I C = I S ( 1 + V CE V A ) exp ( V BE V t ) I_{C} = I_{S}\left( 1 + \frac{V_{\text{CE} } }{V_{A} } \right)\exp\left( \frac{V_{\text{BE} } }{V_{t} } \right)
I C = I S ( 1 + V A V CE ) exp ( V t V BE )
《模拟电子技术基础》董诗白,第四版,p30
(1)VBE正向电压,扩散运动形成IE:
Emitter的杂质(多子电子)浓度高,电子通过扩散(外加电场+浓度扩散)从Emitter到Base,形成了I E N I_{EN}I E N ;同时Base的杂质(多子空穴)也同理从Base到Emitter扩散,形成了I E P I_{EP}I E P ,只是相比前者小了一点。
其中Emitter的电子电流I E N I_{EN}I E N ,一部分在Base区复合电流I B N I_{BN}I B N ,一部分穿过Base区到达Collector区ICN,因此有:
{ I E = I EN + I EP I EN = I BN + I CN ⇒ I E = I BN + I CN + I EP \begin{matrix}
\left\{ \begin{matrix}
I_{E} = I_{\text{EN} } + I_{\text{EP} } \\
I_{\text{EN} } = I_{\text{BN} } + I_{\text{CN} } \\
\end{matrix} \right.\ & \Rightarrow & I_{E} = I_{\text{BN} } + I_{\text{CN} } + I_{\text{EP} } \\
\end{matrix}
{ I E = I EN + I EP I EN = I BN + I CN ⇒ I E = I BN + I CN + I EP
(2)漂移运动形成I C I_CI C , V C B V_{CB}V C B 反向电压,V C ( N ) < V B ( P ) V_C(N)<V_B(P)V C ( N ) < V B ( P ) :
从Emitter扩散到Base的电子(又叫非平衡少子),通过漂移(外加电场,Base为负电压),到达Collector区,形成I C N I_{CN}I C N };同时自己的热平衡电子(平衡少子)也通过漂移到达Collector区,形成I C B O I_{CBO}I C B O 。
I C = I C N + I C B O I_C=I_{CN}+I_{CBO}
I C = I C N + I C B O
(3)复合电流I B I_BI B :
Emitter扩散到Base的电子,由于Base的体积小,且杂质(多子空穴)浓度低,所以只有一小部分与之复合,形成了流出的电流IBN;同时还有VBE正向电压扩散电流IEP,以及流入的VCB反向电压少子漂移电流ICBO。
I B = I B N + I E P − I C B O I_B = I_{BN} + I_{EP} − I_{CBO}
I B = I B N + I E P − I C B O
(4)联立(1)(2)(3),可得,
I E = I B + I C I_E=I_B+I_C
I E = I B + I C
在N型区(参杂磷元素,Ⅴ族,多出一个自由电子),p n p_np n 表示p型载流子的浓度,N D N_DN D 表示参杂的载流子浓度(失去一个电子,donar,呈现正电荷特性),n n n_nn n 表示n型载流子浓度,下角标n nn 表示在N型区:
p n + N D = n n p_n + N_D = n_n
p n + N D = n n
在P型区(参杂硼元素,Ⅲ族,多出一个空穴,n p n_pn p 表示n型载流子的浓度,N A N_AN A 表示参杂的P型载流子浓度(得到一个电子,acceptor,呈现负电荷特性),p p p_pp p 表示p型载流子浓度,下角标p pp 表示在P型区:
n p + N A = p p n_p + N_A = p_p
n p + N A = p p
本征激发浓度n i n_in i ,P基区中的热平衡少子电子浓度n p 0 n_{p0}n p 0 ,参杂N A N_AN A 空穴浓度(Ⅲ族,多出一个空穴+热平衡的空穴p p p_pp p
n i 2 = n p 0 ( N A + p p ) ≈ n p 0 N A (0) n_i^2 = n_{p0}(N_A+p_p) ≈ n_{p0}N_A \tag0
n i 2 = n p 0 ( N A + p p ) ≈ n p 0 N A ( 0 )
这是半导体的基本公式,有待整理半导体物理的基本知识
本征载流子浓度与材料,温度和禁带宽度有关,而与导带、价带、费米能级无关
热平衡状态下,电子浓度n 0 n_0n 0 和空穴浓度p 0 p_0p 0 的乘积为定值
