I D , l i n e a r = μ n C o x W L [ ( V G S − V t h ) 2 − V D S 2 2 ] I D , s a t u r a t e = μ n C o x 2 W L ( V G S − V t h ) 2 ( 1 + λ V d s ) I D , w a k e i n v e r s i o n = I D 0 exp ( V g s n V t ) , n ≈ 1.5 \begin{aligned}
I_{D,linear} &= \mu_{n}C_{ {ox} }\frac{W}{L}\left\lbrack \left( V_{ {GS} } - V_{ {th} } \right)^{2} - \frac{V_{ {DS} }^{2} }{2} \right\rbrack \\[0.8em]
I_{D,saturate} &= \frac{\mu_{n}C_{ {ox} } }{2}\frac{W}{L}\left( V_{ {GS} } - V_{ {th} } \right)^{2}\left( 1 + \lambda V_{ {ds} } \right) \\[0.8em]
I_{D,wake\ inversion} &= I_{D0}\exp\left( \frac{V_{ {gs} } }{ {nV}_{t} } \right),\ n \approx 1.5
\end{aligned}
I D , l i n e a r I D , s a t u r a t e I D , w a k e i n v e r s i o n = μ n C o x L W [ ( V G S − V t h ) 2 − 2 V D S 2 ] = 2 μ n C o x L W ( V G S − V t h ) 2 ( 1 + λ V d s ) = I D 0 exp ( n V t V g s ) , n ≈ 1 . 5
漏电流,由于n i n_in i 与温度强正相关,每升高11℃,漏电流加倍。
I l k = q A j 2 1 τ 0 n i x d = q A j 2 1 ( τ n + τ p ) 2 N c N v exp ( − E g 2 k T ) 2 ε ( φ 0 + V R ) q N A \begin{aligned}
I_{lk} &= \frac{qA_{j} }{2}\frac{1}{\tau_{0} }n_{i}x_{d}\\[0.8em]
&= \frac{qA_{j} }{2}\frac{1}{\cfrac{\left( \tau_{n} + \tau_{p} \right)}{2} }\sqrt{N_{c}N_{v} }\exp\left( - \frac{E_{g} }{2kT} \right)\sqrt{\frac{2\varepsilon\left( \varphi_{0} + V_{R} \right)}{qN_{A} } }
\end{aligned}
I l k = 2 q A j τ 0 1 n i x d = 2 q A j 2 ( τ n + τ p ) 1 N c N v exp ( − 2 k T E g ) q N A 2 ε ( φ 0 + V R )
在夹断点处V G C = V t h V_{GC} = V_{th}V G C = V t h ,越往D走,V G C V_{GC}V G C 越小于V t h V_{th}V t h 甚至小于0,所以到D端(n)到夹断点(p衬底)的PN反偏电压是
V R = V D C = V D G − V C G = V D G + V t h V_R = V_{DC} = V_{DG} − V_{CG} = V_{DG} + V_{th}
V R = V D C = V D G − V C G = V D G + V t h
由PN结深公式,可以得到由于Drain (n) 与 Chanel (p) 之间的夹断后的PN结耗尽区长度
x d = 2 ε ( N A + N D ) ( φ 0 + V R ) q N A N D = 2 ε ( φ 0 + V R ) q N A = 2 ε ( φ 0 + V D G + V t h ) q N A = 2 ε ( φ 0 + V D S + V S G + V t h ) q N A ⇒ V e f f = V G S − V t h 2 ε ( φ 0 + V D S − V e f f ) q N A \begin{aligned}
x_{d} &= \sqrt{\frac{2\varepsilon\left( N_{A} + N_{D} \right)\left( \varphi_{0} + V_{R} \right)}{qN_{A}N_{D} } } \\[0.8em]
&= \sqrt{\frac{2\varepsilon\left( \varphi_{0} + V_{R} \right)}{qN_{A} } } \\[0.8em]
&= \sqrt{\frac{2\varepsilon\left( \varphi_{0} + V_{DG} + V_{th} \right)}{qN_{A} } } \\[0.8em]
&= \sqrt{\frac{2\varepsilon\left( \varphi_{0} + V_{DS} + V_{SG} + V_{th} \right)}{qN_{A} } } \\[0.8em]
