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The  Structure  of  Quantization  Noise 
from  Sigma-Delta  Modulation 

JAMES c .  CANDY, FELLOW, IEEE, AND OCONNELL J .  BENJAMIN 

Abstract-When the  sampling  rate  of  a  sigma-delta modulator far 
exceeds  the  frequencies  of the input signal, its modulation noise is 
highly  correlated with the  amplitude  of the input. We derive  simple 
algebraic  expressions for this  noise  and  its spectrum in terms of the 
input  amplitude. The results  agree with measurements taken on  a 
breadboard  circuit. 

This work can be useful for designing  oversampled  analog to digital 
converters that use sigma4elta modulation for the primary con- 
version. 

I. INTRODUCTION 

Q UANTIZATION noise introduced  by delta modulation is 
easily analyzed when one assumes that overloading  is 

avoided and that  the noise  is random [ 11. The results of  such 
analysis  agree with practice provided the  modulator  has an 
active input,  but  the results are  misleading for  quiet inputs. 
It is the  assumption of randomness that is faulty. When the in- 
put is steady the noise  is  highly colored,  its  spectrum  appears 
as sets of distinct lines and  the signal distortion is critically 
dependent  on circuit conditions that determine  whether  or 
not strong lines lie in baseband. 

The authoritative work on  the  structure of  noise from  delta 
modulation is that of  Iwersen [2] . He  gives a  description  of 
the noise spectrum  and shows how it depends  on  imbalance 
between positive and negative step size and on  the  input 
signal. 

Iwersen’s work  has been particularly useful for designing 
oversampled PCM encoders  which make use  of  high speed 
delta modulation as the initial encoding [3]. The output of 
the  modulator, when digitally filtered, is  resampled at  twice 
baseband  frequency to provide the PCM. Deliberate  imbalance 
of step size  can greatly improve the idle channel  resolution  of 
these codecs [4] . 

The  present  work derives results for sigma-delta modula- 
tion  that are  closely related to those  of  Iwersen.  The  approach 
used  in this analysis  is different from Iwersen’s and in  some 
respects is more direct. We show that reasonable approxima- 
tions provide  very  simple descriptions of the  resolution of 
modulators that are  sampled at  a high frequency,  and  the 
results agree with practice. Before presenting this analysis, we 
describe measurements  of noise from  a real circuit. The main 
emphasis  of this paper is on sigma-delta modulation because 
it is ,fast becoming the  preferred  modulation  for oversampled 
codecs [4] - [8] . The Appendb shows  how  the analysis  applies 
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to ordinary delta modulation.  The analysis and some of the 
results presented  here also apply to  the waiting-time  problem 
described  in [ 9 ] .  

11. NOISE  FROM  SIGMA-DELTA  MODULATION 

Fig. 1 shows the circuit of  a simple  sigma-delta modula- 
tor,  that accepts positive analog  amplitudes  and  produces 
sequences  of  positive  impulses. An impulse  is generated, in 
time  with  the clock, whenever the  integrated difference be- 
tween  the input and  the output is  positive. By this  action 
the circuit regulates the rate at which kpulses occur at- 
tempting to keep  the average output equal to  the average in- 
put.  Zero input corresponds to  no  output impulses while 
maximum input corresponds to impulses  generated  at  the 
clock rate. Then  applied signals.  increase or  decrease  the rate 
its  dynamic range  where output impulses  occur at one half the 
clock rate. Then  applied signals  increases or decreases the rate 
depending on whether  they are  positive or negative. 

The output of  the  modulator is a digital representation  of 
the signal, which  can be demodulated by smoothing  the 
impulses in a low-pass filter and removing the bias. In prac- 
tical implementations  the output pulses  have finite duration 
but their shape can be  allowed for in the design of  the  low- 
pass filter. Practical measurements  described in this work came 
from  a circuit that generates pulses lasting for  a whole clock 
period,  and  they are smoothed in a low-pass filter that cuts off 
near 3.5 kHz. 

When its  input is steady, the  modulator  generates pulses 
in recurrent  patterns that depend on  the  input level, and we 
expect  the output  to be noisy when repetition rates lie  in 
baseband. Measured  values of rms  noise  in baseband are 
plotted in  Fig. 2 against input level, for  three sampling rates. 
These  graphs show that noise  is  largest  when the  modulator 
is  biased near  the  ends  of  its range and  next largest  near the 
center. Indeed,  most  of  the circuit’s  noise occurs in peaks adja- 
cent to bias  values that divide the  dynamic range in small 
whole number ratios. Peaks of noise occur in  pairs and are 
most  prominent when the  sampling rate is  large compared to 
baseband. Arrows on  the vertical axis of these  graphs show 
average  noise  levels calculated  from  (35)  of  the  Appendix. 

