The first two 
elements of the series S,,o(ak) are 1 and 4 0 ,  respectively, and 
they will generate the denominators Qn of the continued 
fractions. The following relations from the theory of the 
Euclid algorithm [lo], transcribed into our notation, will be 
used for our proof: 

I n s ,  - l,O@k) - 4 - 1 S n , 0 ( 4  = ( - 1)" 

a = 1, + 1 ,o = r, - 1 h , O  + L- 1.0 

b = s, + l,O(Qk) = r, - 1 s,,o(%) + s, - 1 , 0 ( 4 .  (4.21) 

(4.20) 

The width of the peak region is given by the difference 
between the dc input levels X,, X ,  corresponding to the 
center of the noise peaks r, - + 00 and to its extremities [ r, - 
from (4.16)]. 

&y=x,-x -L- s, 0 b k )  m - l ~ n , O ( ~ k ) + ~ n - l , O ( ~ k )  
e- 

4 l . O  rn  - l 4 , o  + l, - l ,o 

In (4.22) a, = Z,,O. The sign indicates that for odd order 
spectra X,  > X,  the noise peaks are situated in the left side. 
The right side peaks are a degenerate case of the next higher 
order spectra for which the input X is equal with (4.16.a): 

I 

Fig. 8 .  The maximum value of the noise peaks versus the input level. Each 
pair of peaks is represented by a spectral line. f, = 256 KHz, f, = 3.5 KHz. 

I 

4n+- 
1 

q n + 1 + -  
r, 

In the degenerate case qn+ 1 = 1, this expression for the input 
X 

becomes identical with (4.16.a) with 4,' = qn + 1 and r,'- = 
- (r,, + 1). Similar conclusions can be drawn for even order 
spectra. 

Computing the Fourier coefficients from (4.1) using (4.16) 
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and with the assumptions made will become 

This result is identical to (4.8), and as a consequence the 
formulas (4. lo), (4.12) are valid in the general case. 

v. THE EFFECTS OF THE LIMIT CYCLES ON THE PERFORMANCE 
OF SIGMA DELTA MODULATORS 

For analog inputs the modulator structures from Figs. 2 and 
3 are usually implemented by switched capacitor circuits. The 
same structures implemented using adders and registers ([6] 
for single loop, [l I] for double loop) can be used in digital-to- 
analog converters. The PCM input is converted by these 
modulators in a one-bit stream, which is filtered by analog 
filters. The performance of these digital modulators is very 
close to that of the ideal model because their operation is not 
perturbed by parasitics or thermal noise as in the case of the 
analog sigma delta modulators. 

Because of the finite bit length of the arithmetic units, the 
inputs to such digital sigma delta modulators are represented 
by rational numbers. When dc values are applied to the input, 
such modulators will invariably end up in a limit cycle. 

For the single loop sigma delta modulator doubling the 
sampling rate will result in a 9 dB gain in the signal-to-noise 
ratio for a variable input signal. However, for a dc input the 
worst value, given by the amplitude of the noise peaks (4. lo), 
will decrease only with 6 dB. That means, the difference in the 
performance of the system with a random signal as an input, 
versus a dc value, will increase with 3 dB for each doubling 
of the sampling rate. Moreover, for certain applications as 
voice channels, such limit cycles are perceived as tones and 
are noticeable at signal levels much lower than the white noise 
or the shaped noise characteristic to the sigma delta modula- 
tors. 

For double loop modulators the mechanism of generating 
the limit cycles is much more complex due to the fact that the 
period of the limit cycles depends on the initial conditions. If 
the fundamental frequency is outside of band of interest it will 
be eliminated by the subsequent filtering of the output of the 
modulators. There will be no noise contribution from the 
modulator in this case. This fundamental frequency can be 
much lower than the sampling frequency as the spectrum from 
Fig. 9 indicates. 

No theoretical results equivalent with those obtained in 
Section IV, which would permit the characterization of the 
limit cycles of the double loop modulators have been obtained, 
so far. The simulation and experimental data seem to indicate 
that with each doubling of the sampling rate the amplitude of 
the limit cycles decreases with 10-12 dB. Therefore, the 
observations made for single loop modulators remain valid in 
this case. 

