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ABSTRACT 
A mathematical model of mismatch noise in  an 
oversampled DAC is established for two important 
dynamic element matching techniques. The noise 
shaping of the data weighted averaging method is 
proven to be first order. Analytical predictions of 
converter resolution can be made from array size, 
mismatch variance and oversampling ratio. 

1. INTRODUCTION 
Sigma-delta modulation has become the preferred 
technique for high-resolution data conversion [ I ] .  
Means of improving the performance of the converters 
are continually being sought. One promising avenue 
currently being explored by many researchers is the 
extension of traditional single threshold sigma-delta 
modulation to multibit quantization [2]. Significant 
advantages are to be obtained such as higher bandwidth 
and lower power consumption. Multibit sigma-delta 
modulation is particularily appropriate in the case of 
high resolution converters where the barge capacitors 
necessary for low thermal noise can be conveniently 
divided into smaller ones without area overhead. 
The advantages of multibit quantization have been 
known for a long time. One major drawback has 
prevented its widespread application : converter 
linearity is severely limited by the matching of 
elements. Process lithography provides elements with a 
typical matching of 0.1-0.5% corresponding to a 
resolution of 8-lobits. Higher resolutions can be 
obtained by laser trimming or digital calibration 
techniques [3-41. However, an attractive solution due to 
its simplicity and cost-effectiveness is dpumic  elentent 
matching (DEM). The aim of DEM techniques is to 
modulate mismatch errors away from signal frequencies 
in order to remove them by filtering. An algorithm 
selects elements for each conversion such that they are 
used equally often and no single element can lead to the 
accumulation of a large linearity error. 
Various DEM techniques have now been presented in 
the literature [5-91. Up to now, the principal tool in the 
study of their mismatch noise has been system 
simulation. This paper provides an analytical model of 
the structure of mismatch noise. It is thereby possible to 
make theoretical predictions of converter resolution as a 
function of oversampling ratio, matching and number of 
elements. A detailed analysis of two typical techniques, 

random selection [SI and dura weighted averaging [S- 
91 is presented. The postulated first order noise shaping 
of the data weighted averaging technique is confirmed 
analytically and extension to higher order noise shaping 
is foreseen [lo]. 
The following treatment is based only on oversampled 
digital to analog converters (DAC's). However it should 
be pointed out that a major area of application of the 
results is in the DAC used in the feedback path of sigma 
delta analog to digital converters (ADC's). 

2. DEFINITIONS 
Most D/A converters are made up of a number N of 
nominally identical cells, such as current sources or 
capacitors. The D/A conversion is then realized by 
selecting a number of cells corresponding to the input 
code and by adding the contribution of the selected cells 
in order to generate an analog output voltage or current. 
Particular examples are D/A converters based on binary 
weighted capacitors. These converters are realized as an 
array of elementary identical capacitors, since, for bettL. 
matching, each capacitor of weight 2k is composed of a 
parallel combination of 2k identical capacitors. As 
various elementary cells are then controlled by a same 
signal, the number of control lines for the whole array 
varies only with the logarithm in base 2 of the number 
of capacitors. 

More generally, we assume here after that the N 
elementary cells of the D/A converter can be selected 
independently of each other. Let us denote by Wi the 
weight of the i-th cell relative to its nominal value and 
by di its control signal ( d p l  when the cell is selected, 
otherwise di=O). The analog output signal y from the 
DAC can then be written as : 

N - 1  
y =  C d i . w i  (2.1) 

i = O  
where the number of selected cells is simply the input 
code x of the DAC : 

N-1 
X =  C d j  (2.2) 

i=O 
Without any mismatch, the weight Wi of each Cell 
would be equal to its nominal value assumed to be 1, 
and hence y=x, meaning that the analog output is 
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proportional to the input code, as in ideal case. 
However, due to mismatches, each weight Wi deviates 
from its nominal value 1. Let US denote Wmean as the 
average weight for the cells of the array : 

1 N-1  
wme,,=x'  C Wi (2.3) 

i = O  
With (2.2), the output code (2.1) can then be rewritten 
as 

Y = wnzean'x + Ymis (2.4) 