For applications in communications it is advantageous to 
have low noise in the  quiescent state;  therefore,  modulators 
should be  biased to a  quiet  state away from  the large  peaks of 
noise. The advantage  in  doing so is demonstrated in Fig. 3 
which shows the signal-to-noise ratio measured when the cir- 
cuit was activated  with  a sinusoidal input  for  two  conditions. 
One  biased to the noisy state  at  the  center  of  the  dynamic 
range and  the  other to a relatively quiet  state 1/20  of  the range 
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Fig. 1. An outline of a sigma-delta modulator,  the trigger generates an 
impulse  timed to the  clock whenever z is positive. 
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Fig. 2. Graphs of measured noise  plotted against the  level of dc in- 

put X. The  active range  is 0 < X < 1 and for normal  ac operation 
the  modulator  would be  biased to X = 0.5. The arrow shows  the 
expected average  value of noise. Sampling rates are:  (a) 64 kHz; 
(b)  256  kHz;  (c) 512 kHz.  Baseband  is 3.5 kHz. 

from center. The abscissa of these graphs is the  amplitude of 
the input sine  wave.  Local depressions in  the signal-to-noise 
ratio correspond to states where an extremity of the sine wave 
lies on a noise peak. For example, in Fig. 3(b), inputs that are 
a  little larger than -20 dB touch the central noise peak. 

The analysis we are about  to present will enable these 
noise  levels to be calculated, and because the  structure of the 
noise  is most noticeable at high sample rates, we  will be con- 
cerned with sampling rates that far exceed baseband fre- 
quencies. 

111. A  MODEL FOR SIGMA-DELTA  MODULATION 
We now develop a model that is a convenient basis for 

analyzing the noise generated by sigma-delta modulation. 
First, consider the asynchronous modulator that uses no tim- 
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(b) 
Fig. 3. Signal-to-noise  ratio of a  modulator  with  a 1.02 kHz sine wave 

input  sampled at 256 kHz. X marks  the expected values of idle 
channel SIN: (a) The  modulator biased at  center of its range. (b) 
The  modulator biased at 11/20 of its range. 

ing clocks, as shown in Fig. 4. We let x represent the input 
level and z represent the integrated difference between the 
input and  the output, y .  An impulse of magnitude A is gener- 
ated  at  the output whenever z becomes positive. Fig. 5 shows 
representative waveforms of signals in  this  modulator. When x 
is constant, the error z is a regular sawtooth waveform and y a 
regular stream of impulses, both of frequency x/A.  

Now modify the modulator to synchronize its  output  to 
a clock of period I- as  in Fig. 1, where output impulses can 
occur only when the clock is present and z is positive. Wave- 
forms in  Fig. 6 show that the output impulses still occur at 
an average rate of xlA, (if 0 < x  < A/r),  but each impulse is 
delayed from the corresponding asynchronous pulse in order 
to be  aligned with  the  next clock. The synchronous sawtooth 
waveform z overshoots positively but returns to  its asyn- 
chronous value after the impulse occurs. 

An impulse waveform identical to y in  Fig. 6 could be 
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Fig. 4. The asynchronous modulator, an impulse is generated when- 

ever z is positive. 
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Fig. 5. Waveforms in the asynchronous modulator with dc input X .  
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Fig. yL 6. Waveforms in the  clocked modulator, with dc input X. 

generated directly by sampling a regular sequence  of  rectangu- 
lar pulses of  frequency x/A and  duration r as shown in Fig. 7. 
This model  would be inconvenient to implement,  but it is 
very  easy to describe  mathematically;  this we now do. 

IV. ANALYSIS OF THE SIMPLIFIED  MODEL 

The  range of  inputs  that  the  synchronous  modulator can 
accommodate  without saturating is 0 < X < A/r .  In  order to 
have unit  dynamic range we scale amplitudes to make A/r  = 
1, then,  the  input would  normally be  biased to the  state where 

The train of impulses that is the  clock signal is represented 
X =+. 

by the  expression 

Fig. 7. A sampling system .that produces the same output as does  the 
clocked modulator. 

Similarly, the  rectangular wave in Fig. 7 can  be expressed as 

R(t)= .kt{ i 6 ( t - t o - ~ ) - 6 ( t - t o - ~ - i ~ ) }  X 

where the delay to is determined  by initial conditions of the 
modulator. The Fourier series representation  of  the  rectangu- 
lar wave can now be written in the  forms 

R(t) = x x 1 d t  { exp (27rjF (t 
7 1  7 

The output, R sampled  by C,  is  given by  the  product  of C(t) 
and R(t). 

