《模拟集成电路的分析与设计》,Paul R. GRAY
φ 0 = V T ln N A N D n i 2 = k T q ln N A N D n i 2 \varphi_{0} = V_{T}\ln\frac{N_{A}N_{D} }{n_{i}^{2} } = \frac{kT}{q}\ln{\frac{N_{A}N_{D} }{n_{i}^{2} } }
φ 0 = V T ln n i 2 N A N D = q k T ln n i 2 N A N D
N A N_AN A (acceptor): P型物质参杂浓度 (a t o m s / c m 3 atoms/cm^3a t o m s / c m 3 ),三价元素,trivalent, valence of three, B, boron
N D N_DN D (donar): N型物质参杂浓度 (a t o m s / c m 3 atoms/cm^3a t o m s / c m 3 ),五价元素,pentavalent, valence of five, P, phosphorus
n i n_in i : 本征半导体的本征载流子浓度,300 K 300K3 0 0 K 时1.5×10^{10}cm^
如果加上外加反向偏置电压,则有,
φ 0 + V R (0) \varphi_0+V_R\tag0
φ 0 + V R ( 0 )
结两边总电荷必须电量相等,极性相反,则有
W 1 N A = W 2 N D (1) W_1N_A=W_2N_D\tag1
W 1 N A = W 2 N D ( 1 )
一维泊松方程:
d 2 V d x 2 = − ρ ε = q N A ε (2) \frac{d^{2}V}{dx^{2} } = - \frac{\rho}{\varepsilon} = \frac{qN_{A} }{\varepsilon}\tag2
d x 2 d 2 V = − ε ρ = ε q N A ( 2 )
ρ ρρ 为电荷密度,q qq 为电子电荷量1.6 × 1 0 − 19 C 1.6 \times 10^{− 19}C1 . 6 × 1 0 − 1 9 C ,ε 为硅的介电常数1.04 × 1 0 − 12 F / cm 1.04 \times 10^{- 12}F/\text{cm}1 . 0 4 × 1 0 − 1 2 F / cm ,K S K_SK S 为硅的介电常数因子,ε 0 ε_0ε 0 为真空介电常数8.86 \times 10^{- 14}F/\text
ε = K S ε 0 ε=KSε_0
ε = K S ε 0
对(2)式积分,得:
d V d x = q N A ε x + C 1 \frac{ {dV} }{ {dx} } = \frac{qN_{A} }{\varepsilon}x + C_{1}
d x d V = ε q N A x + C 1
C 1 C_1C 1 是积分出来的常量。电场强度是负的,因此有
E = − d V d x = − ( q N A ε x + C 1 ) E = - \frac{ {dV} }{ {dx} } = - \left( \frac{qN_{A} }{\varepsilon}x + C_{1} \right)
E = − d x d V = − ( ε q N A x + C 1 )
当x = − W 1 , E = 0 x=− W_1, E=0x = − W 1 , E = 0 ,可以利用这个边界条件求出C 1 C_1C 1
0 = q N A ε W 1 − C 1 , C 1 = q N A ε W 1 , E = − d V d x = − q N A ε ( x + W 1 ) (3) 0 = \frac{qN_{A} }{\varepsilon}W_{1} - C_{1},C_{1} = \frac{qN_{A} }{\varepsilon}W_{1},E = - \frac{dV}{dx} = - \frac{qN_{A} }{\varepsilon}\left( x + W_{1} \right)\tag3
0 = ε q N A W 1 − C 1 , C 1 = ε q N A W 1 , E = − d x d V = − ε q N A ( x + W 1 ) ( 3 )
继续积分(3)式,得到
V = q N A ε ( x 2 2 + W 1 x ) + C 2 V = \frac{qN_{A} }{\varepsilon}\left( \frac{x^{2} }{2} + W_{1}x \right) + C_{2}
V = ε q N A ( 2 x 2 + W 1 x ) + C 2
如果假设电势(电压)在x = − W 1 , V = 0 x=-W_1, V=0x = − W 1 , V = 0 ,则可以求出C 2 C_2C 2