对于一个工作在放大区的NPN:
基区(P)的少子电子n p n_pn p ,随着浓度梯度方向扩散,边缘的少子浓度,可以通过对费米-狄拉克分布函数做玻尔兹曼近似计算得到
n p ( 0 ) = n p 0 exp ( V B E V t ) (1) n_{p}\left( 0 \right) = n_{p0}\exp\left( \frac{V_{BE} }{V_{t} } \right)\tag1
n p ( 0 ) = n p 0 exp ( V t V B E ) ( 1 )
n p ( W B ) = n po exp ( V B C V t ) ≈ 0 (2) n_{p}\left( W_{B} \right) = n_{\text{po} }\exp\left( \frac{V_{BC} }{V_{t} } \right) \approx 0\tag2
n p ( W B ) = n po exp ( V t V B C ) ≈ 0 ( 2 )
这里n p ( W B ) n_p(W_B)n p ( W B ) 由于V B C V_{BC}V B C 为负值,所以n p ( W B ) n_p(W_B)n p ( W B ) 非常小。如果Base区空穴和电子的重组很少,Base区的少子浓度n p ( x ) n_p(x)n p ( x ) 随着距离线性变化。
n p + N A = p p (3) n_p + N_A = p_p\tag3
n p + N A = p p ( 3 )
由于以上关系,N A N_AN A 是均匀掺杂的,所以p p p_pp p 也是呈线性变化的。
基区(P)中的少子(电子)随浓度梯度扩散,并在反偏的集电结电场(CB=NP=正负)作用下形成集电极电流,其电流密度:
J n = q D n d n p ( x ) d x J n = q D n n p ( 0 ) W B (4) J_{n} = qD_{n}\frac{dn_{p}\left( x \right)}{d_{x} }J_{n} = qD_{n}\frac{n_{p}\left( 0 \right)}{W_{B} }\tag4
J n = q D n d x d n p ( x ) J n = q D n W B n p ( 0 ) ( 4 )
J n J_nJ n :n nn 型载流子电流密度
D n D_nD n :电子扩散恒量
(4)结合(1),可得集电极电流,
I C N = J n A = q D n n p ( 0 ) W B A = q A D n W B n p o exp ( V B E V t ) = I S exp ( V B E V t ) (5) I_{CN} = J_{n}A = qD_{n}\frac{n_{p}(0)}{W_{B} }A
= \frac{qAD_n}{W_B}n_{po} \exp\left( \frac{V_{BE} }{V_t} \right)
= I_S\exp\left(\frac{V_{BE} }{V_t} \right)
\tag5
I C N = J n A = q D n W B n p ( 0 ) A = W B q A D n n p o exp ( V t V B E ) = I S exp ( V t V B E ) ( 5 )
(5)结合(0),可得集电极电流
I S = q A D n n p 0 W B = q A D n n i 2 W B = q A D n ‾ n i 2 Q B = k T A μ n ‾ n i 2 Q B I_S=\frac{qAD_nn_{p0} }{W_B}
=\frac{qAD_nn_i^2}{W_B}
=\frac{qA\overline{D_n}n_i^2}{Q_B}
=\frac{kTA\overline{\mu_n}n_i^2}{Q_B}
I S = W B q A D n n p 0 = W B q A D n n i 2 = Q B q A D n n i 2 = Q B k T A μ n n i 2
D n ‾ \overline{D_{n} }D n :扩散系数的平均有效值,在非均匀掺杂的器件中用来替代D n D_nD n
Q B Q_BQ B :单位面积基区中的杂质原子总数
D n ‾ = k T q μ n ‾ \overline{D_n}=\frac{kT}{q}\overline{\mu_n}
D n = q k T μ n
μ n ‾ \overline{\mu_n}μ n :电子有效迁移率,单位是m 2 / {m^{2} }/m 2 /
可是I C N I_{CN}I C N 并不是I C I_CI C 的全部,由于Base-Collector结载流子的产生,以及平衡少子在外加NP反向电场作用下的漂移形成了额外的反向饱和电流I C B O I_{CBO}I C B O ,这里暂时认为这个电流为是0。