For analog double loop sigma delta modulators the idle 
channel condition (X = 0.5) can generate such limit cycles. 
The dithering effect of the noise inherent to the analog circuits 
can help to eliminate this problem. For designs with very low 
noise levels such spectrums exists. 

VI. CONCLUSIONS 
Two methods for the study of the limit cycles in sigma delta 

modulation were presented in this paper. 
The first method, described in Section 11, permits to 

determine the necessary conditions for the existence of the 
limit cycles. The one bit quantizer is characterized by the sign 
function. The difference equations which describe the circuit 

I I I I 
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kHz 
Fig. 9. The spectrum of the limit cycle, in the 0-20 kHz band, at the output 

= 1 MHz. The input is 

behavior, written for every sampling interval of the limit cycle 
are added together, so that the terms corresponding to the state 
variables are cancelled. This method was used successfully to 
more complex architectures like Candy's double interpolative 
D/A converter [2] and extensions of this architecture [12]. 
These architectures contain two, respectively, three one-bit 
quantizers, the range of the output values is not limited only to 
binary values. The results were identical to that from Section 
11. The input must be a rational number, which is equal with 
the sum of the values of the output during the cycle divided by 
the cycle length. 

In Sections 111 and IV the structure of the limit cycle was 
determined for single loop sigma delta modulators and based 
on it, the spectrum and the noise contribution were computed. 
This method could be used in the case of idle channel noise in 
double loop modulators, which presents interest in some 
telecommunication applications. The applicability of this 
method is limited by the fact that for double loop modulators 
the structure of the limit cycle depends on the initial 
conditions. The simulation results show that this is also true 
for other sigma delta modulator architectures ([2], [ 121). 

APPENDIX 

THE FOURIER COEFFICIENTS OF THE SECOND-ORDER SPECTRA 

The structure of the limit cycle for second-order spectra 

of a double loop digital sigma delta modulator. 
idle code (X = 0.5). 

(3.7) is 

The z transforms of the strings SI,I (3.6) and their 
corresponding spectra are similar to those of the limit cycle for 
the first-order spectra. 

(A.2) 

(Yk= (A.3) 
k 

r0(4041+ 1)  + 4 0  

Substituting (A.2) in (3.9), taking into account that fl.0 = q1qo 
+ 1 and that (Yk is given by (A.3) and neglecting a phase 
component the following expression is obtained for the 
Fourier coefficients: 
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For the degeneracy case q,  = 1 

1 sin [ (ro-  l)(qo+ 1 ) c u k n I  sin (2q0ak7r) 
+ ( - l ) k  

sin [(qo+ l ) a k ? r ]  sin ( Q o a k r )  
A ( k ) = -  

where (Yk = k/ro(qo + 1) + q o .  
With the substitution 

sin [(ro+ l ) ( q o +  l ) a k 7 r ]  -sin [(ro- l ) ( q o +  1 ) a k 7 r ]  

=2 sin [(qo+ l ) a k 7 r ]  cos [ro(qo+ l ) a k n ]  

=2 sin K Q O +  1 b k 7 r I  cos [ @ O ( Q O +  1 ) + q o ) a k 7 r - Q O a k 7 r l  

= 2  sin [(qo+ 1 ) a k 7 r ]  cos (k7r-q0ak7r) 

=2(- l ) k  sin [(qo+ 1 ) a k 7 r ]  cos ( q o a k 7 r ) .  

(AS) becomes 

1 sin [(ro+ l ) ( q o +  1 ) a k ~ )  
a sin [(qo+ 1)ak7r] 

A ( k ) = -  (A. 6) 

The relation (A.6), with the notations (4.14.a) is identical with 

For the nondegenerate second-order spectra the dc compo- 
nent is A(0) = b/a  = X in (A.4). In computing the noise 
components, the relation (A.4) can be simplified, using (A.3) 

(4.7). 

(ro- l ) ( Q l Q O +  1 ) a k r  

= [ro(41 Qo + 1) + 4 0  - Q1 Qo - 11 ak 7r 

= k7r - ( 4 ,  Qo + q o  + 1)W7r. 

With this substitution and neglecting the sign, (A.6) becomes 
(4.15). 
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