V = q N A ε ( x 2 2 + W 1 x + W 1 2 2 ) (4) V = \frac{qN_{A} }{\varepsilon}\left( \frac{x^{2} }{2} + W_{1}x + \frac{W_{1}^{2} }{2} \right)\tag4
V = ε q N A ( 2 x 2 + W 1 x + 2 W 1 2 ) ( 4 )
从x = − W 1 x=−W_1x = − W 1 , V = 0 V=0V = 0 到x = 0 x=0x = 0 ,电位差V 1 V_1V 1
V 1 = q N A ε W 1 2 2 (5) V_{1} = \frac{qN_{A} }{\varepsilon}\frac{W_{1}^{2} }{2}\tag5
V 1 = ε q N A 2 W 1 2 ( 5 )
同理,从x = 0 x=0x = 0 , V = V 1 V=V_1V = V 1 到x = W 2 x=W_2x = W 2 ,V = V 1 + V 2 V=V_1+V_2V = V 1 + V 2
V 2 = q N D ε W 2 2 2 (6) V_{2} = \frac{qN_{D} }{\varepsilon}\frac{W_{2}^{2} }{2}\tag6
V 2 = ε q N D 2 W 2 2 ( 6 )
结两端的总电压为
V 1 + V 2 = q 2 ε ( N A W 1 2 + N D W 2 2 ) = φ 0 + V R (7) V_{1} + V_{2} = \frac{q}{2\varepsilon}\left( N_{A}W_{1}^{2} + N_{D}W_{2}^{2} \right) = \varphi_{0} + V_{R}\tag7
V 1 + V 2 = 2 ε q ( N A W 1 2 + N D W 2 2 ) = φ 0 + V R ( 7 )
联立方程
{ q 2 ε ( N A W 1 2 + N D W 2 2 ) = φ 0 + V R W 1 N A = W 2 N D \begin{cases}
\dfrac{q}{2\varepsilon}\left( N_{A}W_{1}^{2} + N_{D}W_{2}^{2} \right) = \varphi_{0} + V_{R} \\[0.8em]
W_{1}N_{A} = W_{2}N_{D}
\end{cases}
⎩ ⎪ ⎨ ⎪ ⎧ 2 ε q ( N A W 1 2 + N D W 2 2 ) = φ 0 + V R W 1 N A = W 2 N D
可以解得
W p = W 1 = 2 ε ( φ 0 + V R ) q N A ( 1 + N A N D ) W_{p} = W_{1} = \sqrt{\frac{2\varepsilon\left( \varphi_{0} + V_{R} \right)}{qN_{A}\left( 1 + \frac{N_{A} }{N_{D} } \right)} }
W p = W 1 = q N A ( 1 + N D N A ) 2 ε ( φ 0 + V R )
W n = W 2 = 2 ε ( φ 0 + V R ) q N D ( 1 + N D N A ) W_{n} = W_{2} = \sqrt{\frac{2\varepsilon\left( \varphi_{0} + V_{R} \right)}{qN_{D}\left( 1 + \frac{N_{D} }{N_{A} } \right)} }
W n = W 2 = q N D ( 1 + N A N D ) 2 ε ( φ 0 + V R )
W 1 + W 2 = 2 ε ( N A + N D ) ( φ 0 + V R ) q N A N D W_{1} + W_{2} = \sqrt{\frac{2\varepsilon\left( N_{A} + N_{D} \right)\left( \varphi_{0} + V_{R} \right)}{qN_{A}N_{D} } }
W 1 + W 2 = q N A N D 2 ε ( N A + N D ) ( φ 0 + V R )
从以上公式可以看出,耗尽区主要向轻参杂的半导体一侧扩展。
《CMOS模拟继承电路设计(第二版)》, Phillip E. Allen
等于PN结两侧任意一侧固定的电荷的量,A 是PN结的横截面积
A b r u p t J u n c t i n : Q j = ∣ A W p q N A ∣ = A W n q N D = A 2 ε q ( φ 0 + V R ) N A N D N A + N D Abrupt\ Junctin:Q_{j} = \left| AW_{p}qN_{A} \right| = AW_{n}qN_{D} = A\sqrt{\frac{2\varepsilon q\left( \varphi_{0} + V_{R} \right)N_{A}N_{D} }{N_{A} + N_{D} } }
A b r u p t J u n c t i n : Q j = ∣ A W p q N A ∣ = A W n q N D = A N A + N D 2 ε q ( φ 0 + V R ) N A N D
