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ABSTRACT

A mathematical model of mismatch noise in an
oversampled DAC is established for two important
dynamic element matching techniques. The noise
shaping of the data weighted averaging method is
proven to be first order. Analytical predictions of
converter resolution can be made from array size,
mismatch variance and oversampling ratio.

1. INTRODUCTION

Sigma-delta modulation has become the preferred
technique for high-resolution data conversion [1].
Means of improving the performance of the converters
are continually being sought. One promising avenue
currently being explored by many researchers is the
extension of traditional single threshold sigma-delta
modulation to multibit quantization {2]. Significant
advantages are to be obtained such as higher bandwidth
and lower power consumption. Multibit sigma-delta
modulation is particularily appropriate in the case of
high resolution converters where the :arge capacitors
necessary for low thermal noise can be conveniently
divided into smaller ones without area overhead.

The advantages of multibit quantization have been
known for a long time. One major drawback has
prevented its widespread application : converter
linearity is severely limited by the matching of
elements. Process lithography provides elements with a
typical matching of 0.1-0.5% corresponding to a
resolution of 8-10bits. Higher resolutions can be
obtained by laser trimming or digital calibration
techniques [3-4]. However, an attractive solution due to
its simplicity and cost-effectiveness is dynamic element
matching (DEM). The aim of DEM techniques is to
modulate mismatch errors away from signal frequencies
in order to remove them by filtering. An algorithm
selects elements for each conversion such that they are
used equally often and no single element can lead to the
accumulation of a large linearity error.

Various DEM techniques have now been presented in
the literature [5-9]. Up to now, the principal tool in the
study of their mismatch noise has been system
simulation. This paper provides an analytical model of
the structure of mismatch noise. It is thereby possible to
make theoretical predictions of converter resolution as a
function of oversampling ratio, matching and number of
elements. A detailed analysis of two typical techniques,
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random selection [5] and data weighted averaging [8-
9] is presented. The postulated first order noise shaping
of the data weighted averaging technique is confirmed
analytically and extension to higher order noise shaping
is foreseen [10].

The following treatment is based only on oversampled
digital to analog converters (DAC's). However it should
be pointed out that a major area of application of the
results is in the DAC used in the feedback path of sigma
delta analog to digital converters (ADC's).

2. DEFINITIONS

Most D/A converters are made up of a number N of
nominally identical cells, such as current sources or
capacitors. The D/A conversion is then realized by
selecting a number of cells corresponding to the input
code and by adding the contribution of the selected cells
in order to generate an analog output voltage or current.
Particular examples are D/A converters based on binary
weighted capacitors. These converters are realized as an
array of elementary identical capacitors, since, for bette.
matching, each capacitor of weight 2K s composed of a
parallel combination of 2K identical capacitors. As
various elementary cells are then controlled by a same
signal, the number of control lines for the whole array
varies only with the logarithm in base 2 of the number
of capacitors.

More generally, we assume here after that the N
elementary cells of the D/A converter can be selected
independently of each other. Let us denote by w; the
weight of the i-th cell relative to its nominal value and
by dj its control signal (dj=1 when the cell is selected,
otherwise dj=0). The analog output signal y from the
DAC can then be written as :
N-1
y= Zdiwj
i=0 ’
where the number of selected cells is simply the input
code x of the DAC :
N-1
x= ¥dj
i=0
Without any mismatch, the weight w; of each cell
would be equal to its nominal value assumed to be 1,
and hence y=x, meaning that the analog output is
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proportional to the input code, as in ideal case.
However, due to mismatches, each weight wj deviates
from its nominal value 1. Let us denote Wean as the
average weight for the cells of the array :

| N-1

Wmean===" % W; (2.3)

N i=o
With (2.2), the output code (2.1) can then be rewritten
as

Y=Wmean Xt Ymis 24
with
N-1
Ymis = Zgi '(Wi - Wmean) 2.5)
‘ —

being the error due to mismatch. This noise term will be
evaluated for two different algorthms of dynamic
element matching, which are random selection and
cyclic selection

3. RANDOM SELECTION

This technique was proposed by Carley [5]. A number
of cells corresponding to the input code is selected
through a Butterfly decoder controlled by a pseudo
random number generator. To simplify the evaluation of
the random selection, we make the following
hypotheses :

1) all the combinations of selected cells have the same
probability.