& \xRightarrow{V_{eff} = V_{GS} − V_{th} } \sqrt{\frac{2\varepsilon\left( \varphi_{0} + V_{ {DS} } - V_{eff} \right)}{qN_{A} } }
\end{aligned}
x d = q N A N D 2 ε ( N A + N D ) ( φ 0 + V R ) = q N A 2 ε ( φ 0 + V R ) = q N A 2 ε ( φ 0 + V D G + V t h ) = q N A 2 ε ( φ 0 + V D S + V S G + V t h ) V e f f = V G S − V t h q N A 2 ε ( φ 0 + V D S − V e f f )
等效沟道长度是
L e f f = L − x d L_{eff} = L − x_d
L e f f = L − x d
V d s V_{ds}V d s 沟道长度调制后产生的I D I_DI D 的系数,只看结论吧
λ = ∂ I D ∂ V d s = ∂ I D ∂ L e f f ∂ L ∂ V ds = 1 2 L 2 ε ( φ 0 + V D S − V eff ) q N A \lambda = \frac{\partial I_{D} }{\partial V_{ {ds} } } = \frac{\partial I_{D} }{\partial L_{ {eff} } }\frac{\partial L}{\partial V_{\text{ds} } } = \frac{1}{2L}\sqrt{\frac{2\varepsilon\left( \varphi_{0} + V_{ {DS} } - V_{\text{eff} } \right)}{qN_{A} } }
λ = ∂ V d s ∂ I D = ∂ L e f f ∂ I D ∂ V ds ∂ L = 2 L 1 q N A 2 ε ( φ 0 + V D S − V eff )
V t h = V t h 0 + γ ( V SB − ∣ 2 φ F ∣ − ∣ 2 φ F ∣ ) V_{ {th} } = V_{th0} + \gamma\left( \sqrt{V_{\text{SB} } - \left| 2\varphi_{F} \right|} - \sqrt{\left| 2\varphi_{F} \right|} \right)
V t h = V t h 0 + γ ( V SB − ∣ 2 φ F ∣ − ∣ 2 φ F ∣ )
γ = 2 q N A ε C o x \gamma = \frac{\sqrt{2qN_{A}\varepsilon} }{C_{ox} }
γ = C o x 2 q N A ε
NMOS衬底一般是p-type注入,掺杂浓度为N A N_AN A ,费米能级为
φ F = k T q ln ( N A n i ) n i = N c N v exp ( − E g 2 k T ) \begin{gathered}
\varphi_{F} = \frac{ {kT} }{q}\ln\left( \frac{N_{A} }{n_{i} } \right) \\[0.8em]
n_{i} = \sqrt{N_{c}N_{v} }\exp\left( - \frac{E_{g} }{2kT} \right)
\end{gathered}
φ F = q k T ln ( n i N A ) n i = N c N v exp ( − 2 k T E g )
Short Channel Effect会有以下几个影响:
由于较大的Vgs以及很小的Length,会产生一个lateral electric fields,会影响effective channel depth以及造成更多的electron collision,同时由于电场的作用carrier velocity趋向于饱和,也影响了电子迁移率。这将导致IV特性曲线从平方律的关系向线性退化。
随着Vds电压升高,Drain侧Depletion region会增加, 离Source的Depletion region越来越近,“电力线”从漏穿越到源,导致source的势垒减小,导致电流增大,导致Vth降低,导致输出阻抗下降。
高速high-velocity的载流子通过电离和雪崩效应ionization and avalanching产生新的电子空穴对electron-hole pairs,其中holes被substrate收集,产生了Drain到substrate的电流,表现为有限的drain-to-ground impedance,这是cascode增益限制的主要原因。Substrate电流可能会引起latch-up;Electron有足够高的能量后会tunnel薄的栅氧 thin gate oxide,造成dc gate current,甚至会shift threshold voltage,这是限制MOS管长期可靠性的主要原因之一;Electron有足够高的能量可能会punch-through from drain to source,让effective channel length几乎等于0,有了不受扩散电流机制限制的unlimited current flow,这会导致输出阻抗的下降甚至损坏器件。