但是Base区x = W B x=W_Bx = W B 处的少子电子的浓度是0不准确,相反,它等于热平衡电子浓度n p o n_{po}n p o ,这样(4)式(5)式将重写为:
J n = q D n n p ( 0 ) − n p o W B = n p o exp ( V B E V t ) − n p o W B = n p o ( exp ( V B E V t ) − 1 ) W B J_{n} = \ qD_{n}\frac{n_{p}\left( 0 \right) - n_{ {po} } }{W_{B} } = \frac{n_{ {po} }\exp\left( \frac{V_{BE} }{V_{t} } \right) - n_{ {po} } }{W_{B} } = \frac{n_{po}\left( \exp\left( \frac{V_{ {BE} } }{V_{t} } \right) - 1 \right)}{W_{B} }
J n = q D n W B n p ( 0 ) − n p o = W B n p o exp ( V t V B E ) − n p o = W B n p o ( exp ( V t V B E ) − 1 )
I C = J n A = I S [ exp ( V BE V t ) − 1 ] (6) I_{C} = J_{n}A = I_{S}\left\lbrack \exp\left( \frac{V_{\text{BE} } }{V_{t} } \right) - 1 \right\rbrack\tag6
I C = J n A = I S [ exp ( V t V BE ) − 1 ] ( 6 )
这个表达式于二极管的表达式完全相同
I C = I S [ exp ( V B E V t ) − 1 ] I_C=I_S\left[\exp\left(\frac{V_{BE} }{V_t}\right)-1\right]
I C = I S [ exp ( V t V B E ) − 1 ]
I D = I S [ exp ( V D V t ) − 1 ] I_D=I_S\left[\exp\left(\frac{V_{D} }{V_t}\right)-1\right]
I D = I S [ exp ( V t V D ) − 1 ]
由于V C E V_{CE}V C E 增加让Collector与Base的空间电荷区增加,减少了基区宽度W B W_BW B ,从而增加了I C I_CI C ,因此修改后的公式为,
I C = I S [ exp ( V B E V t ) − 1 ] ( 1 + V C E V A ) I_C=I_S\left[\exp\left(\frac{V_{BE} }{V_t}\right)-1\right]
\left(1+\frac{V_{CE} }{V_A}\right)
I C = I S [ exp ( V t V B E ) − 1 ] ( 1 + V A V C E )
其中V A V_AV A 为厄尔利电压,典型值为15 -100V
(1)基区复合电流
I B 1 I_{B1}I B 1 是基极中多子空穴和少子电子的重组形成的电流,与基极中的少子(电子)电荷量Q e Q_eQ e 成正比
Q e = 1 2 n p ( 0 ) W B q A Q_e=\frac{1}{2}n_p(0)W_BqA
Q e = 2 1 n p ( 0 ) W B q A
I B 1 = Q e τ b = 1 2 n p ( 0 ) W B q A τ b (6) I_{B1} = \frac{Q_{e} }{\tau_{b} } = \frac{1}{2}\frac{n_{p}\left( 0 \right)W_BqA}{\tau_{b} }\tag6
I B 1 = τ b Q e = 2 1 τ b n p ( 0 ) W B q A ( 6 )
τ b τ_bτ b :基区少子电子的寿命
(6)结合(1),可得
I B 1 = Q e τ b = 1 2 n p o W B q A τ b exp ( V B E V t ) (7) I_{B1} = \frac{Q_e}{\tau_b} = \frac{1}{2}\frac{n_{po}W_BqA}{\tau_b}\exp\left( \frac{V_{BE} }{V_t} \right)\tag7
I B 1 = τ b Q e = 2 1 τ b n p o W B q A exp ( V t V B E ) ( 7 )
结/表面/通道复合电流的非线性
Third one is combined effects of recombination in the base-emitter junction, surface recombination, and emitter-base channels. These effects are associated with processing defects.