G r a d e d J u n c t i o n : Q j = A ( 2 ε q ( φ 0 + V R ) N A N D N A + N D ) 1 − m , m = 1 3 Graded\ Junction:\ Q_{j} = A\left( \frac{2\varepsilon q\left( \varphi_{0} + V_{R} \right)N_{A}N_{D} }{N_{A} + N_{D} } \right)^{1 - m},\ m = \frac{1}{3}
G r a d e d J u n c t i o n : Q j = A ( N A + N D 2 ε q ( φ 0 + V R ) N A N D ) 1 − m , m = 3 1
PN结耗尽区形成的电容称作耗尽层电容,它是由结附近没有被中和的固定电荷形成并随着外加电压变化而改变,可以利用电容的定义求出,是非线性电容
A b r u p t J u n c t i n : C j = d Q j d V R = A ε q N A N D 2 ( N A + N D ) 1 φ 0 + V R = A ε q N A N D 2 ( N A + N D ) φ 0 1 1 + V R φ 0 Abrupt\ Junctin:C_{j} = \frac{dQ_{j} }{dV_{R} } = \ A\sqrt{\frac{ {εq}{N_{A}N}_{D} }{2\left( N_{A} + N_{D} \right)} }\sqrt{\frac{1}{\varphi_{0} + V_{R} } } = A\sqrt{\frac{ {εq}{N_{A}N}_{D} }{2\left( N_{A} + N_{D} \right)\varphi_{0} } }\sqrt{\frac{1}{1 + \frac{V_{R} }{\varphi_{0} } } }
A b r u p t J u n c t i n : C j = d V R d Q j = A 2 ( N A + N D ) ε q N A N D φ 0 + V R 1 = A 2 ( N A + N D ) φ 0 ε q N A N D 1 + φ 0 V R 1
《Analog Integrated Circuits Design - Johns Martin》
突变结的电荷是( V R ) 0.5 (V_R)^{0.5}( V R ) 0 . 5 ,而缓变结是( V R ) 0.7 (V_R)^{0.7}( V R ) 0 . 7 ,电荷与电压越来越线性,意味着电容基本不变。
对于大信号的结电容,利用Q = C V Q=CVQ = C V 求出,而不是直接求两端电容取平均。因为在V R = − φ 0 V_R=−φ_0V R = − φ 0 时,C j = ∞ C_j=∞C j = ∞
C j − a v e r a g e d = Q j ( V 2 ) − Q j ( V 1 ) V 2 − V 1 C_{j - averaged} = \frac{Q_{j}\left( V_{2} \right) - Q_{j}\left( V_{1} \right)}{V_{2} - V_{1} }
C j − a v e r a g e d = V 2 − V 1 Q j ( V 2 ) − Q j ( V 1 )
当正向偏置时,由于扩散电流,靠近空间电荷区的少子将增加,这样将多出来diffusion电容,正向偏偏置时总的电容为C d + C j C_d+C_jC d + C j ,τ T τ_Tτ T 为transit time时一个定值,C d C_dC d 远大于C j C_jC j
C d = τ T I D V T C_{d} = \tau_{T}\frac{I_{D} }{V_{T} }
C d = τ T V T I D
根据(3)式,当x = 0 x=0x = 0 时最大的电场强度
E 0 = q N A ε W 1 = 2 q ( φ 0 + V R ) N D N A ε ( N D + N A ) (4) E_0=\frac{qN_A}{\varepsilon}W_1=\sqrt{\frac{2q\left(\varphi_0+V_R\right)N_DN_A}{\varepsilon\left(N_D+N_A\right)} } \tag4
E 0 = ε q N A W 1 = ε ( N D + N A ) 2 q ( φ 0 + V R ) N D N A ( 4 )
最大反向偏置电压V R V_RV R 是由耗尽区所能承受的最大电场E max E_{\max}E m a x 来决定的,对于硅来说
E max = 3 × 1 0 5 V / cm E_{\max} = 3 \times 10^{5}{V}/{\text{cm} }
E m a x = 3 × 1 0 5 V / cm
