卷积的第二项:对折,平移,相乘,求和
y(n)=x(n)∗h(n)=∑x(m)h(n−m)=∑x(行)h(列)
挨个求积,对应的y(n)是(行+列=m+n−m=n)的值。
y(行+列) y(行+列) y(行+列) y(行+列) y(行+列) y(行+列) y(行+列) y(行+列) = y(−3) = 1= y(−2) = 2 + 4 = 6= y(−1) = 0 + 8 + 2 = 10= y(0) = 3 + 0 + 4 + 3 = 10= y(1) = 2 + 12 + 0 + 6 = 20= y(2) = 8 + 6 + 0 = 14= y(3) = 4 + 9 = 13= y(4) = 6
|
x(-2)=1 |
x(-1)=2 |
x(0)=0 |
x(1)=3 |
x(2)=2 |
h(-1)=1 |
1 |
2 |
0 |
3 |
2 |
h(0)=4 |
4 |
8 |
0 |
12 |
8 |
h(1)=2 |
2 |
4 |
0 |
6 |
4 |
h(2)=3 |
3 |
6 |
0 |
9 |
6 |
x1(n)∗x2(n)=x2(n)∗x1(n)
x1(n)∗x2(n)∗x3(n)=x1(n)∗(x2(n)∗x3(n))
x1(n)∗(x2(n)+x3(n))= x1(n)∗x2(n)+x1(n)∗x3(n)
x(n)∗δ(n)=x(n)
x(n)∗δ(n−1)=x(n−1)
k=−∞∑nx(k)=x(n)∗u(n)
(f1(t)∗f2(t))′=f1(t)∗f2′(t)=f1′(t)∗f2(t)
∫f1(t)∗f2(t)=f1(t)∗∫f2(t)=∫f1(t)∗f2(t)
相关的定义
Rxy[n]=k=−∞∑∞x[k]y[k+n]=k=−∞∑∞x[k−n]y[k]=k=−∞∑∞x[−(n−k)]y[k]=x(−n)∗y(n)