I B 1 ∝ exp ( V B E n E V t ) I_{B1} \propto \exp\left( \frac{V_{ {BE} } }{n_{E}V_{t} } \right)
I B 1 ∝ exp ( n E V t V B E )
(2)发射区少子扩散电流
I B 2 I_{B2}I B 2 是Base向Emitter的注入空穴扩散电流,取决于Emitter少子(空穴)的梯度
I B 2 = q A D p L P p n E ( 0 ) I_{B2} = \frac{qAD_p}{L_P}p_{nE}(0)
I B 2 = L P q A D p p n E ( 0 )
D p D_pD p :空穴的扩散常数
L P L_PL P :于Emitter空穴的扩散长度
p n E ( 0 ) p_{nE}(0)p n E ( 0 ) :Emitter耗尽区边缘的少子(空穴)浓度
{ I B 2 = q A D p L P p n E ( 0 ) p n E ( 0 ) = p n E o exp ( V B E V t ) p n E o = n i 2 N D ⟹ I B 2 = q A D p L P n i 2 N D exp ( V B E V t ) (8) \begin{cases}
I_{B2} = \frac{qAD_p}{L_P}p_{nE}(0) \\
p_{nE}(0) = p_{nEo}\exp\left(\frac{V_{BE} }{V_t} \right) \\
p_{nEo} = \frac{n_i^2}{N_D} \\
\end{cases}
\Longrightarrow
I_{B2} = \frac{qAD_p}{L_P}\frac{n_i^2}{N_D}\exp\left(\frac{V_{BE} }{V_t} \right)
\tag8
⎩ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎧ I B 2 = L P q A D p p n E ( 0 ) p n E ( 0 ) = p n E o exp ( V t V B E ) p n E o = N D n i 2 ⟹ I B 2 = L P q A D p N D n i 2 exp ( V t V B E ) ( 8 )
(7)结合(8),得到I B I_BI B
I B = I B 1 + I B 2 = ( 1 2 n p o W B q A τ b + q A D p L P n i 2 N D ) exp ( V B E V t ) I_B=I_{B1} + I_{B2} = \left( \frac{1}{2}\frac{n_{po}W_BqA}{\tau_b}
+ \frac{qAD_p}{L_P}
\frac{n_i^2}{N_D} \right)
\exp\left(\frac{V_{BE} }{V_t} \right)
I B = I B 1 + I B 2 = ( 2 1 τ b n p o W B q A + L P q A D p N D n i 2 ) exp ( V t V B E )
n E n_En E is the so-called low-current forward emission coefficient, which lies between 2 and 4. 这个是导致非线性的因素,因为n E n_En E 的存在。
(1)在华成英,董诗白《模拟电子技术基础》中
直流系数β ‾ \overline{\beta}β :
β ‾ = I C N I B ′ = I C − I C B O I B + I C B O ⇒ I C = β ‾ I B + ( 1 + β ‾ ) I C B O \overline{\beta} = \frac{I_{CN} }{I_B'} = \frac{I_{C} - I_{CBO} }{I_{B}+I_{CBO} }
\Rightarrow I_{C} = \overline{\beta}I_{B}
+\left(1+\overline{\beta}\right)I_{CBO}
β = I B ′ I C N = I B + I C B O I C − I C B O ⇒ I C = β I B + ( 1 + β ) I C B O
从Base到Emitter的电流(流出总电流),是I B + I C B O I_B+I_{CBO}I B + I C B O (流入总电流)
I B + I C B O = I B N + I E P I_B + I_{CBO} = I_{BN} + I_{EP}
I B + I C B O = I B N + I E P
I C B O I_{CBO}I C B O 的物理意义是,CB电压,且E开路下,I_{CB} = I_