In this last equation  the  constant  delay (to + ( 4 2 ) )  has  been 
ignored. 

The result (5) represents  the output signal  as sets of spectral 
lines  of frequency 

f =  (F). 
Appendix I1 shows that this agrees with Iwersen’s result for 
delta modulation [ 2 ] .  Now  recall that all the useful informa- 
tion in a sampled wave  is contained in a  band  of  frequency 
equal to half the sample rate 
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range, particularly when rfo is small. Let us now study the 
noise  in the vicinity of the m/n division by letting 

In order to study  this band we direct our attention  to those 
values of 1 and k that satisfy 

and  thereby eliminate the parameter k .  
At this point it is useful to introduce  the following nota- 

tion: Z(u) will represent the nearest integer to the real number 
v and [v] will represent the fractional roundoff, that is, 

where m < n are incommensurate integers and u a deviation. 
In order for x to locate major peaks of noise, sensible  ranges 
for these parameters are relatively coarse divisions compared 
to  the oversampling ratio 

1 

n - >for where 

-0.5 < ( ~ - 1 ( ~ ) ) < 0 . 5 .  

For a component of (5)  to lie  in the  band (7) requires that 

k = -Z(lx), (1 0) 

and its frequency can be expressed as 

and v small. Its true range will emerge  as result (19). 
Substituting (15) in (13) requires that 

[lx] = 1 - + u  <for.  [t  )I 
When u is very  small this condition can hold only when 

m = 0 or 1 is a whole number multiple of n, otherwise 

Thus,  the  components of y that lie in  the half sample band of 
frequencies can be expressed as 

m We now put 

(1 2 )  

useful output; 

1 = in 

The first term in this expression represents the 
the second term is modulation noise. 

where i is a positive integer then 

V. BASEBAND NOISE 

For the noise component of y at  frequencyf  to lie in base- 
band f o  , 0 < f < f o  d 3 r,  requires that 

Then frequency components lie in baseband if 

rf = [lx] = [Iu] <for. (1 9) 
f+ = I [kl I <for. (1 3) 

The power associated with that component is given by the 
expression 

We are particularly interested in the case where 1 is small, 
that is, 

l = i n <  -; for 
I VI sin2 (7r[k] ) 

P, (Ix) = 2 Y then 

which agrees with  the result (3a) in [4] . This noise power will 
tend to be largest  when 1 is  small, therefore, in order to exam- 
ine the major properties of the noise, we want to locate  those 
values  of x in  the range 0 d x < 1 that satisfy (13) with small 
values of 1. 

We shall  assume that the net power is given by the sum  of 
powers in individual components because situations where 
components have precisely the same frequency are very un- 
usual. 

Notice in  Fig. 2 that the baseband noise occurs predomin- 
antly in narrow peaks adjacent to integer divisions  of the signal 

The range of u that permits this  condition to hold is 

I VI <urn,, = f o  - 7 . 
n 

There are many values of 1 that satisfy (19)  without satis- 
fying (20) but they are large. (For example, values near to 
1 = j /  I u I where j 2 1 .) The noise power neglected by accepting 
condition (20) is of the order of one part in c f ~ r ) - ~ .  This is 
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small  because in most applications of  sigma-delta modulation 

In order to obtain a simple expression for the noise  power 
let us now consider modulators  wherefor is  small  enough that 

sin (.for) = nfor. (23) 

foT < 0 . 1 .  

Then, using (21) and (14), the power in each baseband 
component  that satisfies (20) may  be written as 

P, (u) = 2 3 .  (24) 

To get an expression for  the  total noise  power at a given 
value of x we  need to know  the  number of components that 
satisfy (21). This inequality may be written as 

which sets the limit on  the  number of significant noise com- 
ponents in baseband. In particular,  for u in  the range 

there  are i ,  components of noise and  the  net baseband  power 
is  given by 

P(u) = (22-1 u2). 