Ymis = c di. (wi - w,e,n) (2.5) 

with 
N-1 

i = O  
being the error due to mismatch. This noise term will be 
evaluated for two different algorthms of dynamic 
element matching, which are random selection and 
cyclic selection 

3. RANDOM SELECTION 
This technique was proposed by Carley [ 5 ] .  A number 
of cells corresponding to the input code is selected 
through a Butterfly decoder controlled by a pseudo 
random number generator. To simplify the evaluation of 
the random selection, we make the following 
hypotheses : 
1) all the combinations of selected cells have the same 
probability. 
2) the weights w i are random variables with expectation 
E( wi }=I  and variance sw2 
3) the weghts Wi  and W j  are independent variables for 
i#j 
As all the cells have the same probability density 
function, the variance of the mismatch is independent 
on the selected cells. Hence : 

This formula shows that the power of the mismatch 
error with Lhis algorithm is modulated by the value x of 
the input code. This noise power cancels at the 
extremities of the range, for x=O, as no cell is selected, 
and for x=N, as all the cells are selected. In both cases, 
no mismatch error is introduced. The noise power is 
maximum in the middle of the range, for x =N/2, when 
half of the cells are selected. The power is then equal to 
N sw2/4. Figure 1 shows the RMS value of the 
mismatch noise Ymis as a function of the input code x. 
The simulation results are close to the value predicted 
by (3.1). 

Assuming that the cells are selected independently of 
the cells from one sampling cycle to the other, the 
mismatch noise has a white spectrum between 0 and 

fs/2 with fs being the sampling frequency. Assuming 
that the converter is oversampled by a factor M, only 
1/M of the mismatch noise power will then fall into the 
signal baseband. As the signal swing runs from 0 to N, 
the maximum resolution that can be obtained is given 
by : 

4. CYCLIC SELECTION 
In sigma delta modulation, high resolution is obtained 
by combining oversampling together with noise shaping 
in  order to modulate the quantization noise outside the 
baseband, so that most of the noise can further be 
eliminated by filtering. In fact, noise shaping techniques 
can also be combined together with dynamic element 
matching techniques in order to reduce the sensitivity to 
matching. In the particular case of first order low pass 
sigma delta modulation, this technique consists of 
accumulating the mismatch error and selecting the cells 
in such a way that the accumulated error remains as 
small as possible. Basically, this can be realized by 
counting the number of times each cell is selected and 
by selecting the cells in  such a way that all cells are 
more or less equally used. 

A very efficient implementation of such an algorithm is 
the cyclic cell selection, as proposed by [8], and also 
refered to as data weighted averaging [9]. This 
algorithm can be implemented by using a digital register 
ptr called pointer containing the address of one cell of 
the array, with O<=ptr<N. At each clock cycle, this 
pointer is incremented modulo N by the input code : 

The cells selected at time k are the cells labelled from 
ptr(k-1) to ptr(k) by increasing order, that is cells ptr(k- 
l),  ptr(k- 1 )+ 1, ptr(k- 1)+2, ...p tr(k)- 1 if ptr(k- l)<=ptr(k), 
otherwise ptr(k-1), ptr(k-l)+l,.__ N-1, 0, I ,  ... ptr(k)-1 if 
ptr(k- l)>ptr(k). 

p t r ( k )  = ptr (k  - 1) + x ( k )  mod N (4.1) 

The mismatch errror at time k is then given by : 
if prr(k)  2 ptr(k - 1) 

)'mis(k)= C w i  -"(k).wniean 
ptr( k )  - 1 

i = ptr( k - 1) 
if p t r ( k )  < ptr (k  - 1) 

N-1 ptr(k)-l 
Ymis(k)= C w j  + C w i  -x(k).wmean 

i = ptr(k - 1)  i = 0 
(4.2) 

In order to demonstrate that this mismatch error benefits 
from first order noise shaping, let us first remark that 
(4.2) can be written in the form : 