( 1 + β ‾ ) I C B O \left( 1 + \overline{\beta} \right)I_{CBO}( 1 + β ) I C B O 的物理意义是,CE正电压,且B开路下,I_{CB} = \left( 1 + \overline{\beta} \right)I_
交流系数β 定义:
β = Δ i C Δ i B \beta = \frac{\Delta i_C}{\Delta i_B}
β = Δ i B Δ i C
推导,
i C i B ∣ ( 1 + β ‾ ) I C B O → 0 = I C + Δ i C I B + Δ i B = β ‾ I B + β Δ i B + ( 1 + β ‾ ) I C B O I B + Δ i B ≈ β ‾ I B + β Δ i B I B + Δ i B ∣ Δ i B → 0 , β ‾ = β ≈ β \begin{aligned}
\left. \frac{i_C}{i_B}\right|_{\left(1+\overline{\beta}\right)I_{CBO}\rightarrow 0}
& =\frac{I_C + \Delta i_C}{I_B + \Delta i_B} \\
& = \frac{\overline{\beta}I_B + \beta \Delta i_B + \left(1+\overline{\beta} \right)I_{CBO} }{I_{B} + {\Delta}i_B} \\
& \approx \left. \frac{\overline{\beta}I_B + \beta{\Delta}i_B}{I_B + {\Delta}i_{B} } \right|_{ {\Delta}i_{B} \rightarrow 0,\ \overline{\beta} = \beta}
\approx \beta
\end{aligned}
i B i C ∣ ∣ ∣ ∣ ∣ ( 1 + β ) I C B O → 0 = I B + Δ i B I C + Δ i C = I B + Δ i B β I B + β Δ i B + ( 1 + β ) I C B O ≈ I B + Δ i B β I B + β Δ i B ∣ ∣ ∣ ∣ ∣ Δ i B → 0 , β = β ≈ β
(2)在Paul R. Gray的《模拟集成电路的分析与设计》中,正向电流放大系数βF
β F = I C I B = I C I B 1 + I B 2 I C N I B N + I E P \beta_{F} = \frac{I_{C} }{I_{B} } = \frac{I_{C} }{I_{B1} + I_{B2} }\frac{I_{ {CN} } }{I_{ {BN} } + I_{ {EP} } }
β F = I B I C = I B 1 + I B 2 I C I B N + I E P I C N
g m = ∂ I C ∂ V B E = ∂ ( I S exp ( V B E V t ) ( 1 + V C E V A ) ) ∂ V B E = I C V t g_{m} = \cfrac{\partial I_C}{\partial V_{BE} } = \cfrac{\partial\left( I_{S}\exp\left( \cfrac{V_{BE} }{V_t} \right)\left( 1 + \cfrac{V_{CE} }{V_A} \right) \right)}{\partial V_{BE} } = \frac{I_C}{V_t}
g m = ∂ V B E ∂ I C = ∂ V B E ∂ ( I S exp ( V t V B E ) ( 1 + V A V C E ) ) = V t I C
r π = ∂ V B E ∂ I E = β V t I C = β g m r_{\pi} = \frac{\partial V_{BE} }{\partial I_E} = \beta\frac{V_t}{I_C} = \frac{\beta}{g_m}
r π = ∂ I E ∂ V B E = β I C V t = g m β
r e = ∂ V B E ∂ I E = β β + 1 g m = α g m r_{e} = \cfrac{\partial V_{BE} }{\partial I_E} = \cfrac{\cfrac{\beta}{\beta + 1} }{g_m} = \cfrac{\alpha}{g_m}
r e = ∂ I E ∂ V B E = g m β + 1 β = g m α
r o = ∂ V C E ∂ I C = V A I C r_{o} = \frac{\partial V_{CE} }{\partial I_C} = \frac{V_A}{I_C}
r o = ∂ I C ∂ V C E = I C V A