Fig.  S(a)  shows a graph of calculated values of the  net rms 
baseband  noise u G i ,  plotted against u. Fig.  8(b)  shows the rms 
noise  measured on a real circuit. The sharp  corners in Fig. S(a) 
are rounded  in (b)  because the practical filter used to define 
baseband does not have the  abrupt  cutoff  that  the  theory 
assumes. The characteristic of  the filter that was  used  is  shown 
in Fig. 9. A useful approximation of the measured graph in 
Fig.  8(b)  is obtained  by assuming that i is not only  an integer 
but also a real number equal to urnax/ I u 1; then 

A pair  of  maxima occur in the noise  when I u I = urnax, 
their  amplitude is  given by 

Fig. 10 shows a graph plotted against l / n  of  the rms  noise 
maxima,  taken  from Fig. 2. The value of fo calculated from 
the slopes of this graph is 3.0 kHz  which  is reasonably well 
in accord with  the  corner  frequency  of  the filter character- 
istic in Fig. 9. 

(b) 

Fig. 8. An expanded view- of a pair of peaks of noise.  (a)  Expected 
shape with ideal low-pass  fdter.  (b) Measured  shape with real  base- 
band fdter. 

FREPUENCY t KHz I 

Fig: 9. Response of the low-pass fdter  that defines baseband in  the 
experimental  circuit.  The  analysis assumes an abruptly cutoff 
fdter. 
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Fig. 10. The maximum rms values of noise in Fig. 2 plotted against 

l/n for various sampling rates. 

The  total power in one peak of noise can be expressed as 

Urnax - 
P A n )  = x [ ' 2u2 du 

i= 1 

3 
= 0.8umax3 = 0.8 (F) 

Eighty-three percent  of this noise  is contributed  by  the  pri- 
mary component  for which il = 1 (i.e., I = n). 

Results (25)-(28)  are  all independent  of the parameter m 
defined by (15); this  fact agrees with the measurements pre- 
sented as  Fig. 2.  Properties  of  the first peak at x = 0, for 
which  m = 0, can  be obtained by studying  the final  peak at 
x = 1, for which n = 1 because 

{ I ( ;  . 3 }  =[lu] 

f o r a l l l w h e n m = O o r n = l .  

VI. APPLICATIONS OF THE RESULTS 
The results derived in the previous sections apply to modu- 

lators  that have steady dc input signals. They may be used, 
however, for dynamic inputs  that change  slowly compared 
with the sampling rate. This assertion was confirmed  by re- 

plotting the graphs of  Fig. 3 for signal frequencies in the range 
100 Hz to 3 kHz and  noting no appreciable change. We may 
therefore express the  net noise power  for  any input  that 
change's  slowly by 

N 2  = I, ~ P(x)p(x) dx. 

P(x)  is the noise for  an  input level x as  given  by (26) and 
p(x)  is the  fraction  of  time that  the  input has value x. For 
sinusoidal input having amplitude A and  dc offset x0 

= 0, otherwise. 

To calculate the noise contributed  by  the  two peaks in the 
region of  input level x = m/n we  use (26) to get 

Now  we consider three examples that relate to properties of 
the graphs in Fig. 3. 

Example 1: We will calculate the noise contributed  by  the 
pair of large peaks at  the  center  of  the range  where x = 1/2. 
The  modulator is  assumed to be biased to the  center x, = 
and  the  input is a sine wave of  amplitude A .  To describe the 
noise peaks we put n = 2 ,  urnax = v07)/2 andx = (1/2 + u), 
then (31) becomes 

where the range ul = urnax if A 2 umax and ul = A ,  other- 
wise. It follows that 

=--- 4~rn a x A 
1T 

' A <urnax. 

Selected values of the rms  signal-to-noise ratio derived from 
(33) are  shown on  the graph in Fig. 3. We see good agreement 
for  input  amplitude below -20 dB. At larger amplitudes, noise 
from  other peaks contribute strongly to the  net  impairment. 
We draw attention to the  fact that some of  the  error  predicted 
by (33) manifests itself as a loss of gain rather  than as added 
noise. This loss  is  sometimes a significant part  of  the  distortion 
and  it has been included in the measurements reported  in 
Fig. 3. 

An interesting property  of result (33) is the fact that when 
A = U m a x  the signal-to-noise ratio is 6 / 8  = -4.06 dB inde- 
pendent of the sampling rate. 
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Example 2: We now consider the case where the  modulator 
is biased to center x. = 1/2 and  the  input sine  wave  is about 
-9 dB  (A*1/6) below saturation. In this  condition  the noise 
peaks at center have little  effect on resolution (see Example 1). 
The dominant noise is that  for which n = 3,  it  distorts  both 
extremes of the sine  wave where x = 3 and 3. The noise 
power from these peaks is largest when the maximum noise 
lies  on the  extreme of the sine  wave. This noise can be ex- 
pressed  as 

For  256 kHz sampling and  3 kHz baseband 

urnax = 1 3 = 1. 
3 256 2 5 6  

We neglect Urnax in  comparison  with f to get 

and  the signal-to-noise ratio = 35.8  dB. This  compares  with 
the  measured value, 37 dB. 