2) the weights wj are random variables with expectation
E{wj}=1 and variance Sw2

3) the weghts wj and wj are independent variables for
1#]

As all the cells have the same probability density
function, the variance of the mismatch is independent
on the selected cells. Hence :

5 =1, N-1 TP
E{ymis }zE ’Z(;Vi"ﬁ"Z(V)Vi
i= i= G.1)

This formula shows that the power of the mismatch
error with this algorithm is modulated by the value x of
the input code. This noise power cancels at the
extremities of the range, for x=0, as no cell is selected,
and for x=N, as all the cells are selected. In both cases,
no mismatch error is introduced. The noise power is
maximum in the middle of the range, for x =N/2, when
half of the cells are selected. The power is then equal to
N sW2/4. Figure 1 shows the RMS value of the
mismatch noise ymjs as a function of the input code x.
The simulation results are close to the value predicted

by (3.1).

Assuming that the cells are selected independently of
the cells from one sampling cycle to the other, the
mismatch noise has a white spectrum between 0 and

fs/2 with fs being the sampling frequency. Assuming
that the converter is oversampled by a factor M, only
1/M of the mismatch noise power will then fall into the
signal baseband. As the signal swing runs from 0 to N,
the maximum resolution that can be obtained is given
by :

N-M

3
Ow

resolution = log?2 [bits]

4. CYCLIC SELECTION

In sigma delta modulation, high resolution is obtained
by combining oversampling together with noise shaping
in order to modulate the quantization noise outside the
baseband, so that most of the noise can further be
eliminated by filtering. In fact, noise shaping techniques
can also be combined together with dynamic element
matching techniques in order to reduce the sensitivity to
matching. In the particular case of first order low pass
sigma delta modulation, this technique consists of
accumulating the mismatch error and selecting the cells
in such a way that the accumulated error remains as
small as possible. Basically, this can be realized by
counting the number of times each cell is selected and
by selecting the cells in such a way that all cells are
more or less equally used.

A very efficient implementation of such an algorithm is
the cyclic cell selection, as proposed by [8], and also
refered to as data weighted averaging [9]. This
algorithm can be implemented by using a digital register
ptr called pointer containing the address of one cell of
the array, with O<=pir<N. At each clock cycle, this
pointer is incremented modulo N by the input code :
ptr(k) = ptr(k—1)+x(k) mod N “.n

The cells selected at time k are the cells labelled from
ptr(k-1) to ptr(k) by increasing order, that is cells ptr(k-
1), ptr(k-1)+1, ptr(k-1)+2,...ptr(k)-1 if ptr(k-1)<=ptr(k),
otherwise ptr(k-1), ptr(k-1)+1,..N-1, 0, 1, ... ptr(k)-1 if
ptr(k-1)>ptr(k).

The mismatch errror at time k is then given by :
if ptr(k)z ptr(k-1)
ptr(k)—1
ymis(k) = YXwi  —x(k) Wmean
i=ptr(k-1)
if ptrik)<ptr(k-1)
N~-1 ptrik)—1

k): Twi o+ 2w —x(k) wmean

i=pr(k-1) i=0

Ymis

4.2)

In order to demonstrate that this mismatch error benefits
from first order noise shaping, let us first remark that
(4.2) can be written in the form :
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Ymis (k) = IM(ptr(k)) = IM(ptr(k - 1)) (4.3)
with IM(ptr) being a function of the pointer on the array
called the Integral Mismatch function. This function is
obtained by integrating the mismatches of cells along
the array :

ptr—1

IM(ptr) = ‘ z (Wi - Wmean)"‘ IM(0)
i=0 @4
ptr—1
= Xwi—ptr-wmean+IM(0)
i=0

As ymis(k) is obtained by first order differentiation of
the function IM(ptr(k)), it benefits from first order noise
shaping. Indeed, (4.3) can be written in the Z-domain
into the form :

Ymis(z)=(1-271)- IM(PTR(Z)) @5)

The value IM(0) of the integral mismatch function for
ptr=0 is defined in order to cancel the average value of
IM(ptr) :