C b e = C d + C j = τ b I C V t + 2 A E C j e 0 = g m τ b + 2 A E C j e 0 C_{be} = C_d + C_j = \tau_b \frac{I_C}{V_t} + 2A_E C_{je0} = g_m \tau_{b} + 2A_{E}C_{je0}
C b e = C d + C j = τ b V t I C + 2 A E C j e 0 = g m τ b + 2 A E C j e 0
C c b = C j = A c C j c 0 ( 1 + V C B φ c 0 ) 1 3 C_{cb} = C{j} = \frac{A_{c}C_{jc0} }{\left( 1 + \frac{V_{CB} }{\varphi_{c0} } \right)^{\frac{1}{3} } }
C c b = C j = ( 1 + φ c 0 V C B ) 3 1 A c C j c 0
C c s = A T C J s 0 1 + V C S φ S 0 C_{cs} = \cfrac{A_{T}C_{Js0} } {\sqrt{1 + \cfrac{V_{CS} }{\varphi_{S0} } } }
C c s = 1 + φ S 0 V C S A T C J s 0
利用公式(6),对于电流比
{ I C = J n A = I S [ exp ( V B E V t ) − 1 ] I C 1 / I C 2 = p \begin{cases}
I_{C} = J_{n}A = I_{S}\left\lbrack \exp\left( \frac{V_{BE} }{V_{t} } \right) - 1 \right\rbrack \\
{I_{C1} }/{I_{C2} } = p
\end{cases}
{ I C = J n A = I S [ exp ( V t V B E ) − 1 ] I C 1 / I C 2 = p
Δ V B E = V B E 1 − V B E 2 = K T q ln ( p I C + I s I C + I s ) \Delta V_{BE} = V_{BE1} - V_{BE2} = \frac{ {KT} }{q}\ln\left( \cfrac{pI_{C} + I_{s} }{I_{C} + I_{s} } \right)
Δ V B E = V B E 1 − V B E 2 = q K T ln ( I C + I s p I C + I s )
当I s I_sI s 的值可以忽略的时候,PTAT的Δ V B E ΔV_{BE}Δ V B E 是成立的,但是I S I_SI S 随着温度升高而升高,在高温区将不能被忽略;同时I C I_CI C 也不能取很大,因为I C I_CI C 取很大会导致self-heating以及寄生串联电阻的Voltage Drop。除此之外,在大I C I_CI C 下,Base区少数载流子浓度低于多数载流子浓度的假设将不再成立,I C I_CI C 与V B E V_{BE}V B E 的指数关系将变成线性关系:
I C ∝ q V B E 2 k T I_{C} \propto \frac{qV_{ {BE} } }{2kT}
I C ∝ 2 k T q V B E
(Precision Temperature Sensors in CMOS Technology, Michiel A.P. Pertijs, page18)
二极管不能用来产生Δ V B E ΔV_{BE}Δ V B E 的主要原因是复合电流,这个复合电流同样发生在Base-Emiter的三极管中,主要区别是三极管主要发生在Base区。因此,在比较低的电流条件下,
ln ( I B ) ∝ q V B E 2 k T \operatorname{ln}\left(I_{B} \right) \propto \frac{qV_{ {BE} } }{2kT}
l n ( I B ) ∝ 2 k T q V B E
总之,当I C I_CI C 远大于I S I_SI S 且也不至于大到导致high-injection, V B E − I C V_{BE}-I_CV B E − I C 是可以作为产生准确的PTAT电压值的。
已知
I S = k T A μ n ‾ n i 2 Q B I_{S} = \frac{ {kTA}\overline{\mu_{n} }n_{i}^{2} }{Q_{B} }
I S = Q B k T A μ n n i 2
表示其中温度相关的量,I S I_SI S 可以重新写作
I S ( T ) = k T A μ n ‾ ( T ) n i 2 ( T ) Q B ( T ) I_{S}(T)= \frac
{ {kTA}\overline{\mu_{n} }(T)n_i^2(T) }
{Q_{B}\left( T \right)}