依据式(4),可得
E max = 2 q ( φ 0 + V R ) N D N A ε ( N D + N A ) E_{\max} = \sqrt{\frac{2q\left( \varphi_{0} + V_{R} \right)N_{D}N_{A} }{\varepsilon\left( N_{D} + N_{A} \right)} }
E m a x = ε ( N D + N A ) 2 q ( φ 0 + V R ) N D N A
( φ 0 + V R ) = ε ( N D + N A ) 2 q N D N A E max 2 \left( \varphi_{0} + V_{R} \right) = \frac{\varepsilon\left( N_{D} + N_{A} \right)}{2qN_{D}N_{A} }E_{\max}^{2}
( φ 0 + V R ) = 2 q N D N A ε ( N D + N A ) E m a x 2
雪崩击穿和齐纳击穿下,反向电流
i R A = M i R = ( 1 1 − ( V R B V ) n ) i R i_{RA} = M_{iR} = \left( \frac{1}{1 - \left( \frac{V_{R} }{ {BV} } \right)^{n} } \right)i_{R}
i R A = M i R = ( 1 − ( B V V R ) n 1 ) i R
这里i R i_Ri R 是PN结的反向电流,M MM 是雪崩因子,n nn 是一个指数系数通常在3~6之间。
正向电压V D V_DV D 让PN结中少数载流子穿过PN结与另一边的多数载流子复合。PN结两边过程的少数载流子从x = 0 x=0x = 0 开始,随着x xx 增大逐渐减小到一个平衡值。
p n ( 0 ) = p n 0 exp ( V D V t ) = n i 2 N D exp ( V D V t ) p_{n}\left( 0 \right) = p_{n0}\exp\left( \frac{V_{D} }{V_{t} } \right) = \frac{n_{i}^{2} }{N_{D} }\exp\left( \frac{V_{D} }{V_{t} } \right)
p n ( 0 ) = p n 0 exp ( V t V D ) = N D n i 2 exp ( V t V D )
n p ( 0 ) = n p 0 exp ( V D V t ) = n i 2 N A exp ( V D V t ) n_{p}\left( 0 \right) = n_{p0}\exp\left( \frac{V_{D} }{V_{t} } \right) = \frac{n_{i}^{2} }{N_{A} }\exp\left( \frac{V_{D} }{V_{t} } \right)
n p ( 0 ) = n p 0 exp ( V t V D ) = N A n i 2 exp ( V t V D )
流过PN结的电流正比于过剩少数载流子在x = 0 x=0x = 0 处的斜率,则电流密度为
J p ( x ) = − q D p d p n ( x ) d x ∣ x = 0 J_{p}(x) = -qD_{p}
\left.\frac{dp_{n}(x)}{dx} \right|_{x=0}
J p ( x ) = − q D p d x d p n ( x ) ∣ ∣ ∣ ∣ ∣ x = 0
这里D p D_pD p 为n型半导体中的空穴扩散常数,在n型半导体里,过剩的空穴可以表示为
p n ′ ( x ) = p n ( x ) − p n 0 p_n'(x) = p_n(x) − p_{n0}
p n ′ ( x ) = p n ( x ) − p n 0
过剩的少数载流子从PN结开始以指数规律衰减,L p L_pL p 是n型半导体中空穴的扩散长度,可以表示为
p n ′ ( x ) = p n ′ ( 0 ) exp ( − x L p ) = [ p n ( 0 ) − p n 0 ] exp ( − x L P ) p_{n}'(x) = p_{n}'(0) \exp\left(-\frac{x}{L_p} \right)
= \left\lbrack p_{n}\left( 0 \right) - p_{n0} \right\rbrack
\exp\left(-\frac{x}{L_P} \right)
p n ′ ( x ) = p n ′ ( 0 ) exp ( − L p x ) = [ p n ( 0 ) − p n 0 ] exp ( − L P x )
则有p n ′ ( x ) p_n'(x)p n ′ ( x ) 代入J p ( x ) J_p(x)J p ( x ) 中,则有
J p ( 0 ) = q D p p n 0 L p [ exp ( V D V t ) − 1 ] J_p(0)=\frac{qD_p p_{n0} }{L_p}\left[\exp\left(\frac{V_D}{V_t}\right)-1\right]