232 



ymis (k )  = IM(p t r (k ) )  - IM(ptr (k  - 1)) (4.3) 
with IM(ptr) being a function of the pointer on the array 
called the Integral Mismatch function. This function is 
obtained by integrating the mismatches of cells along 
the array : 

ptr - 1 

i = O  
p t r  - 1 

i = O  

~ ~ ( p t r )  = c ( w i  - wnzeaiz) + I M ( O )  

(4.4) 

= C w i - p t r . w n l e a n + I M ( O )  

As Ymis(k) is obtained by first order differentiation of 
the function IM(ptr(k)), it benefits from first order noise 
shaping. Indeed, (4.3) can be written in the Z-domain 
into the form : 

Y m i s ( z )  = (I  - z-]) IM(PTR(Z)) (4.5) 
The value IM(0) of the integral mismatch function for 
ptr=0 is defined in order to cancel the average value of 
IM(ptr) : 

N-1 
1 IM(ptr )  = 0 (4.6) 

ptr  = 0 
Eliminating IM(0) from (4.4) by means of (4.6) gives : 

ptr ). wi ptr-1 1 Nfl(i N-1 I M ( p t r ) =  wi +--. 
j=O N i=O 2 

(4.7) 
Assuming ptrl<=ptr2, one obtains after some 
calculation : 
E(IM(ptr1) .  ~ ( p t r 2 ) )  = 

(4.8) 
This expression will be used i n  order to compute the 
selfcorrelation function of the mismatch noise, which is 
given by : 

The spectrum of the mismatch noise will further be 
derived. These calculations will be done in two different 
cases : for a random input signal and for a DC input 
signal. 
1 )  random input signal 
In this case, we consider that all the input values of the 
input code from 0 to N-1 have the same probability 
equal to 1/N at each clock cycle. Under these 
conditions, one can easily show : 

Y ( p )  = E{ I M ( p t r ( k ) .  IM(ptr (k  + p ) }  (4.9) 

Y(k)  = 0 f o r  k + O  
This means that IM(ptr(k)) has a white spectrum and its 
total power is Y(0). The spectrum of Ymis can then be 
derived due to (4.5). Assuming that the DAC is 
oversampled by a factor M, the maximum achievable 
resolution is given by : 

resolution = log?[ [bits] (4.1 1) 
R. ow. ( 1  - +) 

2) DC input signal 
In this case, assuming x(k)=X, (4 .1)  gives : 
p t r ( k ) - p t r ( k + p ) = p . X  mod N (4.12) 
Combining with (4.8), the selfcorrelation function (4.9) 
can be written as : 

with a ( x ) = p . X  mod N 
The values of the selfcorrelation function can thus be 
obtained by sampling of a continuous time f(t) at the 
sampling rate fs=l/Ts. This function f(t) is periodic of 
period Tp=Ts.N/X : 

N f o r  O < t < T p = - - T s  X 

@(t )  = @(t - k .  TP) 

for  k . Tp I t I ( k  + I ) - T p  
(4.14) 
As f(t) is periqdic with period Tp and symetric with 
respect to t=O, it can be written as : 

00 

$ ( r ) = A o +  E A i . c o s ( i . 2 n . f . T p )  (4.15) 
i = l  

with 

Hence the spectrum of the continuous time signal f(t) is 
a sum of components of amplitude Ai located at 
frequency fi/Tp. By consequence, as Y(p) is obtained 
by sampling f(t) at frequency fs, its spectrum will be 
computed by folding all the components between -fs/2 
and +fs/2. The spectrum of Y(p), which is the power 
density of the mismatch noise source IM(ptr(k)), is thus 
made of components of power Ai located at frequency 
i.fp-fs.round(i.fp/fs) where round(x) represents the 
rounding of x to the closest integer. As fp is related to 
the DC signal level, the spectrum of the mismatch noise 
will also depend on the DC level. For values of DC 
level close to 1/2, 1/3, 2/3 ,1/4, 3/4, ... of the range, a low 
order noise component of high power is folded back 
into the baseband, and the equivalent resolution is 
decreased, in a similar way as for the quantization noise 
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with first order sigma delta modulation [ 111. Figure 2 
shows the simulated RMS noise as a function of the DC 
level, compared to the theoretical value corresponding 
to (4.1 1)  for random input  signals. This estimation 
corresponds to an average value over the whole DC 
range. 