N-1
Y IM(ptr)=0 (4.6)
ptr=0

Eliminating IM(0) from (4.4) by means of (4.6) gives :
.y ptg—l 1 Nz—l . N-1
tr) = W, +—- i———=ptr|-w,
(P i=0 ' N i=0( 2 P ) "
4.7

Assuming ptri<=ptr2, one obtains after some
calculation :

E{IM(ptr1)- IM(ptr2)} =

-7 (ptr2— pirl)- [N =(ptr2 - ptrl)]}

(4.8)

This expression will be used in order to compute the
selfcorrelation function of the mismatch noise, which is
given by :

Y(p) = E{IM(ptr(k)- IM(ptr(k + p)} 4.9)
The spectrum of the mismatch noise will further be
derived. These calculations will be done in two different
cases : for a random input signal and for a DC input
signal.

1) random input signal

In this case, we consider that all the input values of the
input code from O to N-1 have the same probability
equal to 1/N at each clock cycle. Under these
conditions, one can easily show :

2 2
(1-1/N)“-N
O (VNN o ko
12 (4.10)
Y(k)=0 Jor k#0
This means that IM(ptr(k)) has a white spectrum and its
total power is Y(0). The spectrum of Y mjs can then be

derived due to (4.5). Assuming that the DAC is
oversampled by a factor M, the maximum achievable

resolution is given by :

P(k)=

WB'N‘MS

N
2) DC input signal
In this case, assuming x(k)=X, (4.1) gives :
ptr(k)—ptr(k+p)=p-X mod N (4.12)
Combining with (4.8), the selfcorrelation function (4.9)
can be written as :

2 3
o N?>~-N N
‘i’(p)=———1\;"2 '{—-——---2-~a(x)~[N—tx(x)]}

resolution = log 2 [bits] (4.11)

12

with o(x)=p-X mod N

The values of the selfcorrelation function can thus be
obtained by sampling of a continuous time f(t) at the
sampling rate fs=1/Ts. This function f(t) is periodic of
period Tp=Ts-N/X :

2 3
_OwS IN°-N_N (XY 1y (Xt
W)'N2{12 2(Ts)[N(Ts)]}

(4.13)

Jor OSISTp=¥-Ts

o) =¢(t—k-Tp)

for k-Tp<t<(k+1)-Tp

(4.14)

As (1) is periadic with period Tp and symetric with
respect to t=0, it can be written as :

#(1)=Ag+ T A;j-cos(i-2m- f-Tp) (4.15)
i=1
with
2
__Ow
A= N
5 4.16)
_2-N-ow
eri)?

Hence the spectrum of the continuous time signal f(t) is
a sum of components of amplitude Aj located at
frequency *i/Tp. By consequence, as Y(p) is obtained
by sampling f(t) at frequency fs, its spectrum will be
computed by folding all the components between -fs/2
and +fs/2. The spectrum of Y(p), which is the power
density of the mismatch noise source IM(ptr(k)), is thus
made of components of power Aj located at frequency
i-fp-fs-round(i-fp/fs) where round(x) represents the
rounding of x to the closest integer. As fp is related to
the DC signal level, the spectrum of the mismatch noise
will also depend on the DC level. For values of DC
level close to 1/2, 1/3, 2/3 ,1/4, 3/4,... of the range, a low
order noise component of high power is folded back
into the baseband, and the equivalent resolution is
decreased, in a similar way as for the quantization noise
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rms noise

with first order sigma delta modulation [11]. Figure 2
shows the simulated RMS noise as a function of the DC
level, compared to the theoretical value corresponding
to (4.11) for random input signals. This estimation
corresponds to an average value over the whole DC
range.

CONCLUSIONS

The structure of DAC mismatch noise for DC signals
has been analyzed and shown to contain peaks at certain
input levels. The demonstration of first order noise
shaping for the case of data weighted averaging method
points the way to DEM techniques for higher order
noise shaping. Analytical predictions of converter
resolution can now usefully be made from array size,
mismatch variance and oversampling ratios. The
mathematical models show close agreement with
computer simulation results.
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Fig. 2 : RMS mismatch noise as a function of input
code level for cyclic method for a DAC with N=256
elements , 10% mismatch and oversampling M=128.
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