J p ( 0 ) = L p q D p p n 0 [ exp ( V t V D ) − 1 ]
同样对于p型半导体中的过剩电子,有
J n ( 0 ) = q D n n p 0 L n [ exp ( V D V t ) − 1 ] J_n(0)=\frac{qD_n n_{p0} }{L_n}\left[\exp\left(\frac{V_D}{V_t}\right)-1\right]
J n ( 0 ) = L n q D n n p 0 [ exp ( V t V D ) − 1 ]
总的电流密度乘以PN结横截面积,电流的表达式为
i D = A J ( 0 ) = A p [ J p ( 0 ) + J n ( 0 ) ] = q A ( q D p p n 0 L p + q D n n p 0 L n ) [ exp ( V D V t − 1 ) ] = I S [ exp ( V D V t − 1 ) ] \begin{aligned}
i_D&=AJ(0)=Ap[J_p(0)+J_n(0)]\\[0.8em]
&=qA\left(\frac{qD_p p_{n0} }{L_p}+\frac{qD_n n_{p0} }{L_n}\right)\left[\exp\left(\frac{V_D}{V_t}-1\right)\right]\\[0.8em]
&=I_S\left[\exp\left(\frac{V_D}{V_t}-1\right)\right]
\end{aligned}
i D = A J ( 0 ) = A p [ J p ( 0 ) + J n ( 0 ) ] = q A ( L p q D p p n 0 + L n q D n n p 0 ) [ exp ( V t V D − 1 ) ] = I S [ exp ( V t V D − 1 ) ]
g m = d I d V = I s exp ( V D V t ) = I s exp ( V D V t ) 1 V t = I D V t g_{m} = \frac{ {dI} }{ {dV} } = I_{s}\exp\left( \frac{V_{D} }{V_{t} } \right) = I_{s}\exp\left( \frac{V_{D} }{V_{t} } \right)\frac{1}{V_{t} } = \frac{I_{D} }{V_{t} }
g m = d V d I = I s exp ( V t V D ) = I s exp ( V t V D ) V t 1 = V t I D
《Precision Temperature Sensors in CMOS Technology, Michiel A.P. Pertijs》指出了非理想因素
i D = I s [ exp ( V D V t ) − 1 ] i_{D} = I_{s}\left\lbrack \exp\left( \frac{V_{D} }{V_{t} } \right) - 1 \right\rbrack
i D = I s [ exp ( V t V D ) − 1 ]
这个公式的推导,是假设no generation or recombination of electron-hole pairs takes place in the depletion region. In practice, however, some of the carriers injected across the depletion region will recombine. The resulting recombination current can be described by
i rec = I r 0 exp ( q V D 2 k T ) i_{\text{rec} } = I_{r0}\exp\left( \frac{qV_{D} }{2kT} \right)
i rec = I r 0 exp ( 2 k T q V D )
这里,∗ I r 0 ∗ *I_{\text r0}*∗ I r 0 ∗ 取决于耗尽区的宽度,复合的寿命以及本征载流子的浓度。实际的电流是
i D + i r e c i_D + i_{\text rec}
i D + i r e c
经验公式给出了一个近似结果
i D = I s [ exp ( V D n V t ) − 1 ] i_{D} = I_{s}\left\lbrack \exp\left( \frac{V_{D} }{nV_{t} } \right) - 1 \right\rbrack
i D = I s [ exp ( n V t V D ) − 1 ]
这里的n 被称作non-ideality factor:对于比较大的正向偏置电压,n ≈ 1;对于比较小的正向偏置电压(此时复合电流主导),n ≈ 2;在此之间,1 ≤ n ≤ 2;