I S ( T ) = Q B ( T ) k T A μ n ( T ) n i 2 ( T )
(1)本征激发浓度
n i 2 ( T ) ∝ T 3 exp ( − q V g ( T ) k T ) n_{i}^{2}\left( T \right) \propto T^{3}\exp\left( \frac{- qV_{g}\left( T \right)}{ {kT} } \right)
n i 2 ( T ) ∝ T 3 exp ( k T − q V g ( T ) )
这里V g 0 V_{g0}V g 0 是外推的Bandgap Voltage @0K
V g ( T ) = V g 0 − α T V_g(T) = V_{g0} − \alpha T
V g ( T ) = V g 0 − α T
(2)电子迁移率,这里的∗ n ∗ *n*∗ n ∗ 是一个常数
μ n ‾ ( T ) ∝ T − n \overline{\mu_{n} }\left( T \right) \propto T^{- n}
μ n ( T ) ∝ T − n
(3)Gummel number略微与温度有关,因为Base的宽度是与温度相关的。
Q B ( T ) = W B ( T ) N A Q_B(T) = W_B(T)N_A
Q B ( T ) = W B ( T ) N A
结合以上因素,
I S ( T ) = C T η exp ( − q V g 0 k T ) I_{S}\left( T \right) = CT^{\eta}\exp\left( - \frac{qV_{g0} }{kT} \right)
I S ( T ) = C T η exp ( − k T q V g 0 )
η = 4 − n \eta=4-n
η = 4 − n
所以
I c ( T ) = C T η exp ( − q V g 0 k T ) exp ( q V B E ( T ) k T ) = C T η exp ( q ( V B E ( T ) − V g 0 ) k T ) I_{c}\left( T \right) = CT^{\eta}\exp\left( - \frac{qV_{g0} }{ {kT} } \right)\exp\left( \frac{qV_{ {BE} }\left( T \right)}{ {kT} } \right) = CT^{\eta}\exp\left( \frac{q\left( V_{ {BE} }\left( T \right) - V_{g0} \right)}{ {kT} } \right)
I c ( T ) = C T η exp ( − k T q V g 0 ) exp ( k T q V B E ( T ) ) = C T η exp ( k T q ( V B E ( T ) − V g 0 ) )
两边同时取对数,则有
ln [ I c ( T ) ] = ln ( C ) + η ln ( T ) + q ( V B E ( T ) − V g 0 ) k T \ln\left\lbrack I_{c}\left( T \right) \right\rbrack = \ln\left( C \right) + \eta\ln\left( T \right) + \frac{q\left( V_{BE}\left( T \right) - V_{g0} \right)}{kT}
ln [ I c ( T ) ] = ln ( C ) + η ln ( T ) + k T q ( V B E ( T ) − V g 0 )
k T q ln [ I c ( T ) ] = k T q ln ( C ) + η k T q ln ( T ) + V B E ( T ) − V g 0 \frac{ {kT} }{q}\ln\left\lbrack I_{c}\left( T \right) \right\rbrack = \frac{kT}{q}\ln\left( C \right) + \eta\frac{kT}{q}\ln\left( T \right) + V_{ {BE} }\left( T \right) - V_{g0}
q k T ln [ I c ( T ) ] = q k T ln ( C ) + η q k T ln ( T ) + V B E ( T ) − V g 0
V B E ( T ) = V g 0 + k T q ln [ I c ( T ) ] − k T q ln ( C ) + η k T q ln ( T ) V_{BE}\left( T \right) = V_{g0} + \frac{ {kT} }{q}\ln\left\lbrack I_{c}\left( T \right) \right\rbrack - \frac{kT}{q}\ln\left( C \right) + \eta\frac{kT}{q}\ln\left( T \right)