Example 3: With the  modulator biased 1/20 of the range 
from  center, we calculate  the idle channel noise introduced  by 
the  two small peaks  for which n = 10, x = (1 1/20) + u), 
x. = 11/20, and urnax = (for/lO). Following the same reason- 
ing as that of Example 1 the'noise is  given by (33). The  ex- 
pected signal-to-noise ratio  plotted  in Fig. 3(b) agrees with  the 
measured value for small inputs. 

VII. MULTILEVEL  QUANTIZATION 

Some sigma-delta modulators use multilevel quantization 
rather  than  the  two level that we  have considered.  The analysis 
presented applies to such multilevel quantization provided that 
the  net gain  in the  feedback  loop [8] is unity  and  that signal 
amplitudes are scaled to make  the  step size unity. 

Measurements on  a real circuit  indicate that changes of loop 
gain near unity have a weak effect  on  the  noise.  Indeed, modu- 
lators  with gains  in the range 0.7 - 1.3  all  have similar noise 
structures. 

With multilevel quantization  the  amplitude of the signal can 
far exceed  the  step size and  the  probability that  the  input has 
a  particular value p(x)  is  correspondingly.  reduced. This fact 
tends to whiten  the  net noise  in multilevel modulators. 

CONCLUDING  REMARKS 

We have demonstrated that simple formulas give good pre- 
dictions of the  resolution  that can be obtained  from sigma- 
delta  modulators.  The  method is particularly useful for  deter- 
mining the  resolution at certain  critical  states where just  a 

few  noise peaks of Fig. 2  dominate. These states usually set 
the minimum resolution of the  modulator  and are thus of 
most  interest in the design  of a circuit. 

Complete graphs of the  resolution, such as those given in 
Fig. 3, would be tedious to calculate;  they are better  obtained 
by simulation. 

APPENDIX 

ANALYSIS  BASED  ON  RANDOM  NOISE 

We assume that  the  input is sufficiently active. to  make the 
quantization noise so random that  it may [8] be  represented 
as additive white noise E with power spectral  density reo2. 
The modulator is represented  by  the  circuit  in Fig. 11 and its 
action described by 

Y n  = X ,  + (En -En- l ) .  

Thus,  the rms spectral  density of the noise added to the signal 
can be represented as 

No) = 6 e 0 ( 1  - exp (-jwr)) 

and  its  magnitude  expressed as 

The  net rms noise in baseband No is  given by 

No2 = 4eO2r sin2 (nfr) df 

For oversampled modulators f07 < 1, No may be approxi- 
mated by 

The  quantization noise E has uniform  amplitude  distribution 
in the range ?OS. Therefore,  eo = &. Thus,  the rms base- 
band noise from an active modulator 1s expected to be 

.1 

This value  is marked  on  the graphs in Fig. 3. 
Comparing No2 with  the noise power in each  separate  peak 

as given  by (28) we find that  the sum of the noise in  the  peaks 
is  very nearly e q x l  to No2. About # of this  total is contained 
in the  two peaks at the  ends of the range. The two peaks at the 
center have about 0.1 of the  total. 

NOISE  FROM  ORDINARY  DELTA  MODULATION 
Fig. 12(a) is a diagram of a  delta  modulator  and Fig. 12(b) 

In order to obtain  a  constant  input to the sigma-delta 
is an equivalent  circuit based on  the sigma-delta modulator. 
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e (  t )  Here, we have  neglected the  constant delays. This result agrees 
1 with Iwersen's  when x represents rate of change of  input 

ACCUMULATION signal. 
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Fig. 11. A linear  sampled  data  model  of  a sigma-delta modulator. 

THRESHOLD 7 

- C. ACCUMMULATOR 

OUTPUT 1 YD 

(a) 
CLOCK 

(b) 
Fig. 12. (a)  Schematic  of  a  delta  modulator. (b) An analog of a  delta 

modulator  that is based on sigma-delta modulation. 

modulator a constant  rate of change  is required at  the  input 
to  the delta modulator. Then the  output of the sigma-delta 
modulator, given by ( 9 ,  can  be accumulated to  give the delta 
modulator output. Such accumulation may be represented by 

Y ( 0  
= 1 - exp (- 211jf7) 

= xz sin (nh) exp(zn(k + K :) 
I k al(1- exp (- 2?rj(Zx + K ) )  

uu 
I K  27$(-1)" 
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