CONCLUSIONS 
The structure of DAC mismatch noise for DC signals 
has been analyzed and shown to contain peaks at certain 
input levels. The demonstration of first order noise 
shaping for the case of data weighted averaging method 
points the way to DEM techniques for higher order 
noise shaping. Analytical predictions of converter 
resolution can now usefully be made from array size, 
mismatch variance and oversampling ratios. The 
mathematical models show close agreement with 
computer simulation results. 

REFERENCES 
[ I ]  J. C. Candy and G.  C. Temes, editors, 
"Oversampling Delta-Sigma Data Converters", IEEE 
Press, New York, 1992. 
[2] G. C. Temes and B. H. Leung, "CA Data Converter 
Architectures with Multibit Internal Quantizers", Proc. 
ECCTD, pp. 1613-1618, Davos, Switzerland 1993. 
[ 3 ]  C. D. Thompson and S. R. Bernadas, "A Digitally- 
Corrected 20b Delta-Sigma Modulator", i n  Proc. 
ISSCC, pp. 194-195, 1994. 

0.3 

0.25 

0.2 

8 *E 0.15 
K 
v) 

E 0.1 

0.05 

0 I I 1 
I I 1 r 

0 8 16  2 4  32 
input  code X 

Fig. 1 : RMS mismatch noise as a function of the input 
code. for random cell selection 

[4] M. Sarhang-Nejad and G. C. Temes, "A High 
Resolution Multibit Z A  ADC with Digital Correction 
and Relaxed Amplifier Requirements", IEEE J. Solid- 
State Circuits, vol. SC-28, no. 6, pp. 648-660, June 
1993. 
[5] L. Carley, "A Noise-Shaping Coder Topology for 
15+ Bit Converters", IEEE J. Solid-state Circuits, vol. 
SC-24, pp. 267-273, April 1989. 
[6] Y. Sakina, "Multi-Bit Sigma-Delta Analog-to- 
Digital Converters with Nonlinearity Correction using 
Dynamic Barrel Shifting", University of California, 
Berkeley, Memorandum No. UCBERL M93/63, 1993. 
[7] B. H. Leung and S.  Sutarja, "Multibit E A  A/D 
Converter Incorporating a Novel Class of Dynamic 
Element Matching Techniques", IEEE Trans. Circuits 
arid Systems, vol. CAS-39, no. 1, pp. 35-5 1,  Jan. 1992. 
[8] A. Maloberti, "Convertitore Digitale Analogic0 
Sigma-Delta Multilivello con Matching dinamico degli 
Elementi", Tesi di Laurea, universita degli studi di 
Pavia, 1990- 199 1. 
191 Rex T. Baird and Terri S. Fiez, "Improved DS DAC 
Linearity Usiing Data Weighted Averaging", in Proc. 
ISCAS , pages 13-16, Seattle, May 1995. 
[ lo]  R. Henderson and 0. Nys, "Dynamic Element 
Matching Techniques with Arbitrary Noise Shaping 
Function", to be published in Proc. IEEE ISCAS, 1996. 
[ 1 I ]  J.C. Candy, 0. J. Benjamin, "The Structure of 
Quantization Noise from Sigma-Delta Modulation", 
IEEE trans. on Communications. vol COM-29, pp, 
1316-1323, September 1981. 

0.01 2 T 

0.C' I 
0 .O( 

II I 
a# .- 

0.006 
U) 

E 

0.004 

0.002 

0 
O W N ~ W O C D N ~ J W O W N ~ ~ O W  -C'bWUI~r>cv~S~ONWW N N N N  - 

input  code X 
Fig. 2 : RMS mismatch noise as a function of input 
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elements , 10% mismatch and oversampling M= 128. 
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