V B E ( T ) = V g 0 + q k T ln [ I c ( T ) ] − q k T ln ( C ) + η q k T ln ( T )
不知为何,写成了经验公式:
V B E ( T ) = V g 0 ( 1 − T T r ) + T T r V B E ( T r ) − η K T q ln ( T T r ) + K T q ln [ I C ( T ) I C ( T r ) ] V_{BE}\left( T \right) = V_{g0}\left( 1 - \frac{T}{T_{r} } \right) + \frac{T}{T_{r} }V_{ {BE} }\left( T_{r} \right) - \eta\frac{ {KT} }{q}\ln\left( \frac{T}{T_{r} } \right) + \frac{ {KT} }{q}\ln\left\lbrack \frac{I_{C}\left( T \right)}{I_{C}\left( T_{r} \right)} \right\rbrack
V B E ( T ) = V g 0 ( 1 − T r T ) + T r T V B E ( T r ) − η q K T ln ( T r T ) + q K T ln [ I C ( T r ) I C ( T ) ]
V B E ( T ) = V g 0 − T T r [ V g 0 − V B E ( T r ) ] − η k T q ln ( T T r ) + k T q ln [ I C ( T ) I C ( T r ) ] V_{BE}(T)=
V_{g0}
-\frac{T}{T_{r} }\left[V_{g0}-V_{BE}(T_{r}) \right]
-\eta\frac{kT}{q}\ln\left(\frac{T}{T_{r} }\right)
+\frac{ {kT} }{q}\ln\left[ \frac{I_{C}(T)}{I_{C}(T_{r})} \right]
V B E ( T ) = V g 0 − T r T [ V g 0 − V B E ( T r ) ] − η q k T ln ( T r T ) + q k T ln [ I C ( T r ) I C ( T ) ]
在以下文献中,A Curvature-Corrected Low-Voltage Bandgap Reference, Made Gunawan, 1993. 也是bandgap中的情况,是用PTAT电流作为偏置电流源的。则有:
I C ( T ) I C ( T r ) = T T r \frac{I_{C}\left( T \right)}{I_{C}\left( T_{r} \right)} = \frac{T}{T_{r} }
I C ( T r ) I C ( T ) = T r T
V B E ( T ) = V g 0 − T T r [ V g 0 − V B E ( T r ) ] − ( η − 1 ) K T q ln ( T T r ) V_{ {BE} }\left( T \right) = V_{g0} - \frac{T}{T_{r} }\left\lbrack V_{g0} - V_{ {BE} }\left( T_{r} \right) \right\rbrack - \left( \eta - 1 \right)\frac{ {KT} }{q}\ln\left( \frac{T}{T_{r} } \right)
V B E ( T ) = V g 0 − T r T [ V g 0 − V B E ( T r ) ] − ( η − 1 ) q K T ln ( T r T )
这里T r T_rT r = 300K, V g 0 V_{g0}V g 0 和η ηη 可以通过参数拟合的方式获得。
V g ( 0 ) = 1170 m V V B E ( T r ) = 0.65 V T R = 300 K η = 3.6 \begin{aligned}
V_{g}(0) &= 1170\,mV \\
V_{ {BE} }(T_{r}) &= 0.65\,V \\
T_{R} &= 300K \\
\eta &= 3.6
\end{aligned}
V g ( 0 ) V B E ( T r ) T R η = 1 1 7 0 m V = 0 . 6 5 V = 3 0 0 K = 3 . 6
β F \beta_Fβ F 可以利用经验公式,通过实测数据拟合的方式获得
β F ( T ) = β F 0 ( T T r ) X T B \beta_{F}\left( T \right) = \beta_{F0}\left( \frac{T}{T_{r} } \right)^{X_{TB} }
β F ( T ) = β F 0 ( T r T ) X T B