g m = μ n C o x W L V e f f = 2 μ n C o x W L I D = 2 I D V e f f g_{m} = \mu_{n}C_{ox}\frac{W}{L}V_{eff} = \sqrt{2\mu_{n}C_{ox}\frac{W}{L}I_{D} } = \frac{2I_{D} }{V_{eff} }
g m = μ n C o x L W V e f f = 2 μ n C o x L W I D = V e f f 2 I D
g s = γ g m 2 V S B + ∣ 2 φ F ∣ g_{s} = \frac{\gamma g_{m} }{2\sqrt{V_{SB} + \left| 2\varphi_{F} \right|} }
g s = 2 V S B + ∣ 2 φ F ∣ γ g m
g d s = λ I d s = 1 2 L 2 ε ( φ 0 + V D S − V e f f ) q N A I d s g_{ds} = \lambda I_{ds} = \frac{1}{2L}\sqrt{\frac{2\varepsilon\left( \varphi_{0} + V_{DS} - V_{eff} \right)}{qN_{A} } }I_{ds}
g d s = λ I d s = 2 L 1 q N A 2 ε ( φ 0 + V D S − V e f f ) I d s
Cut-off
Linear
Saturation
C_
C_
C_{gc}/2+C_
2C_{gc}/3 + C_
C_
C_
C_{gc}/2+C_
C_
C_
C_
0 00
0 00
C_
C_
{C_{jc} }/{2} + C_
2C_{jcb}/{3} + C_
C_
C_
{C_{jc} }/{2} + C_
C_
此时沟道没有电荷,bulk作为栅电容的另一端;栅电容式 gate oxide和depletion电容的串联:
当V G S < V T H V_{GS} <V_{TH}V G S < V T H 时,此时形成了耗尽区,但是没有形成反型层,总电容C G C B C_{GCB}C G C B 是两个电容的C G C C_{GC}C G C 和C C B C_{CB}C C B 串联,也就是C G B C_{GB}C G B 远小于C o x W ( L − 2 L o v ) C_{ox}W(L-2L_{ov})C o x W ( L − 2 L o v ) ,通常认为是零;
当V G S V_{GS}V G S 到越来越负的时候,depletion区缩小shrink,gate到bulk之间没有了depleriont区,电容回到了单电容模式C G B = C o x W ( L − 2 L o v ) C_{GB}=C_{ox}W(L-2L_{ov})C G B = C o x W ( L − 2 L o v )
在V G S = 0 V_{GS}=0V G S = 0 时,仍有depletion区,必然有重n+参杂source/drain,与浅p参杂bulk扩散形成的空间电荷区;其它的机制尚未完全理解。
此时沟道channel已经形成,作为了栅电容的另一个端口,此时C G C B C_{GCB}C G C B 为零,因为channel的shiedding作用;
同时将栅氧电容均分给了source和drain端;
此时改变V S V_SV S 并不能均匀一致地(uniformly)改变沟道电荷,当V G C V_{GC}V G C 在pinch-off point(夹断临界点,也就是最靠近drain端那个点)仍有V t h V_{th}V t h 的压差,此时C_{GC}\approx2/3\cdot W(L-2l_{ov})C_
改变V D V_DV D 不会改变channel的电荷,因此沟道电容与drain无关
左图,当V D S = 0 V_{DS}=0V D S = 0 时,其实就是当做开关用时的情况,栅电容随着V G S V_{GS}V G S 的变化;
右图,当作放大管用的时候,从线性区到亚阈值区再到饱和区的栅电容的变化。
Fringe/Overlap电容,包括了Overlap电容本身,以及侧边的fringe电容
结电容包括三个部分:
底部的,area cap,C b o t t o m = C j L s W C_{bottom}=C_{j}L_{s}WC b o t t o m = C j L s W
侧壁电容,sidewalls,perimeter cap,C s w = C j s w ( 2 L s + W ) C_{sw}=C_{jsw}(2L_{s}+W)C s w = C j s w ( 2 L s + W )
栅极边缘电容,gate edge,C g e = C j g a t e W C_{ge}=C_{jgate}WC g e = C j g a t e W
对结电容,一个简单的理解是,越是反偏,空间电荷区约宽,相当于电容两个极板的间距越大,电容越小。
绿色:NMOS的底部结电容,随偏置电压升高而减少;
紫色:NMOS的侧边结电容,随偏置电压升高而较少;
蓝色:PMOS的底部结电容,随偏置电压升高而增加;
红色:PMOS的侧边结电容,随偏置电压升高而增加;
Cadence Help -> View by Document Type -> SPECTRE19.10 -> User Guide -> Spectre Circuit Simulator Components and Device Models Reference -> BSIM4 Level-14 Model (bsim4) -> Component Statement